

LHCb实验上强子态的研究

Liming Zhang(张黎明) (清华大学)

第九届手征有效场论研讨会 Oct 18 - 22, 2024

Outline

- First determination of J^P of $\Xi_c(3055)$ baryons [arXiv: 2409.05440]
- $\Lambda_b^0, \Lambda_c^+, \Lambda$ decay parameters [arXiv: 2409.02759]
- Observation of muonic Dalitz decays of $\chi_{b1,2}(1,2P)$ [JHEP 10 (2024) 122]
- Amplitude analysis of $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ [arXiv: 2404.19510]
- Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ [arXiv: 2407.12475]
- Study of radiative decays of $\chi_{c1}(3872)$ [arXiv: 2406.17006]
- Search for prompt production of pentaquarks in open charm final states [PRD 110 (2024) 032001]
- Observation of $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$ [PRD 110 (2024) L031104]

Introduction

- QCD describing strong interaction between quarks and gluons is not well understood due to its non-perturbative nature at low energy scale
- Hadron spectroscopy provides opportunities to test QCD and its effective models
 - e.g. lattice QCD, diquark model, potential model ...
- Exotic hadrons provide unique probe to QCD
 - Predicted in quark model
 - Recent results show strong evidence for their existence

 Image: mesonic molecule ?
 tetraquark ?
 pentaquark ?
 hybrid ?
 mesoni ?
 <t

Liming Zhang

STANDARD

The LHCb Experiment

- LHCb is a dedicated flavour physics experiment at the LHC
 - □ >10⁴ × larger *b* production rate than the B factories @ Y(4S)
 - Access to all *b*-hadrons: B^+ , B^0 , B_s^0 , B_c^+ , *b*-baryons
- Can also study hadron spectroscopy and exotic states
- Acceptance optimised for forward $b\overline{b}$ production

All results based on full or part of run-1 and run-2 datasets

New particles in a glance

67 new hadrons discovered by LHCb!

https://www.nikhef.nl/~pkoppenb/particles.html

1st determination of J^P for $\Xi_c(3055)^{+,0}$

[arXiv: 2409.05440]

- $\Xi_b^{0(-)} \rightarrow \Xi_c^{+(0)}(3055/3080)(\rightarrow D\Lambda)\pi^-$ decays are used to study of the properties of charm baryons
- Amplitude analysis performed to four observables $(m_{D\Lambda}, \theta_{\Xi_c}, \beta_{\Lambda}, \theta_{\Lambda})$

1st determination of J^P for $\Xi_c(3055)^{+,0}$

- $J^P = 3/2^+$ is determined for $\Xi_c(3055)^{+,0}$ with significances of more than 6.5 σ (3.5 σ) against other hypotheses
- Evidence found for $\Xi_c(3080)^{+,0}$ in the $\Xi_b^{0(-)}$ decays
- Mass, width, Ξ_b decay parameter α , and relative rate for 3080/3055 R_B

Quantity	$\Xi_c(3055)^+$	$\Xi_{c}(3055)^{0}$
$m \left[\text{MeV} / c^2 \right]$	$3054.52 \pm 0.36 \pm 0.17$	$3061.00 \pm 0.80 \pm 0.23$
$\Gamma \left[\text{MeV} / c^2 \right]$	$8.01 \pm 0.76 \pm 0.34$	$12.4 \pm 2.0 \pm 1.1$
α	$-0.92 \pm 0.10 \pm 0.05$	$-0.92 \pm 0.16 \pm 0.22$
$R_{\mathcal{B}}$	$0.045 \pm 0.023 \pm 0.006$	$0.14 \pm 0.06 \pm 0.04$

 $J^P = 3/2^+$ and narrow width for $\Xi_c(3055)$ may favor it as a 1D state

[arXiv: 2409.05440]

Zhen-Yu Li, Guo-Liang Yu, Zhi-Gang Wang, Jian-Zhong Gu, Jie Lu Chinese Phys. C **47** (2023) 073105

$\Lambda_b^0, \Lambda_c^+, \Lambda$ decay parameters

Decay parameters of baryon are first proposed by Lee and Yang to search for parity violation, with s and p as S- and P-wave amplitude $\alpha^2 + \beta^2 + \gamma^2 = 1$

$$\alpha \equiv \frac{2\Re(s^*p)}{|s|^2 + |p|^2}, \ \beta \equiv \frac{2\Im(s^*p)}{|s|^2 + |p|^2}, \ \gamma \equiv \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2},$$

- Two $\Lambda_b^0 \to \Lambda_c^+ h^- (h = \pi, K)$ decays and three $\Lambda_c^+ \to \Lambda h^+$ or $\Lambda_c^+ \to p K_S^0$ decays are studied
- The decay parameters are encoded in the anglular distributions of these decays
 The Λ⁰_h is unpolarized, shown by previous study

 $\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{1}\mathrm{d}\cos\theta_{2}\mathrm{d}\phi_{2}} \propto \left(1 + \alpha_{A_{b}^{0}}\alpha_{A_{c}^{+}}\cos\theta_{1} + \alpha_{A_{c}^{+}}\alpha_{A}\cos\theta_{2} + \alpha_{A_{b}^{0}}\alpha_{A}\cos\theta_{1}\cos\theta_{2}\right)$

 $-\alpha_{A_b^0}\gamma_{A_c^+}\alpha_A\sin\theta_1\sin\theta_2\cos\phi_2+\alpha_{A_b^0}\beta_{A_c^+}\alpha_A\sin\theta_1\sin\theta_2\sin\phi_2)$

$\Lambda_b^0, \Lambda_c^+, \Lambda$ decay parameters

• Parameters are determined for Λ_b^0 and $\overline{\Lambda}_b^0$

Other paramaters can found in the paper

No significant CP violation is found

Decay	α	$\bar{\alpha}$	$\langle \alpha \rangle$	A_{lpha}	
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$-1.010 \pm 0.011 \pm 0.003$	$0.996 \pm 0.011 \pm 0.003$	$-1.003 \pm 0.008 \pm 0.005$	$0.007 \pm 0.008 \pm 0.005$	
$\Lambda_b^0 \to \Lambda_c^+ K^-$	$-0.933 \pm 0.042 \pm 0.014$	$0.995 \pm 0.036 \pm 0.013$	$-0.964 \pm 0.028 \pm 0.015$	$-0.032 \pm 0.029 \pm 0.006$	Sy .
$\Lambda_c^+ \to \Lambda \pi^+$	$-0.782 \pm 0.009 \pm 0.004$	$0.787 \pm 0.009 \pm 0.003$	$-0.785 \pm 0.006 \pm 0.003$	$-0.003 \pm 0.008 \pm 0.002$	17c
$\Lambda_c^+ \to \Lambda K^+$	$-0.569 \pm 0.059 \pm 0.028$	$0.464 \pm 0.058 \pm 0.017$	$-0.516 \pm 0.041 \pm 0.021$	$0.102 \pm 0.080 \pm 0.023$	
$\Lambda_c^+ \to p K_{\rm S}^0$	$-0.744 \pm 0.012 \pm 0.009$	$0.765 \pm 0.012 \pm 0.007$	$-0.754 \pm 0.008 \pm 0.006$	$-0.014 \pm 0.011 \pm 0.008$	12
$\Lambda \to p \pi^-$	$0.717 \pm 0.017 \pm 0.009$	$-0.748 \pm 0.016 \pm 0.007$	$0.733 \pm 0.012 \pm 0.006$	$-0.022\pm0.016\pm0.007$	J.
					Ň
$\overset{\circ}{\sim} 2000 = \Lambda_b^0 \rightarrow \Lambda_b^0$	$^+_c(\rightarrow\Lambda\pi^+)\pi^- \Lambda^0_b \rightarrow\Lambda^+_c(\rightarrow\Lambda K^+)\pi^-$	100 LHCb 90 fb^{-1}	$\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} (\rightarrow \Lambda \pi^{+}) \pi^{-} \qquad \qquad$	$\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-$	
02000 + 10	ata L Data(×10)	○ 2000	- $=$ 2000 $-$ LHC	+ Data $-$	

Muonic decays of $\chi_{c1,2}(1P)$ and $\chi_{b1,2}(1P, 2P)$

- 1st observation of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$ in 2017
- 1st observation of $\chi_{b1,2} \rightarrow \Upsilon(1S)\mu^+\mu^-$ in 2024
- Competitive mass and width measurements

$m_{\chi_{\rm b1}(1{\rm P})}$	=	$9892.50 \pm 0.26 \pm 0.10 \pm 0.10 \mathrm{MeV}/c^2$,
$m_{\chi_{\rm b2}(1P)}$	=	$9911.92 \pm 0.29 \pm 0.11 \pm 0.10 \mathrm{MeV}/c^2$,
$m_{\chi_{\rm b1}(2{\rm P})}$	=	$10253.97\pm 0.75\pm 0.22\pm 0.09{\rm MeV}/c^2,$
$m_{\chi_{\rm b2}(2{ m P})}$	=	$10269.67\pm 0.67\pm 0.22\pm 0.09{\rm MeV}/c^2,$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: signal yields

• Using the full LHCb dataset of 9 fb⁻¹: $D^{*-} \rightarrow \overline{D}^0 (\rightarrow K^+ \pi^- \& K^+ \pi^- \pi^- \pi^+) \pi^-$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: amplitude analysis

[arXiv: 2406.03156] accepted by PRL

■ Amplitudes of $R \rightarrow D^{*+}D^{-}$ and $R \rightarrow D^{*-}D^{+}$ linked by *C*-parity ⇒ allowing determination of *C*-parities of *R* resonances

- Four new charmonium (-like) states are observed for >6.1σ
- J^{PC} for each state is determined for >5.7σ

• $T^*_{c\bar{s}}$ states, seen in $B^+ \rightarrow D^+ D^- K^+$, are confirmed in $B^+ \rightarrow D^{*+} D^- K^+$ decays

$B^+ \rightarrow \psi(2S) K^+ \pi^+ \pi^-$: amplitude analysis [arXiv: 2407.12475]

- Can study $K^+\pi^+\pi^-$ system, crucial for NP studies of $B \to K\pi\pi(\gamma/\mu\mu)$
- Can also study charmonium-like exotic states
- With ~1000 signal decays, Belle only studied the $K^+\pi^+\pi^-$ system [PRD 83 (2011) 032005]
- LHCb performed the first full amplitude analysis on this decay
- Baseline fit contributions
 - 6 K'^+ states
 - In 11 exotic states: most are very broad

Decay channel	Fit fraction $[\%]$
$B^+ \rightarrow \chi_{c0}(4475)K^+$	$18.45 \pm 1.31 \pm 2.92$
$B^+ \to \psi(2S) K^*(1680)^+$	$8.15 \pm 1.31 \pm 3.51$
$B^+ \to \psi(2S) K_1(1270)^+$	$7.60 \pm 0.85 \pm 1.35$
$B^+[P] \to \psi(2S) K_1(1270)^+$	$7.52 \pm 0.60 \pm 1.08$
$B^+[D] \to \psi(2S) K_1(1270)^+$	$6.81 \pm 0.45 \pm 1.18$
$B^+ \to \psi(2S) K_1(1400)^+$	$5.78 \pm 0.62 \pm 0.92$
$B^+ \to \psi(2S) K(1460)^+$	$5.26 \pm 0.48 \pm 0.87$
$B^+[P] \to T_{c\bar{c}1}(4200)^+ K^*(892)^0$	$4.60 \pm 0.54 \pm 2.17$
$B^+ \to T_{c\bar{c}\bar{s}1}(4600)^0 \pi^+$	$4.42 \pm 0.98 \pm 2.17$

....

Exotic contributions

- 4 $X^0 \rightarrow \psi(2S)\pi^+\pi^-$ states are identified
 - Main decay mode is $\psi(2S)\rho^0$
 - □ Similar but broader that the states observed in $B^+ \rightarrow J/\psi \phi K^+$
 - But I think they might not the same, $\psi(2S)\rho^0$ has I=1, $J/\psi\phi$ has I=0

D	τP						-
Resonance	J^{-}	$m_0 [\text{Mev}]$		Res. PDG	$m_0 [\text{Mev}]$	I ₀ [MeV]	
$\chi_{c0}(4475)$	0^+	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}	Ctotos in
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40	$B^+ \rightarrow$
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}	$\int \frac{D}{J/\psi\phi K^+}$
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}	
$T^*_{c\bar{c}1}(4055)^+$	1-	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13	-
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}	
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31	
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$				-
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925 \pm 22 \pm 47$	$255 \pm 55 \pm 127$				
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$				
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30	-
$ \frac{T_{c\bar{c}1}(4430)^{\circ}}{T_{c\bar{c}\bar{s}1}(4600)^{\circ}} \\ \frac{T_{c\bar{c}\bar{s}1}(4900)^{\circ}}{T_{c\bar{c}\bar{s}1}(5200)^{\circ}} \\ \frac{T_{c\bar{c}\bar{s}1}(5200)^{\circ}}{T_{c\bar{c}\bar{s}1}(4000)^{+}} $	1^+ 1^+ 1^- 1^+ 1^+	$4408\pm21\pm80$ $4578\pm10\pm18$ $4925\pm22\pm47$ $5225\pm86\pm181$ 4003 (fixed)	$231\pm42\pm82$ $133\pm28\pm69$ $255\pm55\pm127$ $226\pm76\pm374$ 131 (fixed)	$T_{c\bar{c}1}(4430)^+$ $T_{c\bar{c}\bar{s}1}(4000)^+$	4478_{-18}^{+7} 4003_{-15}^{+7}	131 ± 31 131 ± 30	- -

Exotic contributions

- 3 $T_{c\bar{c}}^{(*)} \rightarrow \psi(2S)\pi$ states are identified
 - Confirmed $Z_c(4430)^+$ seen in $\overline{B}^0 \to \psi(2S)\pi^+K^-$
 - Confirmed $Z_c(4200)^+$ seen in $\overline{B}^0 \to J/\psi \pi^+ K^-$, and $J^P = 1^+$ is determined for the 1st time
 - $\Box T_{c\bar{c}}(4055)^+ \text{ seen in } e^+e^- \rightarrow \psi(2S)\pi^+\pi^- \text{ is also needed}$

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227{\pm}26{\pm}22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1-	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925{\pm}22{\pm}47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

Exotic contributions

• 3 new $T_{c\bar{c}\bar{s}} \rightarrow \psi(2S)K\pi$ states are observed

• $\psi(2S)K$ mass above $Z_{cs}(4000)^+$, only tail of $Z_{cs}(4000)^+$ can contribute

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^+	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^+	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1+	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925 \pm 22 \pm 47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

new

Fit projections

- Fit quality is acceptable, 7D $\chi^2/ndof = 1.2$
- Resonances are generally broad

Radiative decays of $\chi_{c1}(3872)$

 $\mathscr{R}_{1by} \equiv$

- Nature of $\chi_{c1}(3872)$ still under debate, while study of radiative decays provides a way to probe it
- Only evidence of $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ was seen experimentally before

Radiative decays of $\chi_{c1}(3872)$

[arXiv: 2406.17006]

• Update at LHCb using $B^+ \rightarrow \chi_{c1}(3872)K^+$ decay with 9 fb⁻¹ Run1+Run2 data

LHCb meets theory workshop

 $\chi_{c1}(3872) \rightarrow \psi(2S) \gamma$

Run1: *N* = 40 ± 8; **5**.3σ

Run2: $N = 63 \pm 10$; 6. 7 σ

Pentaquark study

■ The observation of new decay modes can shed light on the binding scheme of the exotic hadrons ⇒ search through open charm modes

Proximity of $\Sigma_c^+ \overline{D}{}^0$ and $\Sigma_c^+ \overline{D}{}^{*0}$ thresholds to the peaks suggests they play an important role in the dynamics

Search for pentaquarks via open charm

■ Inclusive search performed using 5.7 fb⁻¹ data from 2016-2018

• Reconstruction: Λ_c^+ , D^- , D^0 , $\Sigma_c^{++(0)}$, D^{*-}

✓ hidden-charm pentaquarks

✓ doubly-charmed pentaquarks & excited Ξ_{cc}

Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set	Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set
Λ_c^+	$\overline{D}{}^{0}$	+1	$^{1/2}$	1	0	\checkmark	Λ_c^+	D^0	+1	$-1/_{2}$	3	2	\checkmark
Λ_c^+	D^-	0	-1/2	1	0	\checkmark	Λ_c^+	D^+	+2	1/2	3	2	\checkmark
Λ_c^+	D^{*-}	0	-1/2	1	0	\checkmark	Λ_c^+	D^{*+}	+2	1/2	3	2	\checkmark
Σ_{c}^{++}	$\overline{D}{}^{0}$	+2	3/2	1	0	\checkmark	Σ_c^{++}	D^0	+2	1/2	3	2	×
Σ_{c}^{++}	D^-	+1	1/2	1	0	\checkmark	Σ_c^{++}	D^+	+3	$^{3/2}$	3	2	×
Σ_{c}^{++}	D^{*-}	+1	$1/_{2}$	1	0	×	Σ_c^{++}	D^{*+}	+3	3/2	3	2	×
Σ_{c}^{0}	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^{0}	D^0	0	-3/2	3	2	×
Σ_{c}^{0}	D^{-}	-1	-3/2	1	0	\checkmark	Σ_c^0	D^+	+1	-1/2	3	2	×
Σ_{c}^{0}	D^{*-}	-1	-3/2	1	0	×	Σ_c^0	D^{*+}	+1	-1/2	3	2	×
Σ_{c}^{*++}	$\overline{D}{}^{0}$	+2	3/2	1	0	\checkmark	Σ_c^{*++}	D^0	+2	1/2	3	2	\checkmark
Σ_{c}^{*++}	D^{-}	+1	$1/_{2}$	1	0	\checkmark	Σ_c^{*++}	D^+	+3	3/2	3	2	\checkmark
Σ_{c}^{*++}	D^{*-}	+1	$1/_{2}$	1	0	\checkmark	Σ_c^{*++}	D^{*+}	+3	3/2	3	2	×
Σ_{c}^{*0}	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^{*0}	D^0	0	-3/2	3	2	\checkmark
Σ_{c}^{*0}	D^{-}	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^+	+1	-1/2	3	2	\checkmark
Σ_c^{*0}	D^{*-}	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^{*+}	+1	-1/2	3	2	×

*10 modes too statistically limited to set upper limits

Results

- No significant signals are found
- Upper limits set on $R = \frac{N_{P_c}}{N_{\Lambda_c^+}} \times \frac{\varepsilon_{\Lambda_c^+}}{\varepsilon_{P_c}} \to \frac{\sigma(P_c) \times \mathcal{B}(P_c \to \Lambda_c^+ D(\pi)) \times \mathcal{B}(D)}{\sigma(\Lambda_c^+)}$
- Largest significant modes:

Decor Mode	Width	Signif	ficance (σ)	Q-value	Signal Viold	UL (\times	(10^{-3})
Decay Mode	(MeV/c^2)	Local	Corrected	(MeV/c^2)	Signal Tleid	$90\%~{\rm CL}$	95% CL
	0	3.59	2.21	225	41.6 ± 12.6	3.95	4.19
$A^+ - D^-$	5	4.01	2.89	225	64.7 ± 17.4	4.43	4.69
$\Lambda_c^+ \pi^+ D$	10	4.30	3.32	225	87.1 ± 21.6	4.64	4.85
	15	4.50	3.62	225	108.2 ± 25.3	4.72	4.90
	0	3.36	1.90	257	38.1 ± 12.4	4.28	4.56
$A^{+} = D^{-}$	5	3.86	2.71	253	62.1 ± 17.1	4.62	4.83
$\Lambda_c^+ \pi^- D$	10	4.18	3.20	249	83.7 ± 21.2	4.72	4.88
	15	4.44	3.56	249	103.5 ± 24.6	4.77	4.92
	0	3.18	1.58	245	41.9 ± 13.7	2.87	3.06
$4 + - + \overline{D}0$	5	3.73	2.53	245	67.6 ± 19.2	3.22	3.35
$\Lambda_c^+ \pi^+ D^0$	10	4.06	3.06	245	91.6 ± 24.1	3.29	3.39
	15	4.30	3.42	245	115.0 ± 28.5	3.30	3.40

*Complete list in paper

$\Lambda_b^0 \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^-$: observation

• Four $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$ modes observed with overwhelming significance

$\Lambda_b^0 \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^-$: intermediate states

Larger dataset needed to draw a definitive conclusion

[PRD 110 (2024) L031104]

Summary and prospects

- LHCb keeps making important contributions to heavy hadron spectroscopy with run1 and run2 data
- Run 3 this year has taken 9.5 fb⁻¹ data, same luminosity as run1&2
- Stay tuned for more exciting results

BACKUP

1st determination of J^P for $\Xi_c(3055)^{+,0}$

- Qqq baryons is well described by heavy quark-light diquark Q[qq] model
- ✓ λ -mode: can describe almost all observed states

✓ ρ -mode: no firm assignment yet

Zhen-Yu Li, Guo-Liang Yu, Zhi-Gang Wang, Jian-Zhong Gu, Jie Lu Chinese Phys. C **47** (2023) 073105

10/18/24

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: amplitude analysis

■ Amplitudes of $B^+ \to R(D^{*+}D^-)K^+$ and $B^+ \to R(D^{*-}D^+)K^+$ linked by *C*-parity ⇒ allowing determination of *C*-parities of *R* resonances

$$\begin{aligned} \mathcal{A}(x) &= \frac{1+d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} c_j A_j(x) + \sum_{k \in R(D^{*-}K^+, D^+K^+)} c_k A_k(x) \right\} & \longleftarrow B^+ \to D^+ D^{*-}K^+ \\ &+ \frac{1-d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} C_j \times c_j A_j(x) + \sum_{l \in R(D^{*+}K^+, D^-K^+)} c_l A_l(x) \right\} & \longleftarrow B^+ \to D^- D^{*+}K^+ \\ \checkmark \ d &= 1 \text{ for } B^+ \to D^+ D^{*-}K^+; \ d &= -1 \text{ for } B^+ \to D^{*+}D^-K^+ \end{aligned}$$

 $\square R$ resonances with $J^P = 1^+$: S-wave & D-wave

$$f_{R,S/D}(m) = \frac{\gamma_{S/D}}{m_0^2 - m^2 - im_0[\gamma_S^2 \Gamma_S(m) + \gamma_D^2 \Gamma_D(m)]}$$

DOther resonances: Breit-Wigner

□Nonresonant contributions to
$$D^{*\pm}D^{\mp}$$
:
 $f_R(m) = e^{(\alpha + \beta i)(m^2 - m_0^2)}$ for NR_0^{-+} ; otherwise $f_R(m) = 1$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: fit results

[arXiv: 2406.03156] accepted by PRL

• All components in baseline fit have significance $> 5\sigma$

Component	$J^{P(C)}$
$\mathrm{EFF}_{1^{++}}$	1^{++}
$\eta_c(3945)$	0^{-+}
$\chi_{c2}(3930)^{\dagger}$	2^{++}
$h_c(4000)$	1^{+-}
$\chi_{c1}(4010)$	1^{++}
$\psi(4040)^{\dagger}$	1
$h_c(4300)$	1^{+-}
$T^*_{\bar{c}\bar{s}0}(2870)^{0}$ [†]	0^+
$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1^{-}
$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}

*Fit fractions in paper

$$\begin{array}{c|c} \text{This work} & c\bar{c} \text{ prediction } [34] \\ \hline \textbf{X(3940)?} & \eta_c(3945) & J^{PC} = 0^{-+} & \eta_c(3S) & J^{PC} = 0^{-+} \\ \hline m_0 = 3945 \frac{+28}{-17} \frac{+37}{-28} & \Gamma_0 = 130 \frac{+92}{-49} \frac{+101}{-70} & m_0 = 4064 & \Gamma_0 = 80 \\ \hline h_c(4000) & J^{PC} = 1^{+-} & h_c(2P) & J^{PC} = 1^{+-} \\ \hline m_0 = 4000 \frac{+17}{-14} \frac{+29}{-22} & \Gamma_0 = 184 \frac{+71}{-45} \frac{+97}{-61} & m_0 = 3956 & \Gamma_0 = 87 \\ \hline \chi_{c1}(4010) & J^{PC} = 1^{++} & \chi_{c1}(2P) & J^{PC} = 1^{++} \\ \hline m_0 = 4012.5 \frac{+3.6}{-3.9} \frac{+4.1}{-3.7} \Gamma_0 = 62.7 \frac{+7.0}{-6.4} \frac{+6.4}{-6.6} & m_0 = 3953 & \Gamma_0 = 165 \\ \hline h_c(4300) & J^{PC} = 1^{+-} & h_c(3P) & J^{PC} = 1^{+-} \\ \hline m_0 = 4307.3 \frac{+6.4}{-6.6} \frac{+3.3}{-4.1} & \Gamma_0 = 58 \frac{+28}{-16} \frac{+28}{-25} & m_0 = 4318 & \Gamma_0 = 75 \\ \hline \text{GL model} \end{array}$$

hep-ph/0505002

Liming Zhang

- States can fit into Charmonia, and mass more consistent with the prediction with unquenched quark model [Qian Deng, Ru-Hui Ni, Qi Li, Xian-Hui Zhong, arXiv: 2312.10296]
- χ_{c1}(4010) could be the partner of χ_{c1}(3872), predicted both in the unquenched model and Lattice [Haozheng Li, Chunjiang Shi, Ying Chen, Ming Gong, Juzheng Liang, Zhaofeng Liu, Wei Sun, arXiv:2402.14541]

 $\checkmark T^*_{\bar{c}\bar{s}0}(2870)^0 \to D^{*-}K^+ \text{ forbidden}$ $\checkmark \mathcal{B}(T^*_{\bar{c}\bar{s}1}(2900)^0 \to D^{*-}K^+) / \mathcal{B}(T^*_{\bar{c}\bar{s}1}(2900)^0 \to D^-K^+) < 0.21 @ 95\% CL$ $\underset{\text{Liming Zhang}}{ } \checkmark D^-K^+ = 0.21 @ 95\% CL$

Central exclusive production (CEP)

• Study $J/\psi\phi$ resonances in CEP

✓ Experimentally clean even @LHC
 ✓ Spin-parity option narrowed down
 ✗ Much smaller rate

 γ -pomeron

J/ψ

 γ - γ

μ+

μ-

pomeron-pomeron

*glueball

 χ_{c}

0000000

$X \text{ in } B^+ \to J/\psi \phi K^+$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LHCb	LH		LHCb
$\overline{X(2)}$ X(41)	(-) (50) $(-)$ (8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 + \frac{59}{30}$	$2.0 \pm 0.5 \substack{+0.8\\1.0}$
$\overline{X(1)}$	-)		- 30	- 1.0
X(46)	(530) 5.5 (5.7)	$4626 \pm 16 ^{+ 18}_{- 110}$	$174 \pm 27 {}^{+134}_{-73}$	$\underline{2.6 \pm 0.5 {}^{+ 2.9}_{- 1.5}}$
All X	(0^+)			$20 \pm 5^{+14}_{-7}$
X(45)	(00) (20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+ 2.4}_{- 0.6}$
X(47)	100) 17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$
NR_J	$/\psi\phi$ 4.8 (5.7)			$28 \pm 8 {}^{+ 19}_{- 11}$
All X	(1^+)			$26 \pm 3^{+8}_{-10}$
X(41)	40) 13 (16)	$4118 \pm 11 {}^{+19}_{-36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3 {}^{+ ilde{19}}_{- 6}$
X(42)	18 (18)	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 \stackrel{+}{}^{+}_{-} \stackrel{0.8}{}^{-}_{0} \stackrel{-}{}^{0.8}_{4}$
X(46)	15 (15)	$4684 \pm 7 ^{+13}_{-16}$	$126 \pm 15 {}^{+ 37}_{- 41}$	$7.2 \pm 1.0 {+4.0 \atop -2.0}$
All Z_{cs}	$s(1^+)$			$25 \pm 5 {}^{+ 11}_{- 12}$
$Z_{cs}(4)$	15 (16)	$4003 \pm 6 { + \ 4 \atop - \ 14}$	$131\pm15\pm26$	$9.4 \pm 2.1 \pm 3.4$
$Z_{cs}(4)$	(220) $5.9(8.4)$	$4216 \pm 24 {}^{+ \tilde{4}3}_{- 30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 {}^{+ 10}_{- 7}$

$X \rightarrow J/\psi \phi$ in CEP

First exotic hadron measurement in CEP!

[arXiv: 2407.14301]

Mass & width measurements: slightly higher mass of *X*(4500)

Parameter (MeV)	This Letter	Ref. [12]
$M_{\chi_{c1}(4274)}$	$4298 \pm 6 \pm 9$	$4294 \pm 4^{+3}_{-6}$
$\Gamma_{\chi_{c1}(4274)}$	$92^{+22}_{-18}\pm 57$	$53 \pm 5 \pm 5$
$M_{\chi_{c0}(4500)}$	$4512.5^{+6.0}_{-6.2}\pm 3.0$	$4474 \pm 3 \pm 3$
$\Gamma_{\chi_{c0}(4500)}$	$65^{+20}_{-16}\pm32$	$77 \pm 6^{+10}_{-8}$
10/18/24		Liming Zhang

Cross-section measurements:

$$\begin{split} \sigma_{\chi_{c1}(4140)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4140)} = (0.80 \pm 0.15 \pm 0.28) \,\text{pb}, \\ \sigma_{\chi_{c1}(4274)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4274)} = (0.73 \pm 0.08 \pm 0.17) \,\text{pb}, \\ \sigma_{\chi_{c0}(4500)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c0}(4500)} = (0.42^{+0.09}_{-0.08} \pm 0.06) \,\text{pb}, \\ \sigma_{\chi_{c1}(4685) + \chi_{c0}(4700)} \\ &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4685) + \chi_{c0}(4700)} = (0.14^{+0.07}_{-0.06} \pm 0.06) \,\text{pb}, \\ \sigma_{\text{NR}} &\times \mathcal{B}_{\text{eff}}^{\text{NR}} = (0.43^{+0.24}_{-0.18} \pm 0.20) \,\text{pb}, \end{split}$$

Observations of $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^-$ **decays**

- These decays can pave the way for future P_c^+ search in $\Lambda_c^+ \overline{D}^{(*)0}$ systems
 - which are open-charm equivalent of $J/\psi p$
 - □ \overline{D}^{*0} is partially reconstructed with missing π^0/γ $N^{\Lambda_b^0 \to \Lambda_c^+ \overline{D}^0 K^-} = 4010 \pm 70.$

 $N^{\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{*0} K^-} = 10\,560^{+310}_{-290}$

Branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = (19.08^{+0.36+0.16}_{-0.34-0.18} \pm 0.38)\%$$

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = (58.9^{+1.8+1.7}_{-1.7-1.8} \pm 1.2)\%$$

• Relative to
$$\Lambda_b^0 \to J/\psi p K^-$$

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-)} = (15.2^{+3.2}_{-2.8})\%$$
$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^{*0} K^-)} = (4.9^{+1.1}_{-0.9})\%$$

$B^+ \rightarrow D^{*-}D_{c}^{(*)+}\pi^+$: branching fractions

[arXiv: 2405.00098]

Measurement performed using the full LHCb dataset of 9 fb^{-1}

$B^+ \rightarrow D^{*-}D_s^+\pi^+$: amplitude analysis

[arXiv: 2405.00098]

Baseline fit with $\overline{D}^{**0} \rightarrow D^{*-}\pi^+$ contributions							
	Resonance	J^P	Mass	[MeV]	Width	[MeV]]
_	$D_1(2420) \\ D_1(2430)$	1^+ 1 ⁺	2 422.1 2 412	$\begin{array}{c}1\pm0.6\\\pm9\end{array}$	$31.3 \\ 314$	± 1.9 ± 29	
-	$D_2^*(2460)$	2^{+}	2 461.1	$1 \stackrel{+0.7}{_{-0.8}}$	47.3	± 0.8	_
6 . 5 <i>σ</i>	$D_0(2550)$	0 ⁻	2549	± 19	165	± 24	
6.8 <i>σ</i> 4.6 <i>σ</i>	$D_1(2600)$ $D_2(2740)$	$\frac{1}{2^{-}}$	2627 2747	± 10 ± 6	88	± 23 ± 19	
	$D_3^*(2750)$	3-	2763.1	1 ± 3.2	66	± 5	
Component		Fit fraction [%]			Phase [rad]		
$D_1(2420)$ S-wave $D_1(2420)$ D-wave $D_1(2430)$ S-wave		$3.8 \pm 1.7 \pm 0.8^{+1.3}_{-0.1}$ $71.0 \pm 4.4 \pm 4.6^{+0.0}_{-6.0}$ $14.2 \pm 2.5 \pm 2.4^{+3.1}$			$-1.96 \pm 0.16 \pm 0.10^{+0.17}_{-0.05}$ 0 (fixed) +0.14 \pm 0.11 \pm 0.13^{+0.06}_{-0.18}		
$D_1(2430)$ D-wave $D_2^*(2460)$		$\begin{array}{c} -2.0\\ 0.5 \pm 0.9 \pm 1.5^{+0.2}_{-0.5}\\ 11.7 \pm 1.4 \pm 0.8^{+0.0}_{-0.7}\\ 2.2 \pm 0.9 \pm 0.7^{+0.3} \end{array}$		$-2.99 \pm 0.42 \pm 0.84^{+0.23}_{-0.55} +3.14 \pm 0.11 \pm 0.14^{+0.05}_{-0.04}$			
$D_0(2550)$ $D_1^*(2600)$ $D_2(2740)$ P-wave		$2.3 \pm 0.8 \pm 0.7_{-1.7}$ $4.8 \pm 1.0 \pm 0.9_{-2.0}^{+1.1}$ $0.4 \pm 0.4 \pm 0.2_{-0.1}^{+0.1}$			$-2.24 \pm 0.21 \pm 0.26_{-0.25}^{+0.25} + 0.32 \pm 0.16 \pm 0.16_{-0.01}^{+0.37} - 0.02 \pm 0.56 \pm 0.32_{-0.59}^{+0.16}$		
$D_2(2740)$ F-wave		2.3	$\pm 0.7 \pm$	$0.9^{+0.4}_{-0.1}$	-0.09 ± 0	$.27 \pm 0.2$	$21_{-0.23}^{+0.08}$

Sum of fit fractions $| 111.0 \pm 5.2 \pm 4.2 |$

10/18/24

$B^+ \rightarrow D^{*-}D_s^+\pi^+$: amplitude analysis

Fits incorporating $D^{*-}D_s^+$ amplitudes: none provides a physical description

Observation of $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$

[arXiv: 2403.03586]

• First observation of $\Lambda_b^0 \to D^+ D^- \Lambda$ with significance of 16 σ

 $N = 19 \pm 5$

 $N = 73 \pm 9$

10/18/24

Study of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

⇒ Joint amplitude analysis where amplitudes of the two decays are related through isospin symmetry

Observation of $T^a_{c\overline{s}0}(2900)^{0/++}$

