

The pole structures of the X(1840)/X(1835) and the X(1880)

Niu Pengyu, Zhang Zhenyu, Li Yiyao, Wang Qian, Zhao Qiang South China Normal University, Institute of Quantum Matter arXiv: 2408.14876 (accepted by PRD)

> The 9th Workshop on Chiral Effective Field Theory Chang Sha, Hu Nan, 2024.10.18-2024.10.22

- 1. Background
- 2. Framework
- **3. Results and Discussion**
- 4. Summary

1. Background Deuteron and Protonium

Bound state?

- > Its mass locates just below the neutron proton threshold.
- > It has a sizeable spatial extension.
- These two features can be used for defining a hadronic molecule.

Are Mesons Elementary Particles?

E. FERMI AND C. N. YANG* Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received August 24, 1949)

[1]. Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, and Bing-Song Zou, Rev.Mod.Phys. 90, 015004
[2]. B. Q. Ma, arXiv:2406.19180

The hypothesis that π -mesons may be composite particles formed by the association of a nucleon with an anti-nucleon is discussed. From an extremely crude discussion of the model it appears that such a meson would have in most respects properties similar to those of the meson of the Yukawa theory.

1. Background

BES, Phys. Rev. Lett. 91, 022001 (2003)

- A narrow enhancement was observed near $2m_p$ for the first time.
- Using the S-wave fit:

$$M = 1859^{+3}_{-10}(\text{stat})^{+5}_{-25}(\text{syst}) \text{ MeV}$$

$$\Gamma < 30 \text{ MeV}$$

BESIII, Phys. Rev. Lett. 108, 112003 (2012)

- > The quantum number: 0^{-+}
- With the inclusion of Julich-FSI effects: $M = 1832^{+19}_{-5}(\text{stat})^{+18}_{-17}(\text{syst}) \pm 19 \text{ MeV}$ $\Gamma < 76 \text{ MeV}$

The $p\bar{p}$ bound state?

1. Background

Searching $p\bar{p}$ mass-threshold enhancement in various processes

processes	(Mass width) (MeV)		J ^{PC}
$J/\psi o \gamma p \bar{p}$	(1859,<30)[1]; (1861,<38)[2]; $(1837,\approx 0)[3];$ (1832,<76)[5]; (1831,<153)[6]	X(1835) superposition of two states?	0 ⁻⁺ [4]
$J/\psi ightarrow \pi^0 p \bar{p}$	No similar structure [1,5]		-
$J/\psi ightarrow \omega p ar p$	No similar structure [7,8]		-
$J/\psi o \eta p ar p$	No similar structure [9]		-
$\psi(2S) \rightarrow Xp\bar{p}$ $(X = \gamma, \pi^0, \eta)$	No similar structure [3]		-
$e^+e^- ightarrow p\bar{p}$	near-threshold enhancement is observed [10]		-
$B \to X p \bar{p}$ $(X = \pi^+, K, K_s, D^{(*)})$	near-threshold enhancement is observed [11-17]		-

Refs.

...

[1]: BES, Phys. Rev. Lett. 91, 022001 [2]: BESIII, Chin. Phys. C 34, 421 [3]: CLEO, Phys. Rev. D 82, 092002 [4]: BES, Phys. Rev. D 80, 052004 [5]: BESIII, Phys. Rev. Lett. 108, 112003 [6]: BES, Phys.Rev.Lett. 95, 262001 [7]: BES, Eur.Phys.J.C 53, 15 [8]: BESIII, Phys. Rev. D 87,, 112004 [9]: BES, Phys.Lett.B 510, 75 [10]: BaBar, Phys. Rev. D 73, 012005 [11]: Belle, Phys. Rev. Lett. 88, 181803 [12]: Belle, Phys. Lett. B 659, 80 [13]: BaBar, Phys.Rev.D 72, 051101 [14]: Belle, Phys.Lett.B 617, 141-149 [15]: Belle, Phys.Rev.Lett. 89, 151802 [16]: BaBar, Phys.Rev.D 85, 092017 [17]: CLEO, Phys.Rev.D 82, 092002

1. Background Observation of a structure at 1.84 GeV in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- > A structure at 1.84 GeV is observed in the $3(\pi^+\pi^-)$ mass spectrum in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ with a statistical significance of 7.6 σ .
- Modified Breit-Wigner function: $M = 1842.2 \pm 4.2^{+7.6}_{-2.6} \text{ MeV}$ $\Gamma = 83 \pm 14 \pm 11 \text{ MeV}$

X(1840)

A simple resonant structure (Breit-Wigner) fails to describe the $M(6\pi)$ spectrum (χ^2/N_{dof} =399.0/45).

Model-I: one resonant structure $(\chi^2/N_{dof}=317.9/44)$: $A = \left|\frac{1}{M^2 - s - i\sum_j g_j^2 \rho_j}\right|^2$ Model-II: two resonant structures $(\chi^2/N_{dof}=155.6/41)$:

$$A = \left| \frac{1}{M_1^2 - s - iM_1\Gamma_1} + \beta \frac{1}{M_2^2 - s - iM_2\Gamma_2} \right|^2$$

Particle	<i>X</i> (1840)	<i>X</i> (1880)
J ^{PC}	0-+	0-+
Mass (MeV)	$1832.5 \pm 3.1 \pm 2.5$	$1882.1 \pm 1.7 \pm 0.7$
Width (MeV)	$80.7 \pm 5.2 \pm 7.7$	$30.7 \pm 5.5 \pm 2.4$

This result further supports the existence of a $p\overline{p}$ bound state.

1. Background Theoretical works

Although a great effort has been put forward, the properties of the resonances in the mass region of [1.8,1.9] GeV is still remain controversial.

Final states interactions effects

L. Y. Dai, J. Haidenbauer and U. G. Meißner, Phys. Rev. D 98, 014005

Q. H. Yang, D. Guo and L. Y. Dai, Phys. Rev. D 107, 034030

G. Y. Chen, H. R. Dong and J. P. Ma, Phys. Rev. D 78, 054022

X. W. Kang, J. Haidenbauer and U. G. Meißner, Phys. Rev. D 91, 074003

A. I. Milstein and S. G. Salnikov, Nucl. Phys. A 966, 54-63

S. G. Salnikov and A. I. Milstein, Nucl. Phys. B 1002, 116539

Pseudoscalar glueball

B. A. Li, Phys. Rev. D 74, 034019

N. Kochelev and D. P. Min, Phys. Rev. D 72, 097502
N. Kochelev and D. P. Min, Phys. Lett. B 633, 283-288
X. G. He, X. Q. Li, X. Liu and J. P. Ma, Eur. Phys. J. C 49, 731
G. Hao, C. F. Qiao and A. L. Zhang, Phys. Lett. B 642, 53-61
L. C. Gui, J. M. Dong, Y. Chen and Y. B. Yang, Phys. Rev. D 100, 054511

> Radial excitations of η'

T. Huang and S. L. Zhu, Phys. Rev. D 73, 014023J. S. Yu, Z. F. Sun, X. Liu and Q. Zhao, Phys. Rev. D 83, 114007L. M.Wang, Q. S. Zhou, C. Q. Pang and X. Liu, Phys. Rev. D 102, 114034

> 3 ${}^{1}S_{0} q \overline{q}$ state

D. M. Li and B. Ma, Phys. Rev. D 77, 074004

Reviews

Y. F. Liu and X. W. Kang, Symmetry 8, 14 B. Q. Ma, arXiv:2406.19180

1. Background Can we describe $J/\psi \rightarrow \gamma p\bar{p}$ and $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ simultaneously?

- The $N\overline{N}$ and $3(\pi^+\pi^-)$ channels are considered dynamically and nondynamically, respectively.
- We would not include the contribution of resonances but focus on the rescattering effect of the dynamic $N\overline{N}$ channel.
- Whether the dynamic generated states in the $N\overline{N}$ channel can describe the experimental data.

2. Framework The $N\overline{N}$ interaction and the transition matrix $T_{N\overline{N}\rightarrow N\overline{N}}$

The leading and next-leading order $N\overline{N}$ contact interactions in the chiral effective field theory:

$$\begin{split} L_{N\overline{N}}^{(0)} &= C_s + C_T \,\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \,, \\ L_{N\overline{N}}^{(2)} &= C_1 \boldsymbol{q}^2 + C_2 \boldsymbol{k}^2 + \left(C_3 \boldsymbol{q}^2 + C_4 \boldsymbol{k}^2\right) \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \\ &+ \frac{i}{2} C_5 (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot (\boldsymbol{q} \times \boldsymbol{k}) + C_6 (\boldsymbol{q} \cdot \boldsymbol{\sigma}_1) (\boldsymbol{q} \cdot \boldsymbol{\sigma}_2) \\ &+ C_7 (\boldsymbol{k} \cdot \boldsymbol{\sigma}_1) (\boldsymbol{k} \cdot \boldsymbol{\sigma}_2) . \end{split}$$

The isospin basis and the particle basis: $|I = 1, I_3 = 0\rangle = \frac{1}{\sqrt{2}}(|p\bar{p}\rangle + |n\bar{n}\rangle)$ $|I = 0, I_3 = 0\rangle = \frac{1}{\sqrt{2}}(|p\bar{p}\rangle - |n\bar{n}\rangle)$ The partial wave interaction:

 $L({}^{1}S_{0}) = C'_{01} + C'_{02}(p^{2} + p'^{2})$ $L({}^{3}S_{0}) = C'_{11} + C'_{12}(p^{2} + p'^{2})$

The $N\overline{N}$ interaction in the isospin basis

$$V_{{}^{1}S_{0}}^{I} = C_{I1} + C_{I2}(p^{2} + P'^{2}), I = 0, 1$$

 C_{I1} : complex number to take into account the annihilation contribution

$$V_{p\bar{p}\to p\bar{p}} = V_{n\bar{n}\to n\bar{n}} = \frac{1}{2} (V_{1S_{0}}^{I=1} + V_{1S_{0}}^{I=0})$$
$$V_{p\bar{p}\leftrightarrow n\bar{n}} = \frac{1}{2} (V_{1S_{0}}^{I=1} + V_{1S_{0}}^{I=0})$$

Ν

 \overline{N}

Contact term

The transition matrix of $N\overline{N} \rightarrow N\overline{N}$ is obtained with the LS equation:

$$T_{N\bar{N}\to N\bar{N}}(p,p') = V_{N\bar{N}\to N\bar{N}}(p,p') + \int \frac{d^3 \boldsymbol{p}''}{(2\pi)^3} V_{N\bar{N}\to N\bar{N}}(p,\boldsymbol{p}'') G^+(E,\boldsymbol{p}'') T_{N\bar{N}\to N\bar{N}}(\boldsymbol{p}'',p')$$

[1]. X. W. Kang, J. Haidenbauer and U. G. Meisner, JHEP 02, 113 [2]. L. Y. Dai, J. Haidenbauer and U. G. Meißner, JHEP 07, 078 \overline{N}

2. Framework

The production amplitudes

The physical decay amplitudes: $\widetilde{M}_{J/\psi \to \gamma p \bar{p}} = 8\pi^2 \sqrt{E_{J/\psi} E_{\gamma} E_{p} E_{\bar{p}}} M_{J/\psi \to \gamma p \bar{p}},$ $\widetilde{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)} = 32\pi^{7/2} \sqrt{E_{J/\psi} E_{\gamma} E_{2} E_{3} E_{4}} M_{J/\psi \to 3(\pi^+\pi^-)},$

where

$$\begin{split} M_{J/\psi\to\gamma N\bar{N}} &= A^0_{J/\psi\to\gamma N\bar{N}} + \int \frac{d^3p}{(2\pi)^3} A^0_{J/\psi\to\gamma N\bar{N}} \cdot G^+ \cdot T_{N\bar{N}\to N\bar{N}}, \\ M_{J/\psi\to\gamma 3\left(\pi^+\pi^-\right)} &= A^0_{J/\psi\to\gamma 3\left(\pi^+\pi^-\right)} + \int \frac{d^3p}{(2\pi)^3} M_{J/\psi\to\gamma N\bar{N}} \cdot G^+ \cdot A_{N\bar{N}\to3\left(\pi^+\pi^-\right)} \end{split}$$

[1]. Q. H. Yang, D. Guo and L. Y. Dai, Phys. Rev. D 107, 034030
 [2]. L. Y. Dai, J. Haidenbauer and U. G. Meißner, Phys. Rev. D 98, 014005

2. Framework The fitting functions

1. Data 2003: Events
$$(m_{p\bar{p}}) = \operatorname{fac1} \times \frac{d\Gamma_{J/\psi \to \gamma p\bar{p}}}{dm_{p\bar{p}}}$$
,
2. Data 2012: Events $(m_{p\bar{p}}) = \operatorname{fac2} \times \frac{d\Gamma_{J/\psi \to \gamma p\bar{p}}}{dm_{p\bar{p}}}$,
3. Data 2024: Events $(m_{6\pi}) = \operatorname{fac3} \times \frac{d\Gamma_{J/\psi \to \gamma 3(\pi^+\pi^-)}}{dm_{6\pi}} + \frac{d\Gamma_{J/\psi \to \gamma 3(\pi^+\pi^-)}}{dm_{6\pi}}$.
Background for the $J/\psi \to \gamma 3(\pi^+\pi^-)$:
 $bg_{J/\psi \to \gamma 3(\pi^+\pi^-)} = a + bQ + cQ^2$.

Phase space: $d\Phi_7 \rightarrow d\Phi_4$:

3. Results The fitting results

BES, Phys. Rev. Lett. 91, 022001 (2003)

BESIII, Phys. Rev. Lett. 108, 112003 (2012)

BESIII, Phys. Rev. Lett. 132, no.15, 151901 (2024)

Parameters	Solution-I	Solution-II	
$C_{01} \; ({\rm GeV}^{-2})$	$(87.41 \pm 0.32) - (6.08 \pm 0.10)i$	$(97.24 \pm 0.66) - (-6.72 \pm 0.16)i$	
$C_{02} \; (\mathrm{GeV}^{-4})$	-102.36 ± 0.21	-109.26 ± 0.47	
$C_{11} \; ({\rm GeV}^{-2})$	$(-33.47 \pm 0.31) + (0.56 \pm 0.76)i$	$(153.79 \pm 3.98) + (12.56 \pm 8.26)i$	
$C_{12} \; ({\rm GeV}^{-4})$	57.56 ± 16.44	247.88 ± 2.01	
$C_{J/\psi \to \gamma p \bar{p}} \; (\mathrm{GeV}^{-2})$	168.06 ± 9.08	-88.22 ± 23.26	
$C_{J/\psi \to \gamma n \bar{n}} \; (\mathrm{GeV}^{-2})$	-372.26 ± 8.23	428.47 ± 8.39	
$C_{p\bar{p}\to 6\pi} \; (\mathrm{GeV}^{-7/2})$	-330.66 ± 10.63	-111.08 ± 2.12	
$C_{n\bar{n}\to 6\pi} \; (\mathrm{GeV}^{-7/2})$	263.04 ± 10.75	81.65 ± 5.83	
fac1 (10^{-3})	1.42 ± 0.10	0.85 ± 0.048	
fac2 (10^{-3})	7.19 ± 0.50	4.32 ± 0.23	
fac3 (10^{-3})	0.71 ± 0.04	3.14 ± 0.11	
$a \; (\text{GeV}^{-1})$	$-2.58 \times 10^7 \pm 1.61 \times 10^4$	$-2.84 \times 10^7 \pm 9.47 \times 10^5$	
$b \; (\text{GeV}^{-2})$	$2.54 \times 10^7 \pm 8.50 \times 10^3$	$2.84 \times 10^7 \pm 1.12 \times 10^3$	
$c \; (\text{GeV}^{-3})$	$-6.17 \times 10^7 \pm 4.38 \times 10^3$	$-6.96 \times 10^6 \pm 2.62 \times 10^4$	
$\chi^2/{ m d.o.f}$	2.32(2.24)	2.33(2.31)	

- Fitting program: Minuit2
- The two solutions can describe the experimental data almost equally well.

Two channels

RS-1: Im $k_1 > 0$, Im $k_2 > 0$, RS-II: Im $k_1 < 0$, Im $k_2 > 0$, RS-III: Im $k_1 < 0$, Im $k_2 < 0$, RS-IV: Im $k_1 > 0$, Im $k_2 < 0$.

- Bound state: pole below threshold on real axis of the first Riemann sheet of complex energy plane
- Virtual state: pole below threshold on real axis of the second Riemann sheet
- Resonance: pole in the complex plane on the second Riemann sheet

[1]. M. Kato, Annals Phys. 31, 130 [2]. V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, A. V. Nefediev and Q. Wang, Phys. Rev. D 99, 094013

The pole positions and effective couplings

R. S.	I	IV	II	III
Solution-I (MeV)	$1851.90^{+3.02}_{-2.71} \\ - 80.49^{+1.68}_{-1.63}i$	$1866.07^{+22.41}_{-7.20} \\ + 86.34^{+8.65}_{-12.76}i$	$1875.46^{+20.61}_{-6.60} \\ + 87.20^{+9.45}_{-12.92}i$	$\frac{1868.34^{+1.66}_{-0.55}}{-0.82^{+1.17}_{-1.41}i}$
$(g_{par{p}},g_{nar{n}})({ m GeV}^{-1/2})$	(1.61, 1.64)	(3.42, 2.22)	(2.16, 3.42)	(0.98, 0.94)
$(g_1, g_0) (\text{GeV}^{-1/2})$	(0.017, 2.37)	(3.32, 2.36)	(3.31, 2.32)	(1.35,0.032)
Solution-II (MeV)	$1852.90^{+3.57}_{-3.31} \\ - 82.35^{+2.45}_{-2.80}i$	$1860.31^{+8.77}_{-8.34} \\ + 61.23^{+6.18}_{-5.38}i$	$1855.23^{+8.49}_{-8.07} \\ + 62.01^{+6.02}_{-5.29}i$	$1868.92^{+1.13}_{-1.48} \\ - 2.58^{+1.70}_{-1.86}i$
$(g_{p\bar{p}}, g_{n\bar{n}}) ({\rm GeV}^{-1/2})$	(1.85, 1.88)	(2.82, 1.80)	(1.76, 2.82)	(0.94, 0.90)
$(g_1, g_0) (\text{GeV}^{-1/2})$	(0.013, 2.89)	(2.68, 1.99)	(2.67, 1.98)	(1.30, 0.033)

> Similar results

3. Results

- > All the poles positions are below the lowest threshold. Since the LECs C_{01} and C_{11} are set to be complex numbers.
- > Only the pole on the physical sheet strongly couples to isospin singlet.

2mp=1876.54 MeV

$T_{p\bar{p}\rightarrow p\bar{p}}$ on the complex energy plane

3. Results

Poles trajectories on the complex energy plane

- The poles trajectories on the complex energy plane with the variation of Im C_{01} and Im C_{11} from the fitted values to zero in Solution-I.
- For Solution-II, the behaviors are similar to those of Solution-I.

- The pole on the first R.S. can be treated as a bound state.
- The pole one the third R.S. can be treated as a virtual state.
- > The other two poles are resonance.

The pole structures of the X(1840) and the X(1880)

Effective-Range-Expansion:

$$T^{-1}(k) = -\frac{\mu}{2\pi} \left[-\frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}(k^4) \right]$$

\$\Rightarrow\$

scattering length: $a_0 = \frac{2\pi}{\mu} T(k)|_{k \to 0}$,

effective range:
$$r_0 = -\frac{2\pi}{\mu^2} \operatorname{Re}\left[\frac{dT^{-1}(E)}{dE}\right],$$

correction from isospin breaking effect:

$$r_0' = r_0 + \sqrt{\frac{1}{2 \ \mu \ \Delta}}$$

Compositeness:
$$\overline{X} = \frac{1}{\sqrt{1+2\left|\frac{r'_0}{\operatorname{Re}[a_0]}\right|}}$$

	r_0 (fm)	<i>r</i> ₀ ' (fm)	$a_0(\mathrm{fm})$	\overline{X}
Solution-I	-2.30	1.70	-65.46-31.94 <i>i</i>	0.98
Solution-II	1.50	5.50	-56.52-27.16 <i>i</i>	0.91

There exists $p\bar{p}$ dynamical generated states.

[1]. V. Baru, X. K. Dong, M. L. Du, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves and Q. Wang, Phys. Lett. B 833,137290 [2]. M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves and Q. Wang, Phys. Rev. D 105, 014024

The predicted $n\bar{n}$ line shapes for the two solutions

- > We can see a clear threshold enhancement in the $n\bar{n}$ channel, but not as significant as that in the $p\bar{p}$ channel.
- This result can be used to compare with the measurement of the future experiment.

4. Summary

- The $p\bar{p}$ threshold enhancement are both observed in $J/\psi \rightarrow \gamma p\bar{p}$ and $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$.
- > By constructing the $N\overline{N}$ interaction respecting chiral symmetry, we extract the pole positions by fitting the experimental data.
- > There exists $p\bar{p}$ dynamical generated states:
 - RS-I: m = 1852 MeV, $\Gamma = 160$ MeV (bound state)
 - RS-III: m = 1868 MeV, $\Gamma = 2$ MeV (virtual state)
- > We can see a clear threshold enhancement in the $n\overline{n}$ channel.

Thank you !