

Study of the $f_0(1710)$ and $a_0(1710)$ states with chiral unitary approach

- ◆肖楮文(Chu-Wen Xiao)
- ■广西师范大学(Guangxi Normal University)
- 合作者: Xiaonu Xiong, Zhi-Feng Sun, Wen-Chen Luo

Wei Liang, Jing-Yu Yi, Zhong-Yu Wang, Yu-Wen Peng

Outline

- 1. Introduction 2. Formlism
- 3. Results

1

4. Summary

§1. Introduction

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq) , $(qqqqq)$ etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$ etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8.

 AN SU_2 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

CERN LIBRARIES, GENEVA

 $G. Zweig$ ^{*}) $CERN - Geneva$

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Molecular nature

PHYSICAL REVIEW LETTERS 126, 152001 (2021)

Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum

Xiang-Kun Dong^o,^{1,2} Feng-Kun Guo^o,^{1,2,*} and Bing-Song Zou^o^{1,2,3}

f0 (1710) was **discovered** about **40 years ago**:

A. Etkin, et al., Phys. Rev. D 25, 1786 (1982)

C. Edwards, et al., Phys. Rev. Lett. 48, 458 (1982)

F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

> $C = 1$ **ELSEVIER**

Nuclear Physics A 620 (1997) 438-456

Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ , $f_0(980)$, $a_0(980)$ scalar mesons J.A. Oller, E. Oset

[∗]ഥ[∗] **molecular state:** Coupled channel approach

KK molecular state

L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009)

But, its isovector partner $\overline{a}_0(1710)$ were **NOT** found for a long time........

Recent Findings from BESIII

§2. Formalism

• Coupled Channel Unitary Approach: solving Bethe-Salpeter equations, which take on-shell approximation for the loops.

$$
T = V + VGT, T = [1 - VG]^{-1}
$$

$$
\times \left\{ \sum_{\rho_2} \sum_{\rho_q}^{\rho_1} \sum_{\rho_4}^{\rho_3} \right\}_{T} \cdot \mathbb{Z}
$$

$$
T = V - V - G - T
$$

D. L. Yao, L. Y. Dai, H. Q. $2n$ g and Z. Y. Zhou, Rept. Prog. Phys. 84, 076201 (2021)

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263 ⁶

 \boldsymbol{T}

G is a diagonal matrix with the loop functions of each channels:

$$
G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \; \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}
$$

The coupled channel scattering amplitudes **T matrix satisfy the unitary**:

$$
\text{Im } T_{ij} = T_{in} \sigma_{nn} T_{nj}^*
$$
\n
$$
\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}} \theta(s - (m_1 + m_2)^2))
$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$
G_{ll}^{II}(s) = G_{ll}^{I}(s) + i \frac{q_{cm}}{4\pi\sqrt{s}}
$$

Z. Y. Wang, Y. W. Peng, J. Y. Yi, W. C. Luo and CWX, Phys. Rev. D 107 (2023) 116018.

Partial decay widths

PHYSICAL REVIEW D 105, 114014 (2022)

Newly observed $a_0(1817)$ as the scaling point of constructing the scalar meson spectroscopy Dan Guo \bullet , 1,2,* Wei Chen \bullet , 4,* Hua-Xing Chen, 5,* Xiang Liu \bullet , 1,2,3,7,§ and Shi-Lin Zhu \bullet ^{6, ||} 200 20 (e) (f) 5 5 Isovetor Total Isoscala 2115 $f_0(2100)$ $\pi b_1(1235)$ Decay width (MeV) 15 150 $X(1812)$ $a_0(1817)$ M^2 (GeV²) \widehat{r} $\overline{\overset{\circ}{\mathcal{G}}}$ 3 ΚĀ 3 $\ensuremath{M^{2}}\xspace$ $a_0(1450$ Exp. 10 1450 100 $\pi f_1(1285)$ $\overline{2}$ 2 $f_0(980)$ $\vert a_0$ (980 5 $\pi\eta(1295)$ π 50 $\rho\omega$ $\overline{2}$ 3 $\overline{2}$ $\mathbf{3}$ 4 $\mathbf n$ $\mathbf n$ Regge trajectory Ω $\pi \eta(1475)$ *E. Oset, L. R. Dai and L. S. Geng,* Ω 4.8 5.0 4.2 4.4 4.6 5.0 4.2 4.8 4.6 $R(GeV^{-1})$ R (GeV⁻¹) *Sci. Bull. 68 (2023) 243 -246 .*

11

 \mathbf{w}

Branching ratios

 $Our ₁$

$$
\frac{\mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+\pi^0)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.40^{+0.002}_{-0.003}
$$
\n
$$
\frac{\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_S^0 K^+)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.53^{+0.06}_{-0.08},
$$
\n
$$
\frac{\mathcal{B}(D_s^+ \to a_0(1710)^+ \pi^0, a_0(1710)^+ \to K_S^0 K^+)}{\mathcal{B}(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0)} = 0.41^{+0.04}_{-0.05}.
$$
\nOur predictions\n
$$
\mathcal{B}(D_s^+ \to \bar{K}^*(892)^+ K_S^0, K^*(892)^+ \to K^+ \pi^0) = (1.91 \pm 0.20^{+0.01}_{-0.01}) \times 10^{-3}
$$
\n
$$
\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_S^0 K^+ = (2.53 \pm 0.26^{+0.27}_{-0.38}) \times 10^{-3}
$$
\n
$$
\mathcal{B}(D_s^+ \to a_0(1710)^+ \pi^0, a_0(1710)^+ \to K_S^0 K^+ = (1.94 \pm 0.20^{+0.18}_{-0.24}) \times 10^{-3}
$$
\n
$$
\mathcal{B} = \mathcal{B} =
$$

 $\mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+\pi^0) = (2.03 \pm 0.26 \pm 0.20) \times 10^{-3}$ $\mathcal{B}(D_s^+ \rightarrow a_0(980)^+ \pi^0, a_0(980)^+ \rightarrow K_S^0 K^+) = (1.12 \pm 0.25 \pm 0.27) \times 10^{-3}$ $\left| B(D_s^+ \rightarrow a_0(1710)^+ \pi^0, a_0(1710)^+ \rightarrow K_S^0 K^+ \right) = (3.44 \pm 0.52 \pm 0.32) \times 10^{-3}$

 $D_s^+ \to K^+ K^- \pi^+$

$$
T_{K^+K^-\to K^+K^-} = \frac{1}{2} (T_{K\bar{K}\to K\bar{K}}^{I=0} + T_{K\bar{K}\to K\bar{K}}^{I=1})
$$

$$
T_{K^0\bar{K}^0\to K^+K^-} = \frac{1}{2} (T_{K\bar{K}\to K\bar{K}}^{I=0} - T_{K\bar{K}\to K\bar{K}}^{I=1})
$$

of Refs. [4,42]. Therefore, there should be only the resonance $f_0(980)$ contribution in the K^+K^- invariant K^- mass distribution, and without the one of $a_0(980)$.

$$
\mathcal{B}[D_s^+ \to f_0(980)\pi^+, f_0(980) \to K^+K^-]
$$

= (0.61 ± 0.02^{+0.06}_{-0.17})%, [Theo]

$$
\mathcal{B}[D_s^+ \to \bar{K}^*(892)^0K^+, \bar{K}^*(892)^0 \to K^-\pi^+]
$$

= (2.61 ± 0.10^{+0.05}_{-0.12})%,

$$
\mathcal{B}[D_s^+ \to S(980)\pi^+, S(980) \to K^+K^-]
$$

= (1.05 ± 0.04 ± 0.06)%, [BESIII]

$$
\mathcal{B}[D_s^+ \to \bar{K}^*(892)^0K^+, \bar{K}^*(892)^0 \to K^-\pi^+]
$$

= (2.64 ± 0.06 ± 0.07)%,

¹⁴ *Z. Y. Wang, J. Y. Yi, Z. F. Sun and CWX, Phys. Rev. ^D ¹⁰⁵ (2022) 016025.*

§4. Summary

• We use the final state interaction formalism to investigate the Ds threebody weak decays

In the final state interaction, f_0/a_0 (1710) and/or f_0/a_0 (980) generated (molecular nature)

 Related branching ratios are evaluated, some of which are consistent with the experiments.

Hope future experiments and theories bring more clarifications on these issues…….

Thanks for your attention!

感谢大家的聆听!