

Light meson decays at BESIII

康晓琳 中国地质大学(武汉)

第九届手征有效场论研讨会 2024年10月19日 湖南·长沙

Outline

- Light meson physics
- BESIII: a light meson factory
- Recent η/η' decays at BESIII
- Summary

Light Meson Physics

• Important roles in particle physics

✓ Strong interactions, Quark Model...

- Rich physics
 - ✓ Test ChPT predictions
 - ✓ EM Form Factors
 - ✓Test fundamental symmetries
 - ✓ Probe new physics beyond the SM

Source of η/η' events

New Proposals

η/η' sample at BESIII

- The BESIII detector records symmetric e+e- collisions provided by the BEPCII at 2.0-4.95 GeV
- Collected 10 billion J/ψ events, $J/\psi \rightarrow \gamma P, VP$

BESIII: an important role in η/η' decays

- Decay mechanisms
- Form factor

Decay channel	Physics	Publication
η′→2(π⁺π⁻), π⁺π⁻π⁰π⁰	First observation, BR	PRL112, 251801(2014)
η′ → γe⁺e⁻	First observation, BR, TFF	PRD92, 012001(2015)
η→π⁺π [−] π ⁰ , η/η′→π ⁰ π ⁰ π ⁰	Matrix elements, m _u -m _d , C-inv	PRD92, 012014(2015)
η'→ωe⁺e [−]	First observation, BR	PRD92, 051101(2015)
η'→Kπ	Weak decay, UL	PRD93, 072008 (2016)
η'→ρπ	First observation, BR	PRL118, 012001(2017)
η΄→γγπ ⁰	BR, B boson	PRD96, 012005(2017)
η΄→γπ⁺π⁻	BR, decay dynamic (box anomaly)	PRL120, 242003(2018)
η′→π⁺π⁻η, η′→π⁰π⁰η	Matrix elements, cusp effect	PRD97, 012003(2018)
$\omega \rightarrow \pi^+ \pi^- \pi^0$	Dalitz plot analysis	PRD98, 112007(2018)
Р→үү	BRs, chiral anomaly	PRD97, 072014(2018)
η΄→γγη	UL	PRD100, 052015(2019)
Absolute BF of η^\prime decays	BRs	PRL122, 142002(2019)
η'→π ⁰ π ⁰ π ⁰ π ⁰	CP-Vio, UL	PRD101, 032001(2020)
η'→π ⁺ π ⁻ e ⁺ e ⁻	BR, CP-viol assymm	PRD103, 092005(2021)
η'→π ⁺ π [−] u ⁺ u [−]	BR, decay dynamic	PRD103, 072006(2021)
Absolute BF of η decays	BRs	PRD104, 092004(2021)
η'→e⁺e⁻e⁺e⁻	BR, TFF	PRD105, 112010(2022)
η'→ηπ ⁰ π ⁰	Cusp effect	PRL130, 081901(2023)
η→π⁺π [−] π ⁰ , π ⁰ π ⁰ π ⁰	Matrix elements, cusp effect	PRD107,092007(2023)
η'→2(π ⁺ π ⁻),π ⁺ π ⁻ π ⁰ π ⁰ , 2(π ⁰ π ⁰)	VMD, CP-Vio	PRD 109, 032006 (2024)
η'→π ⁺ π ⁻ e ⁺ e ⁻ , π ⁺ π ⁻ u ⁺ u ⁻	BR, decay dynamic, CP-Vio	JHEP07, 135 (2024)
η/η′ → γe⁺e [−]	TFF	PRD109, 072001 (2024)

6

Decay mechanism

- Evidence of the cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$
- Dalitz plot of $\eta \rightarrow 3\pi$
- Improved study of decays $\eta' \rightarrow 4\pi$

PRL 130, 081901 (2023) PRD 107, 092007 (2023) PRD 109, 032006 (2024)

Evidence of cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$

- Investigation on $\pi\pi$ and $\pi\eta$ final interactions
- Charge-exchange rescattering: $\pi^+\pi^- \rightarrow \pi^0\pi^0$
- Sizable effect ~6% in this decay within **NREFT**

B. Kubis and S. P. Schneider, EPJC 62, 511 (2009)

BESIII: PRL130, 081901(2023)

→ Amplitude analysis of $\eta' \rightarrow \pi^+ \pi^- \eta$ within NREFT is forthcoming, sizeble contribution from final state interactions

Cusp structure in $\eta \to \pi^0 \pi^0 \pi^0$

Matrix elements for $\eta \to \pi^0 \pi^0 \pi^0$

BESIII: PRD 107, 092007 (2023) https://www.hepdata.net/record/141642

Matrix elements for $\eta \rightarrow \pi^+ \pi^- \pi^0$ (a) 150 BESIII: PRD 107, 092007 (2023) 0.5 https://www.hepdata.net/record/141642 100 \succ 0 **SM:** C conserved, isospin broken, EM effects suppressed -0.5 50 G. Colangelo, S. Lanz, H. Leutwyler, E. Passemar, PRL \Rightarrow ideal process to extract $m_u - m_d$ 118,022001 (2017) P. Guo, I. V. Danilkin, C. Fernández-Ramírez, V. Mathieu, -0.5 0.5 _1 0 A. P. Szczepaniak, PLB 771, 497 (2017) $X = \frac{\sqrt{3}}{O}(T_{\pi^+} - T_{\pi^-}), Y = \frac{3T_{\pi^0}}{O} - 1,$ Х This work (a) This work $|A(X,Y)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + \cdots$ KLOE-2 [11] KLOE-2 [11] BESIII(2015) [12] WASA at COSY [9] $a = -1.086 \pm 0.006 \pm 0.001,$ CBarrel (fixed d) [48] Layter [49] $0.162 \pm 0.006 \pm 0.003,$ =NREFT [4] $d = 0.083 \pm 0.007 \pm 0.001,$ Bethe-Salpeter Eq. [50] Simplified dispersive* [47 $0.118 \pm 0.011 \pm 0.003,$ =Dispersive Theory* [46] ChPT NNLO [3] $q = -0.053 \pm 0.017 \pm 0.003.$ ChPT NLO* [3] -1.3 -1.1 0.15 0.45 0.15 -0.05 0.05 -0.07 -0.03 0 а g $c = (-0.086 \pm 2.986) \times 10^{-3}, e = -0.001 \pm 0.007$ no C symmetry breaking

Dalitz plot Asymmetries in $\eta \to \pi^+ \pi^- \pi^0$

BSM: C broken, isospin either conserved or broken

BESIII: PRD 107, 092007 (2023)

S. Gardner, J. Shi, PRD 101 (2020) 115038 H. Akdag, T. Isken, B. Kubis, JHEP 02 (2022)137 J. Shi, J. Liang, S. Gardner PR 110 (2024) 055039 $\mathcal{M}(s,t,u) = \mathcal{M}_1^C(s,t,u) + \mathcal{M}_0^{\mathcal{Q}}(s,t,u) + \mathcal{M}_2^{\mathcal{Q}}(s,t,u)$

 \succ The interferences give rise to mirror symmetry breaking (permille level) in the Dalitz plot

C	overall C/CP-violation	on ∆l = 2	$\Delta I = 0$
Experiment	$A_{LR}(\%)$	$A_Q(\%)$	$A_S(\%)$
This work	$0.114 \pm 0.131 \pm 0.001$	$-0.035\pm0.131\pm0.011$	$-0.070 \pm 0.131 \pm 0.009$
KLOE-2 [11]	$-0.050\pm0.045^{+0.050}_{-0.110}$	$0.018 \pm 0.045^{+0.048}_{-0.023}$	$0.004 \pm 0.045^{+0.031}_{-0.035}$
Jane [40]	0.28 ± 0.26	-0.30 ± 0.25	0.20 ± 0.25
Layter $[24]$	-0.05 ± 0.22	-0.07 ± 0.22	0.10 ± 0.22
Gormley [41]	1.5 ± 0.5	-	0.5 ± 0.5

Amplitude analysis for $\eta' \rightarrow 4\pi$

BESIII: PRD 109, 032006 (2024)

 $\frac{\eta'}{\bar{K}} \qquad \pi^{+} \qquad \pi^{+} \qquad \pi^{+} \qquad \pi^{+} \qquad \pi^{-} \qquad \pi^{-}$

Loop and counter term at $O(p^6)$

F. K. Guo, B. Kubis, A. Wirzba, PRD 85,014014 (2012)

 $Br(\eta' \to 2(\pi^+\pi^-)) = (1.0 \pm 0.3) \times 10^{-4}$ $Br(\eta' \to \pi^+\pi^-2\pi^0) = (2.4 \pm 0.7) \times 10^{-4}$

 $Br(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (8.56 \pm 0.25 \pm 0.23) \times 10^{-5}$ $Br(\eta' \to \pi^+ \pi^- \pi^0 \pi^0) = (2.12 \pm 0.12 \pm 0.10) \times 10^{-4}$

Amplitude analysis for $\eta' \rightarrow 2(\pi^+\pi^-)$

BESIII: PRD 109, 032006 (2024)

First measurement of the doubly virtual isovector form factor

$$\alpha = \frac{c_3}{c_1 - c_2} = 1.22 \pm 0.33 \pm 0.04$$

 \Rightarrow If $\alpha \simeq 1$, triangle anomaly would be dominated

Search for rare decay $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$

BESIII: PRD 109, 032006 (2024)

- CP-violation S-wave, induced by the QCD Lagrangian θ -term \Rightarrow Br $\sim 10^{-23}$
- CP-conserving higher order \Rightarrow Br $\sim 10^{-8}$ F. K. Guo, B. Kubis, A. Wirzba, PRD 85,014014 (2012)

• With 10 billion J/ ψ , the UL at 90% CL is set as 1.24×10^{-5}

Transition form factors

• Improved measurements of $\eta/\eta' \rightarrow \gamma e^+ e^-$

PRD 109, 072001 (2024) JHEP 07, 135 (2024)

• Measurement of the EM TFF in $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

Transition form factor at BESIII

• Important input for HLbL contributions

Pseudoscalar TFFs are experimentally accessible in three different processes

 $\frac{P}{2} \frac{\gamma^*}{2} e^{-\frac{1}{2}}$

Dalitz decays 0<q²<M²

Annihilation process q² > M²

Two photon process

Transition form factor of $\eta/\eta' \rightarrow \gamma e^+ e^-$ BESIII: PRD 109, 072001 (2024) e^+ $\frac{d\Gamma(P \to \gamma l^+ l^-)}{dq^2 \Gamma_{\gamma\gamma}} = \frac{2\alpha}{3\pi} \frac{1}{q^2} \sqrt{1 - \frac{4m_l^2}{q^2} (1 + \frac{2m_l^2}{q^2}) (1 - \frac{q^2}{M_P^2})^3 |F_P(q^2, 0)|^2} \qquad \stackrel{|F(q^2)|}{\longrightarrow}$ $= QED(q^2) \times |F_P(q^2, 0)|^2$ 10² 10 **Single-pole model:** $F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$ 10-1 2**bp/Jp** 10⁻³ • Multi-pole model: $|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - q^2)^2 + \Lambda^2 \gamma^2}$ 10-7 10-8 0.8 0.2 0.4 0.6 $M(e^+e^-)$ (GeV/c²)

Transition form factor of $\eta/\eta' \rightarrow \gamma e^+ e^-$

BESIII: PRD 109, 072001 (2024)

 $\Lambda_{\eta} = (0.749 \pm 0.026 \pm 0.008) \, GeV/c^2$

 $\Lambda_{\eta\prime} = (0.749 \pm 0.026 \pm 0.008) \ GeV/c^2$ $\gamma_{\eta\prime} = (0.113 \pm 0.009 \pm 0.002) \ GeV/c^2$

Slope parameter: $b_{\eta/\eta'}$

$$p_{\eta/\eta'} = \frac{d|F(q^2)|}{dq^2}\Big|_{q^2=0}$$

BESIII: PRD 109, 072001 (2024)

Precision study of $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$ Besili: JHEP 07, 135 (2024)

VMD Contribution

BESIII24 $2.45 \pm 0.02 \pm 0.08$ $2.16 \pm 0.12 \pm 0.06$

a.	$\mathcal{B}(\eta' \to \pi^+ \pi^- e^+ e^-)$	$\mathcal{B}(\eta' \to \pi^+ \pi^- \mu^+ \mu^-)$
	(10^{-3})	(10^{-5})
Hidden gauge [*]	2.17 ± 0.21	2.20 ± 0.30
Unitary χPT^{\star}	$2.13_{-0.31}^{+0.17}$	$1.57^{+0.96}_{-0.75}$
VMD^{\star}	2.27 ± 0.13	2.41 ± 0.25
BESIII $(2013)^{\diamond}$	$2.11 \pm 0.12 \pm 0.15$	< 2.9
BESIII $(2021)^{\diamond}$	$2.42 \pm 0.05 \pm 0.08$	$1.97 \pm 0.33 \pm 0.19$
CLEO ^{\$}	$2.50^{+1.2}_{-0.9} \pm 0.5$	< 24

Precision study of $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$ BESIII: JHEP 07, 135 (2024)

- **Box-anomaly** is needed to describe data
 - ✓ Similar structure as $\eta' \to \gamma \pi^+ \pi^-$, replacing the γ with an off-shell one
- $\omega \rightarrow \pi^+ \pi^-$ is also necessary

Amplitude analysis result of $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$ BeSIII: JHEP 07, 135 (2024)

Asymmetry in $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

BESIII: JHEP 07, 135 (2024)

D. N. Gao, Mod Phys Lett A17 (2002) 1583 M. Zillinger, B. Kubis, P. Sánchez-Puertas, JHEP 12 (2022) 001

 $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^ \eta' \rightarrow \pi^+ \pi^- e^+ e^-$ 35 - Data 350 ----- Fit result 30 (b) (a)- F(φ) Conv. Gauss 300 Events / 0.126 -···- J/ψ→γη',η'→π⁺π⁻π⁺π⁻ MC Events / 0.0628 25 - – J/ψ \rightarrow γη',η' \rightarrow π⁺π⁻η,η \rightarrow μ⁺μ⁻ MC 250 ----- J/ψ→γπ⁺π⁻π⁺π⁻ MC 20 Other backgrounds 200 150 - Data — Fit result 100 — F(φ) Conv. Gauss] η'→γπ⁺π⁻ MC 50 Sideband background 0 0 -2 2 -3 3 -2 0 2 φ $A_{CP} = (0.62 \pm 4.71 \pm 0.08)\%$ $A_{CP} = (-0.21 \pm 0.73 \pm 0.01)\%$

BSM Physics in Dark Sector

 $\eta' \rightarrow \pi^+\pi^- a$, $a \rightarrow e^+e^-$

- ALPs in $\eta' \to \pi^+\pi^- a$, $a \to e^+e^-$
- Dark photon in $\eta/\eta' \to \gamma A', A' \to e^+e^-$

Summary

- Worldwide unique laboratory for η/η' with unprecedented statistics
 - ✓ Significant progresses on decay mechanisms, TFFs,
- More results are expected to come soon
 - Y Precision measurement of $\eta' \to \eta \pi^+ \pi^-$, $\eta' \to \pi^+ \pi^- \pi^0$...
 - ✓ Rare or forbidden decays of η

✓

• Together with other Exps, the light meson physics will be into a precision era

Thanks for your attention!!!

Back up

First evidence of cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$

```
BESIII: PRL130, 081901(2023)
```


Cusp effect with \sim 3.5 σ !

With cusp effect

ParametersFit IFit IIFit IIIFit IV a $-0.075 \pm 0.003 \pm 0.001$ -0.207 ± 0.013 -0.143 ± 0.010 $-0.077 \pm 0.003 \pm 0.001$ b $-0.073 \pm 0.005 \pm 0.001$ -0.051 ± 0.014 -0.038 ± 0.006 $-0.066 \pm 0.006 \pm 0.001$ d $-0.066 \pm 0.003 \pm 0.001$ -0.068 ± 0.004 -0.067 ± 0.003 $-0.068 \pm 0.004 \pm 0.001$ $a_0 - a_2$ - 0.174 ± 0.066 0.225 ± 0.062 $0.226 \pm 0.060 \pm 0.012$ a_0 - 0.497 ± 0.094 a_2 - 0.322 ± 0.129 c 3.4σ 3.7σ 3.6σ			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameters	Fit I	Fit II	Fit III	Fit IV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-0.075 \pm 0.003 \pm 0.001$	-0.207 ± 0.013	-0.143 ± 0.010	$-0.077 \pm 0.003 \pm 0.001$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d^{b}	$\begin{array}{c} -0.073 \pm 0.005 \pm 0.001 \\ -0.066 \pm 0.003 \pm 0.001 \end{array}$	-0.051 ± 0.014 -0.068 ± 0.004	-0.038 ± 0.006 -0.067 ± 0.003	$-0.066 \pm 0.006 \pm 0.001$ $-0.068 \pm 0.004 \pm 0.001$		
a_0 - 0.497 ± 0.094 - - a_2 - 0.322 ± 0.129 - - Statistical Significance - 3.4σ 3.7σ 3.6σ	$a_0 - a_2$	-	0.174 ± 0.066	0.225 ± 0.062	$0.226 \pm 0.060 \pm 0.012$		
a_2 - 0.522 ± 0.129 Statistical Significance- 3.4σ 3.7σ 3.6σ	a_0	-	0.497 ± 0.094 0.222 \pm 0.120	-	-		
	<i>a</i> ₂ Statistical Significance	-	$\frac{0.522 \pm 0.129}{3.4\sigma}$	-3.7σ	$\frac{-}{3.6\sigma}$		

Decay Amplitude of $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

 $M(s_{\pi\pi}, s_{II}) = M_{mix} \times VMD(s_{\pi\pi}, s_{II})$

$$\overline{\left|\mathcal{A}_{\eta'\to\pi^+\pi^-l^+l^-}\right|^2}(s_{\pi\pi},s_{ll},\theta_{\pi},\theta_1,\phi) = \frac{e^2}{8k^2}|\boldsymbol{M}(s_{\pi\pi},s_{ll})|^2 \times \lambda\left(m_{\eta'}^2,s_{\pi\pi},s_{ll}\right) \times \left[1-\beta_1^2\sin^2\theta_1\sin^2\phi\right]s_{\pi\pi}\beta_{\pi}^2\sin^2\theta_{\pi}$$

A. Faessler, C. Fuchs, M. I. Krivoruchenko, PRC 61, 035206 (2000) B. Borasoy, R. Nissler, EPJA 33, 95 (2007) T. Petri, arXiv:1010.2378

contains the information of the decaying particle and the form factor

Various VMD models can be switch by adjusting the $c_{1,2,3}$ values

Amplitude analysis result of $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

BESIII: JHEP 07, 135 (2024)

	Hidden gauge	Full VMD	Modified VMD		Hidden onune		Madified VMD
··/ · · -+ -= -+ -=	Model I	Model II	Model III		i nuaen guuge		Moutted MID
$\eta^{*} ightarrow \pi^{*} \pi^{-} e^{+} e^{-}$	$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$	$n' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	Model I	Model II	Model III
$m_V ({ m MeV}/c^2)$	$954.3 \pm 87.8 \pm 36.4$	857.4 ± 76.5	787.5 ± 173.9		$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$
$m_{V,\pi}({ m MeV}/c^2)$	$765.3 \pm 1.2 \pm 20.2$	765.4 ± 1.2	764.8 ± 1.3	$m_V({ m MeV}/c^2)$	$649.4 \pm 55.9 \pm 35.6$	601.6 ± 25.7	589.6 ± 25.9
$m_{\omega}({ m MeV}/c^2)$	$778.7 \pm 1.3 \pm 17.3$	778.7 ± 1.3	778.7 ± 1.4	$m_{V,\pi}({ m MeV}/c^2)$	$757.3 \!\pm\! 24.1 \!\pm\! 18.0$	765.4 ± 18.8	774.4 ± 43.5
$\beta(10^{-3})$	$8.5 {\pm} 1.4 {\pm} 0.7$	8.5 ± 1.4	8.1 ± 1.5	$c_1 - c_2$	1	1/3	0.01 ± 0.45
θ	$1.4 {\pm} 0.3 {\pm} 0.1$	1.4 ± 0.3	1.4 ± 0.3	c_3	1	1	0.98 ± 0.40
$c_1 - c_2$	1	1/3	-0.03 ± 1.09	$\chi^2/ndof(\mu^+\mu^-,\pi^+\pi^-)$	48.1/34.0, 32.9/46.0	48.3/34.0, 32.9/46.0	49.7/35.0, 32.4/46.0
c_3	1	1	1.03 ± 0.03	$b_{\eta^\prime} ({ m GeV}/c^2)^{-2}$	$2.37 \!\pm\! 0.41 \!\pm\! 0.27$	2.76 ± 0.24	2.88 ± 0.25
$\chi^2/ndof(e^+e^-,\pi^+\pi^-)$	77.9/82.0, 47.8/65.0	78.7/82.0, 47.6/65.0	79.4/82.0, 45.1/65.0				
$b_{\eta'}({ m GeV}/c^2)^{-2}$	$1.10 \pm 0.20 \pm 0.07$	1.36 ± 0.24	1.61 ± 0.71				