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0.8
𝑓𝑚

scalar interaction 

vector interaction 

𝜋

The attractive potential is mainly provided by scalar meson when goes to 
dense environment .e. g.  the nuclear saturation point,
𝑛0 ≈ 0.16𝑓𝑚−3~𝑟0 ≈ 1.14𝑓𝑚 is far from region (r > 3𝑓𝑚) where one-
pion-exchange dominates.

𝑓0(500)(denote as 𝜎) as a lowest-lying scalar make significant 
contribution for attractive interaction. However, the pole (400–
550)−i(200–350) MeV remains large uncertainty on its components. 

𝜎

𝜋

𝜋

𝑔𝜎𝜋𝜋

In our work, we treat the scalar as the Nambu-Goldstone(NG) boson 
of scale symmetry which is also found in QCD with chiral limit.

൞
𝑥 → 𝑥′ = 𝜆−1𝑥,

𝜙 → 𝜙′ = 𝜆𝜙.
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Spontaneous symmetry breaking

Explicit symmetry breaking

QCD

The scale symmetry emerges at an assumed  Infrared(IR) point, then 
the scalar meson can be identified with Nambu-Goldstone(NG) boson.

𝜕𝜇𝐷
𝜇 = 𝜃𝜇

𝜇

=
𝛽

4𝛼𝑠
𝐺𝜇𝜈
𝑎 𝐺𝑎𝜇𝜈 + 1 + 𝛾𝑚 σ𝑞𝑚𝑞 ത𝑞𝑞

Phys.Rev.D 91 (2015) 3, 034016

Reason for treatment 𝝈 as a N-G boson 

𝑚𝜎
2 = 𝑂(𝑚𝐾

2 )
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𝜒 = 𝑓𝜒Φ = 𝑓𝜒𝑒
𝜎
𝑓𝜒，

𝜒 𝑥 → 𝜒′ 𝑥′ = 𝜆𝜒(𝑥)

Hidden local symmetry

Compensator field

ො𝛼⊥,∥
𝜇

=
1

2𝑖
𝐷𝜇𝜉 ⋅ 𝜉† ∓𝐷𝜇𝜉† ⋅ 𝜉 , 𝜉 = 𝑈 = 𝑒

𝑖
𝜋
𝑓𝜋

𝐷𝜇 = 𝜕𝜇 − 𝑖
1

2
𝑔𝜔𝜔

𝜇 + 𝑔𝜌𝜌
𝑎𝜇𝜏𝑎

(scale invariant terms) 

∫ 𝑑4𝑥 (
1

2
𝜕𝜇Φ𝜕𝜇Φ+ 𝜆Φ4 −𝑚𝑁Φഥ𝑁𝑁 +⋯ )

(a way to introduce vector meson) 

𝑚𝑁

𝑓𝜒
𝜎 ഥ𝑁𝑁 +⋯
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ℒ𝐵 = ഥ𝑁𝑖𝛾𝜇𝐷
𝜇𝑁 −𝑚𝑁Φഥ𝑁𝑁

+𝑔𝜔𝑁𝑁𝜔
𝜇 ഥ𝑁𝛾𝜇𝑁 + 𝑔𝜌𝑁𝑁𝜌

𝑎𝜇 ഥ𝑁𝜏𝑎𝛾𝜇𝑁

+𝑔𝜔𝑁𝑁
𝑆𝑆𝐵 Φ𝛽′ − 1 𝜔𝜇 ഥ𝑁𝛾𝜇𝑁

+𝑔𝜌𝑁𝑁
𝑆𝑆𝐵 Φ𝛽′ − 1 𝜌𝑎𝜇 ഥ𝑁𝜏𝑎𝛾𝜇𝑁

+⋯ ,

Baryonic Lagrangian

Mesonic Lagrangian ℒ𝑀 =
𝑚𝜌
2

𝑔𝜌
2 Φ

2Tr ො𝛼∥
𝜇
ො𝛼𝜇∥ +

1

2

𝑚𝜔
2

𝑔𝜔
2 −

𝑚𝜌
2

𝑔𝜌
2 Φ2 Tr( ො𝛼∥

𝜇
) Tr( ො𝛼𝜇∥)

+ℎ5Φ
4 + ℎ6Φ

4+𝛽′ +⋯ ,

Phys.Rev.Lett. 125 (2020) 14, 142501

weak decay in nuclei-𝑔𝐴

leading order scale symmetry(LOSS)
Prog.Part.Nucl.Phys. 113 (2020), 103791
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extension to dense medium

relativistic mean field (RMF) approximation:

(static, homogeneous, classical)

𝜌𝑖𝑎 = 0, 𝑖 = 1,2,3,
𝜌𝜇𝑎 = 𝜌0𝑎𝛿𝜇0,
𝜕𝜇𝜌

𝜈𝑎 = 0.

Brown-Rho (B-R) scaling: 𝑓𝜋 𝜒
∗

𝑓𝜋 𝜒
≈

𝑚𝜌 𝜔,𝑁
∗

𝑚𝜌 𝜔,𝑁
≈ Φ∗,

𝑚𝜎
∗

𝑚𝜎
≈ Φ∗1+

𝛽′

2 , where Φ∗ is parameterized as 
1

1+𝑟
𝑛

𝑛0

 .

( The information of dense 
vacuum has been encoded 
in coupling constants )

Phys.Rev.Lett. 66 (1991), 2720-2723
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nuclear matter (NM) properties

bsHLS-L bsHLS-H

𝑀𝜎 1.05 2.30

𝛽′ 0.395 1.15

𝑟 0.161 0.191

𝑔𝜔𝑁𝑁 11.5 11.0

𝑔𝜌𝑁𝑁 3.78 4.17

𝑔𝜔𝑁𝑁
𝑆𝑆𝐵 16.3 8.85

𝑔𝜌𝑁𝑁
𝑆𝑆𝐵 9.45 4.85

TABLE Ⅱ. Two sets of parameters. 𝑀𝜎 = 𝑓𝜒𝑚𝜎 is

in unit of 105MeV2.

Empirical bsHLS-L bsHLS-H

𝑛0 0.155 ± 0.050 0.159 0.159

𝑏. 𝑒. −15.0 ± 1.0 −16.0 −16.0

𝐾0 230 ± 30 232 284

𝐸𝑠𝑦𝑚(𝑛𝑐) 26.7 ± 0.2 20.8 20.9

𝐸𝑠𝑦𝑚(𝑛0) 30.9 ± 1.9 30.5 29.2

𝐸𝑠𝑦𝑚(2𝑛0) 46.9 ± 10.1 51.5 50.2

𝐿(𝑛𝑐) 43.7 ± 7.8 53.2 54.2

𝐿(𝑛0) 52.5 ± 17.5 85.9 68.3

𝐽0 −700 ± 500 −767 −599

TABLEⅠ. NM properties from bsHLS-L, bsHLS-H.
The unit of physical quantities except 𝑛0/𝑐 are MeV while the latter is 𝑓𝑚−3.
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response of density

ℒ = ത𝜓 𝑖𝛾𝜇𝜕
𝜇 −𝑚𝑁 − 𝑔𝜎𝜎 − 𝑔𝜔𝑁𝑁𝛾𝜇𝜔

𝜇 − 𝑔𝜌𝑁𝑁𝛾𝜇𝜌
𝑎𝜇𝜏𝑎 − 𝑔𝛿𝛿

𝑎𝜏𝑎 𝜓

+
1

2
𝜕𝜇𝜎𝜕

𝜇𝜎 −𝑚𝜎
2𝜎2 −

1

3
𝑔2𝜎

3 −
1

4
𝑔3𝜎

4

−
1

2𝑔2
Tr 𝑉𝜇𝜈𝑉

𝜇𝜈

+
1

2
𝑚𝜔
2𝜔𝜇𝜔

𝜇 +
1

4
𝑐3 𝜔𝜇𝜔

𝜇 2
+

1

2
𝑚𝜌
2𝜌𝑎𝜇𝜌𝜇

𝑎

+
1

2
Λ𝑉𝜌𝜇

𝑎𝜌𝑎𝜇𝜔𝜈𝜔
𝜈 +

1

2
𝜕𝜇𝛿

𝑎𝜕𝜇𝛿𝑎 −𝑚𝛿
2𝛿𝑎𝛿𝑎 +

1

2
𝐶𝛿𝜎𝜎

2 𝛿𝑎 2

Lagrangian for Walecka-type model

Fig.1 The expectation of 𝜎 behaves with respect to
density in different models.



𝑚𝜔
2𝜔 = 𝑔𝜔𝑁𝑁 𝑝†𝑝 + 𝑛†𝑛 − 𝑐3𝜔

3 − Λ𝑉𝜌
2𝜔,

𝑚𝜌
2𝜌 = 𝑔𝜌𝑁𝑁 𝑝†𝑝 − 𝑛†𝑛 − Λ𝑉𝜔

2𝜌.
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equations of motions(EOMs)

EOMs of nonlinear models

𝑚𝜔
2Φ2𝜔 = 𝑔𝜔𝑁𝑁 + 𝑔𝜔𝑁𝑁

𝑆𝑆𝐵 Φ𝛽′ − 1 𝑝†𝑝 + 𝑛†𝑛 ,

𝑚𝜌
2Φ2𝜌 = 𝑔𝜌𝑁𝑁 + 𝑔𝜌𝑁𝑁

𝑆𝑆𝐵 Φ𝛽′ − 1 𝑝†𝑝 − 𝑛†𝑛 .

Fig.1 The expectation of 𝜎 behaves with respect to
density in different models.

Fig.2 Speed of sound from Walecka (L1, L-HS, NL1, TM1) 
and nonlinear (bsHLS-H, bsHLS-L) models.

EOMs of Walecka-type models
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mass-radius (M-R) relation

𝑑𝑝

𝑑𝑟
= −

𝐺 𝑚 𝑟 +
4𝜋𝑟3𝑝
𝑐2

𝜖 + 𝑝

𝑐2𝑟2 1 −
2𝐺𝑚 𝑟
𝑐2𝑟

,

𝑑𝑚

𝑑𝑟
=
4𝜋𝑟2

𝑐2
𝜖.

Tolman-Oppenheimer-Volkoff (TOV) equation:

Fig.3 M-R relation of neutron stars given by different models. 
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symmetry energy and tidal deformation

Fig.3 M-R relation of neutron stars given by different models. Fig.4 Symmetry energies of different models

bsHLS-L bsHLS-H TM1 L-HS NL1 FSU-𝛿6.7

Λ1.4 2120 910 2240 2780 2620 878

TABLEⅢ. Tidal deformations with mass of 1.4 𝑀⨀ from bsHLS and linear sigma models.



04 Summary



Once considering density effects (B-R scaling and RMF approximation), the NM properties can be well
reproduced at low density region.

We employed scale-symmetry and its explicit symmetry breaking in construction the
Lagrangian by introducing scalar field 𝜎, which can be treated as the scale compensator.

A kink behavior of the 𝜎 field has been investigated in bsHLS compared to other linear sigma models, owing
to the universal coupling between scalar and vector mesons stem from the nonlinear parameterization.

The M-R relation derived from bsHLS-H is within the constraints of astronomical observation without introducing
additional freedom like 𝛿 meson.



Thank you
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