

Effects of scale symmetry under relativistic mean field scheme

Lu-qi Zhang Collaborators Yao Ma, Yong-Liang Ma

arXiv:2410.04142

Outline

Construction

03 Results

Motivation

01 Motivation

The attractive potential is mainly provided by scalar meson when goes to dense environment .e. g. the nuclear saturation point, $n_0 \approx 0.16 f m^{-3} \sim r_0 \approx 1.14 f m$ is far from region (r > 3 f m) where one-pion-exchange dominates. $f_0(500)$ (denote as σ) as a lowest-lying scalar make significant contribution for attractive interaction. However, the pole (400–550)–i(200–350) MeV remains large uncertainty on its components.

In our work, we treat the scalar as the Nambu-Goldstone(NG) boson of scale symmetry which is also found in QCD with chiral limit.

$$\begin{cases} x \to x' = \lambda^{-1} x, \\ \phi \to \phi' = \lambda \phi. \end{cases}$$

01 Motivation

Reason for treatment σ as a N-G boson

 $\blacksquare m_{\sigma}^2 = O(m_K^2)$

Phys.Rev.D 91 (2015) 3, 034016

Spontaneous symmetry breaking

The scale symmetry emerges at an assumed Infrared(IR) point, then the scalar meson can be identified with Nambu-Goldstone(NG) boson.

Explicit symmetry breaking

$$\partial_{\mu}D^{\mu} = \theta^{\mu}_{\mu}$$
$$= \frac{\beta}{4\alpha_{s}}G^{a}_{\mu\nu}G^{a\mu\nu} + (1+\gamma_{m})\sum_{q}m_{q}\overline{q}q$$

Construction

χ

Compensator field

$$\hat{\alpha}^{\mu}_{\perp,\parallel} = \frac{1}{2i} \left(D^{\mu} \xi \cdot \xi^{\dagger} \mp D^{\mu} \xi^{\dagger} \cdot \xi \right), \xi = \sqrt{U} = e^{i \frac{\pi}{f_{\pi}}}$$

Hidden local symmetry

(a way to introduce vector meson)

$$D^{\mu} = \partial^{\mu} - i \frac{1}{2} (g_{\omega} \omega^{\mu} + g_{\rho} \rho^{a\mu} \tau^{a})$$

02 Construction

Baryonic Lagrangian

 $\mathcal{L}_{B} = \overline{N} i \gamma_{\mu} D^{\mu} N - m_{N} \Phi \overline{N} N$ $+ g_{\omega NN} \omega^{\mu} \overline{N} \gamma_{\mu} N + g_{\rho NN} \rho^{a\mu} \overline{N} \tau^{a} \gamma_{\mu} N$ $+ g_{\omega NN}^{SSB} (\Phi^{\beta'} - 1) \omega^{\mu} \overline{N} \gamma_{\mu} N$ $+ g_{\rho NN}^{SSB} (\Phi^{\beta'} - 1) \rho^{a\mu} \overline{N} \tau^{a} \gamma_{\mu} N$ $+ \cdots ,$

weak decay in nuclei-*g*_A Phys.Rev.Lett. 125 (2020) 14, 142501

Mesonic Lagrangian

$$\mathcal{L}_{M} = \frac{m_{\rho}^{2}}{g_{\rho}^{2}} \Phi^{2} \operatorname{Tr}\left(\hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\mu\parallel}\right) + \frac{1}{2} \left(\frac{m_{\omega}^{2}}{g_{\omega}^{2}} - \frac{m_{\rho}^{2}}{g_{\rho}^{2}}\right) \Phi^{2} \operatorname{Tr}\left(\hat{\alpha}_{\parallel}^{\mu}\right) \operatorname{Tr}\left(\hat{\alpha}_{\mu\parallel}\right) + h_{5} \Phi^{4} + h_{6} \Phi^{4+\beta'} + \cdots,$$

leading order scale symmetry(LOSS) Prog.Part.Nucl.Phys. 113 (2020), 103791

extension to dense medium

relativistic mean field (RMF) approximation: (static, homogeneous, classical)

$$ho^{ia} = 0, i = 1, 2, 3,
ho^{\mu a} =
ho^{0a} \delta^{\mu 0},
ho^{\mu a} =
ho^{0a} \delta^{\mu 0},
ho^{
u a} = 0.$$

Brown-Rho (B-R) scaling: (The information of dense vacuum has been encoded in coupling constants)

 $\langle 0^* | \bar{q}q | 0^* \rangle / \langle 0 | \bar{q}q | 0 \rangle = (f_\pi^* / f_\pi)^3$

$$\frac{f_{\pi(\chi)}^*}{f_{\pi(\chi)}} \approx \frac{m_{\rho(\omega,N)}^*}{m_{\rho(\omega,N)}} \approx \Phi^*,$$

Phys.Rev.Lett. 66 (1991), 2720-2723

$$\frac{m_{\sigma}^*}{m_{\sigma}} \approx \Phi^{*1 + \frac{\beta'}{2}}$$

where Φ^* is parameterized as $\frac{1}{1+r\frac{n}{n_0}}$.

Results

nuclear matter (NM) properties

	Empirical	bsHLS-L	bsHLS-H
n_0	0.155 ± 0.050	0.159	0.159
<i>b.e.</i>	-15.0 ± 1.0	-16.0	-16.0
K ₀	230 ± 30	232	284
$E_{sym}(n_c)$	26.7 ± 0.2	20.8	20.9
$E_{sym}(n_0)$	30.9 ± 1.9	30.5	29.2
$E_{sym}(2n_0)$	46.9 ± 10.1	51.5	50.2
$L(n_c)$	43.7 ± 7.8	53.2	54.2
$L(n_0)$	52.5 ± 17.5	85.9	68.3
Jo	-700 ± 500	-767	-599

TABLE I . NM properties from bsHLS-L, bsHLS-H.

The unit of physical quantities except $n_{0/c}$ are MeV while the latter is fm^{-3} .

	bsHLS-L	bsHLS-H
M_{σ}	1.05	2.30
β'	0.395	1.15
r	0.161	0.191
$g_{\omega NN}$	11.5	11.0
$g_{ ho NN}$	3.78	4.17
$g^{SSB}_{\omega NN}$	16.3	8.85
$g_{ ho NN}^{SSB}$	9.45	4.85

TABLE II . Two sets of parameters. $M_{\sigma} = f_{\chi} m_{\sigma}$ is in unit of 10^5MeV^2 .

response of density

Fig.1 The expectation of σ behaves with respect to density in different models.

$$\mathcal{L} = \overline{\psi} [i\gamma_{\mu}\partial^{\mu} - m_{N} (-g_{\sigma}\sigma) - g_{\omega NN}\gamma_{\mu}\omega^{\mu} - g_{\rho NN}\gamma_{\mu}\rho^{a\mu}\tau^{a} - g_{\delta}\delta^{a}\tau^{a}]\psi + \frac{1}{2} (\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{2g^{2}} \text{Tr}(V_{\mu\nu}V^{\mu\nu}) + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}c_{3}(\omega_{\mu}\omega^{\mu})^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{a\mu}\rho_{\mu}^{a} + \frac{1}{2}\Lambda_{V}\rho_{\mu}^{a}\rho^{a\mu}\omega_{\nu}\omega^{\nu} + \frac{1}{2}(\partial_{\mu}\delta^{a}\partial^{\mu}\delta^{a} - m_{\delta}^{2}\delta^{a}\delta^{a}) + \frac{1}{2}C_{\delta\sigma}\sigma^{2}(\delta^{a})^{2}$$

Lagrangian for Walecka-type model

equations of motions(EOMs)

$$\begin{split} m_{\omega}^{2} \Phi^{2} \omega &= \left[g_{\omega NN} + g_{\omega NN}^{SSB} \left(\Phi^{\beta'} - 1\right)\right] \left[\left\langle p^{\dagger} p \right\rangle + \left\langle n^{\dagger} n \right\rangle\right], \\ m_{\rho}^{2} \Phi^{2} \rho &= \left[g_{\rho NN} + g_{\rho NN}^{SSB} \left(\Phi^{\beta'} - 1\right)\right] \left[\left\langle p^{\dagger} p \right\rangle - \left\langle n^{\dagger} n \right\rangle\right]. \end{split}$$

EOMs of nonlinear models

$$\begin{split} m_{\omega}^{2}\omega &= g_{\omega NN}[\langle p^{\dagger}p \rangle + \langle n^{\dagger}n \rangle] - c_{3}\omega^{3} - \Lambda_{V}\rho^{2}\omega \\ m_{\rho}^{2}\rho &= g_{\rho NN}[\langle p^{\dagger}p \rangle - \langle n^{\dagger}n \rangle] - \Lambda_{V}\omega^{2}\rho. \end{split}$$

EOMs of Walecka-type models

Fig.1 The expectation of σ behaves with respect to density in different models.

mass-radius (M-R) relation

Tolman-Oppenheimer-Volkoff (TOV) equation:

$$\frac{dp}{dr} = -\frac{G\left[m(r) + \frac{4\pi r^3 p}{c^2}\right](\epsilon + p)}{c^2 r^2 \left[1 - \frac{2Gm(r)}{c^2 r}\right]},$$

$$\frac{dm}{dr} = \frac{4\pi r^2}{c^2} \epsilon.$$

symmetry energy and tidal deformation

Fig.4 Symmetry energies of different models

Fig.3 M-R relation of neutron stars given by different models.

	bsHLS-L	bsHLS-H	TM1	L-HS	NL1	FSU-δ6.7
Λ _{1.4}	2120	910	2240	2780	2620	878

TABLE III. Tidal deformations with mass of 1.4 M_{\odot} from bsHLS and linear sigma models.

Summary

We employed scale-symmetry and its explicit symmetry breaking in construction the Lagrangian by introducing scalar field σ , which can be treated as the scale compensator.

- Once considering density effects (B-R scaling and RMF approximation), the NM properties can be well reproduced at low density region.
- A kink behavior of the σ field has been investigated in bsHLS compared to other linear sigma models, owing to the universal coupling between scalar and vector mesons stem from the nonlinear parameterization.

The M-R relation derived from bsHLS-H is within the constraints of astronomical observation without introducing additional freedom like δ meson.

Thank you

