

第九届手征有效场论研讨会@湖南大学

Productions and decays of the hidden charm pentaquark molecules

- **Reporter:** Ming-Zhu Liu (刘明珠)
- Collaborators:Li-Sheng Geng (耿立升)Ya-Wen Pan(潘亚文)
 - **Based on:** Phys. Rev. D **108** (2023) 114022 arXiv: 2407.17318

Outline

- Hidden charm pentaquark molecules and their partners
- > Decays of the hidden charm pentaquark molecules
- Productions of the hidden charm pentaquark molecules
- Summary and Outlook

Exotic states

> Rich Information

- Mass and Width
- Production
- Interpretation
- Collaboration

Pentaquark

ArXiv: 2410.06923

Hidden charm pentaquark states

Hidden charm pentaquark states in recent experiments

Decay Mode	Pentaquark	n_vəluo	Significance (σ)	Signal Vield	Upper Lim	it $(\times 10^{-3})$
Decay Mode	$\operatorname{Hypothesis}$	<i>p</i> -value	Significance (0)	Signal Tield	(90% CL)	(95% CL)
	$P_c(4312)^+$	0.32	0.48	19.78 ± 22.27	1.17	1.29
$\Lambda_c^+ \overline{D}{}^0$	$P_c(4440)^+$	0.44	0.15	26.91 ± 28.17	1.41	1.53
-	$P_c(4457)^+$	0.53	0.00	6.20 ± 13.60	1.27	1.43
$A^+ = D^{*-}$	$P_c(4440)^+$	1.00	0.00	0.00 ± 0.96	0.72	0.91
$\Lambda_c^+ \pi^+ D$	$P_c(4457)^+$	1.00	0.00	0.00 ± 1.73	0.77	0.97
$A^{+} = D^{*-}$	$P_c(4440)^+$	1.00	0.00	0.00 ± 0.80	0.63	0.80
$\Lambda_c^+ \pi^- D^+$	$P_c(4457)^+$	1.00	0.00	0.00 ± 0.74	0.59	0.74
	$P_c(4312)^+$	1.00	0.00	0.00 ± 1.56	0.69	0.88
$\Lambda_c^+ \pi^+ D^-$	$P_c(4440)^+$	0.65	0.00	4.43 ± 11.67	3.71	4.24
	$P_c(4457)^+$	0.65	0.00	5.94 ± 12.68	3.13	3.61
	$P_c(4312)^+$	1.00	0.00	0.00 ± 1.42	0.67	0.86
$\Lambda_c^+\pi^-D^-$	$P_c(4440)^+$	0.53	0.00	12.52 ± 15.89	3.91	4.37
	$P_c(4457)^+$	0.53	0.00	8.60 ± 12.22	3.10	3.51

 No significant signal of three pentaquark states is observed in e⁺e⁻ collisions

Belle Collaboration, arXiv: 2403.04340

 No significant signal of three pentaquark is observed in the prompt process of *pp* collisions

LHCb Collaboration, Phys.Rev.D 110 (2024) 032001

Fine structures of exotic states

> Hidden charm pentaquark states

Fine structures of exotic states

Vector charmonium-like states

Heavy quark spin symmetry(HQSS)

QCD interaction can not flip the spin of heavy quark

Lagrangian $L = C_a Tr[H_c^{\dagger}H_c]S_c^{\dagger} \cdot S_c + C_b Tr[H_c^{\dagger}\sigma H_c]S_c^{\dagger} \cdot (J_iS_c)$

Superfield $H_c = \frac{1}{\sqrt{2}} (D + \vec{D}^* \vec{\sigma})$ $S_c = \frac{1}{\sqrt{3}} (\Sigma_c \vec{\sigma} + \vec{\Sigma}^*_c)$

The number of low energy constants decreases within HQSS

HQSS multiplet hadronic molecules

- Assigning three states as $\overline{D}^{(*)}\Sigma_c$ bound states
- A compette multiplet hadronic molecules $\overline{D}^{(*)}\Sigma_c^{(*)}$

Fine structure of hadronic molecules

Scenario	Molecule	J^P	B (MeV)	M (MeV)
A	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 - 9.0	4311.8 - 4313.0
A	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
A	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	3.2 - 3.5	4523.3 - 4523.6
В	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
B	$ar{D}^*\Sigma_c$	$\frac{\overline{3}}{2}^{-}$	Input	4440.3
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
B	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}$	25.7 - 26.5	4500.2 - 4501.0

Liu et al., Phys.Rev.Lett. 122 (2019) 242001

Lanzhou	Universitv

What should we do next?

> How to verify the molecular nature of pentaquark states

Where(decay modes) and How(production modes) to search for these partners? > Spin order of Pc(4440) and Pc(4457)

•	Scenario A	Machine Learning	Zhang et al., Sci.Bull. 68 (2023) 981-989
		ChUPT	Xiao et al., Phys.Rev.D 100 (2019) 014021
		OBE	Chen et al., Phys.Rev.D 100 (2019) 011502
•	Scenario B	Pionful EFT	Du et al., Phys.Rev.Lett. 124 (2020) 072001
		OBE Remove Delta	Liu et al., Phys.Rev.D 103 (2021) 054004

• Mass splitting of $\Xi_{cc}\Sigma_c$ system Lattice QCD

 Ξ_{cc}

 Σ_c

D

 Σ_c

HADS

Effective physical observable Pan et al., Phys.Rev.D 102 (2020) 011504 $1^+ - 0^+ = -8 MeV$ $\Delta_m < 0$ u University Ming-Zhu Liu 10

Lanzhou University

Outline

- Heavy flavor hadronic molecular candidates and their partners
- Decays of the heavy flavor hadronic molecules
- Productions of the heavy flavor hadronic molecules
- Summary and Outlook

Two-body decay of hadronic molecule

Charmed Meson Exchange

Xiao et al., Phys.Rev.D 100 (2019) 014022

EFT within HQSS

$$\mathbf{J} = \mathbf{3/2} \qquad \bar{D}^* \Sigma_c^* - \bar{D}^* \Sigma_c - \bar{D} \Sigma_c^* - \bar{D}^* \Lambda_c - J/\psi N$$

$$\begin{pmatrix} C_a - \frac{2}{3} C_b & -\frac{\sqrt{5}}{3} C_b & \sqrt{\frac{5}{3}} C_b & \sqrt{\frac{5}{3}} C_b' & \frac{\sqrt{5}}{3} g_2 \\ -\frac{\sqrt{5}}{3} C_b & C_a + \frac{2}{3} C_b & \frac{1}{\sqrt{3}} C_b & \frac{1}{\sqrt{3}} C_b' & -\frac{1}{3} g_2 \\ \sqrt{\frac{5}{3}} C_b & \frac{1}{\sqrt{3}} C_b & C_a & -C_b' & \frac{1}{\sqrt{3}} g_2 \\ \sqrt{\frac{5}{3}} C_b' & \frac{1}{\sqrt{3}} C_b' & -C_b' & C_a' & g_1 \\ \frac{\sqrt{5}}{3} g_2 & -\frac{1}{3} g_2 & \frac{1}{\sqrt{3}} g_2 & g_1 & 0 \end{pmatrix}$$

Triangle diagrams

$$\Gamma_{P_c} = \frac{1}{2J+1} \frac{1}{8\pi} \frac{|p|^2}{m_0^2} \overline{|\mathcal{M}|^2}$$
Scatterring equation

$$T = \frac{V}{1-VG}$$

- Search for poles existing at unphysical sheet
- Their imaginary part corresponding to the widths of pentaquark molecules

$$= \mathbf{1/2} \qquad \bar{D}^* \Sigma_c^* - \bar{D}^* \Sigma_c - \bar{D} \Sigma_c - \bar{D}^* \Lambda_c - \bar{D} \Lambda_c - J/\psi N - \eta_c N \\ \begin{pmatrix} C_a - \frac{5}{3}C_b & -\frac{\sqrt{2}}{3}C_b & -\sqrt{\frac{2}{3}}C_b & \sqrt{\frac{2}{3}}C_b' & \sqrt{2}C_b' & -\frac{\sqrt{2}}{3}g_2 & \sqrt{\frac{2}{3}}g_2 \\ -\frac{\sqrt{2}}{3}C_b & C_a - \frac{4}{3}C_b & \frac{2}{\sqrt{3}}C_b & -\frac{2}{\sqrt{3}}C_b' & C_b' & \frac{5}{6}g_2 & \frac{1}{2\sqrt{3}}g_2 \\ -\sqrt{\frac{2}{3}}C_b & \frac{2}{\sqrt{3}}C_b & C_a & C_b' & 0 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 \\ \sqrt{\frac{2}{3}}C_b & -\frac{2}{\sqrt{3}}C_b' & C_b' & C_a' & 0 & \frac{1}{2}g_1 & \frac{\sqrt{3}}{2}g_1 \\ \sqrt{2}C_b' & C_b' & 0 & 0 & C_a' & \frac{\sqrt{3}}{2}g_1 & -\frac{1}{2}g_1 \\ -\frac{\sqrt{2}}{3}g_2 & \frac{5}{6}g_2 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 & \frac{\sqrt{3}}{2}g_1 & 0 & 0 \\ \sqrt{\frac{2}{3}}g_2 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 & \frac{\sqrt{3}}{2}g_1 & -\frac{1}{2}g_1 & 0 & 0 \end{pmatrix}$$

4 1 - 12

Three-body decay of hadronic molecule

 \succ Final decay modes of P_c

Two-body partial decays

 $P_c \to \overline{D}\Lambda_c, \ \eta_c p, J/\psi p$

Three-body partial decays $P_c \rightarrow \overline{D}\Lambda_c \pi, \overline{D}^*\Lambda_c \pi$

EFT with three-body cut dynamics

Du et al., JHEP 08 (2021) 157

Partial decay widths of hadronic molecules

A	Mode	$D^-\Lambda_c^+\pi^+$	$ar{D}^0 \Lambda_c^+ \pi^0$	$D^{*-}\Lambda_c^+\pi^+$	$\bar{D}^{*0}\Lambda_c^+\pi^0$	$ar{D}\Lambda_c$	$J/\psi N$	$\eta_c N$	Total
P_{c}	$_{21}[P_{\psi}(4312)^{N}]$	0.036	0.812	-	-	0.004	2.014	3.917	6.783
	P_{c2}	2.043	2.235	-	-	-	5.995	-	10.273
P_{c}	$_{3}[P_{\psi}(4440)^{N}]$	0.814	1.631	0.002	0.035	0.622	13.560	1.841	18.505
P_{c}	$_{4}[P_{\psi}(4457)^{N}]$	0.171	0.152	0.095	0.388	-	0.347	-	1.153
	P_{c5}	0.315	0.722	2.370	1.970	1.154	8.116	7.487	22.134
	P_{c6}	1.354	2.407	4.275	3.601	-	9.877	-	21.514
_	P_{c7}	-	-	2.745	2.499	-	-	-	5.244
B	Mode	$D^-\Lambda_c^+\pi^+$	$ar{D}^0 \Lambda_c^+ \pi^0$	$D^{*-}\Lambda_c^+\pi^+$	$ar{D}^{*0} \Lambda_c^+ \pi^0$	$ar{D}\Lambda_c$	$J/\psi N$	$\eta_c N$	Total
P_{a}	$_{21}[P_{\psi}(4312)^{N}]$	0.023	1.988	-	-	0.008	2.208	3.784	8.011
	P_{c2}	1.401	1.547	-	-	-	14.259	-	17.207
P_{a}	$_{3}[P_{\psi}(4457)^{N}]$	0.410	2.703	0.686	2.803	0.932	3.128	0.699	11.361
P_{c}	$_{24}[P_{\psi}(4440)^{N}]$	0.052	0.635	0.001	0.014	-	0.904	-	1.606
	P_{c5}	0.371	2.818	7.731	7.037	2.181	4.365	2.949	27.452
	P_{c6}	0.760	1.899	5.668	5.090	-	3.432	-	17.849
	P_{c7}	-	-	1.084	0.959	-	-	-	2.043

Liu et al., arXiv: 2407.17318

- $$\begin{split} Br(P_c(4312) \to \overline{D}\Lambda_c\pi) &= 13{\sim}25\% \\ Br(P_c(4312) \to \overline{D}^*\Lambda_c\pi) &= 0 \end{split}$$
- $$\begin{split} Br(P_c(4440) \rightarrow \overline{D}\Lambda_c\pi) &= 13{\sim}43\% \\ Br(P_c(4440) \rightarrow \overline{D}^*\Lambda_c\pi) &= 0.2{\sim}0.9\% \end{split}$$
- $$\begin{split} Br(P_c(4457) \rightarrow \overline{D}\Lambda_c\pi) &= 27{\sim}28\% \\ Br(P_c(4457) \rightarrow \overline{D}^*\Lambda_c\pi) &= 31{\sim}42\% \end{split}$$
- $Br(P_{c5} \rightarrow \overline{D}\Lambda_c\pi) = 5 \sim 12 \%$ $Br(P_{c5} \rightarrow \overline{D}^*\Lambda_c\pi) = 20 \sim 54\%$
- $Br(P_{c6} \rightarrow \overline{D}\Lambda_c\pi) = 15 \sim 18\%$ $Br(P_{c6} \rightarrow \overline{D}^*\Lambda_c\pi) = 37 \sim 60\%$

•
$$Br(P_{c7} \rightarrow \overline{D}^* \Lambda_c \pi) = 100 \%$$

LHCb Collaboration, Phys.Rev.D 110 (2024) 032001

anzhou University	Ming-Zhu Liu	14	
-------------------	--------------	----	--

Radiative and pionic decay of hadronic molecules

> Keep gauge invariance of radiative decays

Ling et al., Phys.Rev.D 104 (2021) 074022

Pionic decays of hadronic molecules

- Heavy flavor hadronic molecular candidates and their partners
- Decays of the heavy flavor hadronic molecules
- Productions of the heavy flavor hadronic molecules
- Summary and Outlook

Productions of pentaquark states in large facility

states	ElcC (60 fb^{-1})	CEPC (100 <i>ab</i> ⁻¹)	LHC (9 <i>f b</i> ⁻¹)
$P_{c}(4312)$	(0.02~0.08) pb	(0.002~0.01) pb	(3~9) nb
	1200~4800	$(0.2 \sim 1) \times 10^{6}$	$(3 \sim 8) \times 10^7$
$P_{c}(4440)$	(0.01~0.06) pb	(0.002~0.01) pb	(1~5) nb
	600~3600	$(0.2 \sim 1) \times 10^{6}$	$(1 \sim 5) \times 10^7$
$P_{c}(4457)$	$(3.4 \sim 16.4) \times 10^{-3} \text{ pb}$	(0.001~0.006) pb	(0.3~1) nb
	204~984	$(1 \sim 6) \times 10^5$	$(3 \sim 9) \times 10^{6}$
	Shi et al., 2208.02639	Jia et al., 2405.02619	Ling et al., 2104.11133

The future CEPC is a good platform to produce hidden charm pentaquark states

Lanzhou University	Ming-Zhu Liu	17

Productions of pentaquark states in b-baryon decays

> The topological diagrams for b-baryon decays

 $\mathcal{B}_a H^i \Pi^j_i \bar{\mathcal{P}}^a_j (T_1 - T_2) + \mathcal{B}_a H^a \Pi^j_i \bar{\mathcal{P}}^i_j T_2$

Hai-Yang Cheng et al., Phys.Rev.D 92 (2015) 096009

$$\frac{Br(\Lambda_b \to P_c(4380)\pi^-)}{Br(\Lambda_b \to P_c(4380)K^-)} = 0.050 \pm 0.016^{+0.026}_{-0.016} \pm 0.025$$

$$\frac{Br(\Lambda_b \to P_c(4380)K^-)}{Br(\Lambda_b \to P_c(4450)\pi^-)} = 0.033^{+0.016+0.011}_{-0.014-0,010} \pm 0.009$$
Consistent

LHCb Collaboration., Phys.Rev.Lett. 117 (2016) 8, 082002

Predicting pentaquark states

with strange quark

$$\begin{split} \Lambda_b^0 &\to P_p K^- & T_1 \\ \Lambda_b^0 &\to P_p \pi^- & t_1 - t_2 \\ \Xi_b^0 &\to P_{\Sigma^+} K^- & T_1 - T_2 \\ \Omega_b^- &\to P_{\Xi^-} \overline{K}^0 & t_1 - t_3 \end{split}$$

S=-1 and S=-2 hidden charm pentaquark are likely to be observed in these processes

Final states interaction

 \succ Predicting the dominant decay channels of Ξ_{cc}^{++}

> Explaining the W-boson annihilation process

 $\mathcal{B}[D_s^+ \to a_0(980)^{+(0)}\pi^{0(+)}, a_0(980)^{+(0)} \to \pi^{+(0)}\eta] = (1.46 \pm 0.15_{\text{sta.}} \pm 0.23_{\text{sys.}})\%$ BESIII Collaboration, Phys.Rev.Lett. 123 (2019) 112001

Productions of pentaquark states in b-hadron decays

Weak decays at quark level

Λ,

 Λ_h

Color Suppressed

1Charm0.2Bottom

 Λ_c

 Λ_c, Σ_c

 $\bar{D}^{(*)}$

 $K^{(*)}$

Estimation of the branching fraction of decay $\Lambda_b \rightarrow D_s \Sigma_c$

$$\succ \Lambda_b \rightarrow \Sigma_c$$

$$\frac{f(\Lambda_b \to \Sigma_c)}{f(\Lambda_b \to \Lambda_c)} = 0.1 \quad \text{Wu et al., Phys.Rev.D 100 (2019) 11, 114002}$$

Such form factor is zero in the leading order of HQET
Nathan Isgur et al., Nucl.Phys.B 348 (1991) 276-292
$$\mathcal{O}[(m_u - m_d)/m_c]$$

$$\succ \Lambda_b \to \Sigma_c D_s$$

- Color Suppressed
 - No quark level diagram

 $\begin{array}{l} \blacktriangleright Br(\Lambda_b \rightarrow \Sigma_c D_s) \quad \text{Collaborate with F.S.Y} \\ \\ \frac{N(\Lambda_b \rightarrow \Sigma_c^+ D_s^-)}{N(B^- \rightarrow D^{*0} D_s^-)} = \frac{Br(\Lambda_b \rightarrow \Sigma_c^+ D_s^-)}{Br(B^- \rightarrow D^{*0} D_s^-)} \frac{f_{\Lambda_b}}{f_u} \frac{Br(\Sigma_c^+ \rightarrow \Lambda_c^+ \pi^0)}{Br(D^{*0} \rightarrow D^0 \pi^0)} \frac{Br(\Lambda_c^+ \rightarrow pK^- \pi^+)}{Br(D^0 \rightarrow K^- \pi^+)} \epsilon(p) \\ \\ \\ \frac{N(\Lambda_b \rightarrow \Sigma_c^+ D_s^-)}{N(B^- \rightarrow D^{*0} D_s^-)} = \frac{Br(\Lambda_b \rightarrow \Sigma_c^+ D_s^-)}{Br(B^- \rightarrow D^{*0} D_s^-)} \frac{\epsilon(p)}{r} \qquad r = \frac{f_{\Lambda_b}}{f_u} \frac{Br(\Sigma_c^+ \rightarrow \Lambda_c^+ \pi^0)}{Br(D^0 \rightarrow M^0 \pi^0)} \frac{Br(\Lambda_c^+ \rightarrow pK^- \pi^+)}{Br(D^0 \rightarrow K^- \pi^+)} = \frac{0.5}{1} \frac{1}{2/3} \frac{4\%}{6\%} \approx 1 \qquad \epsilon(p) \sim 30\% \\ \\ \\ Br(B^- \rightarrow D^{*0} D_s^-) = (8.2 \mp 1.7) \times 10^{-3} \\ \\ N(A_t \rightarrow \Sigma_c^+ D_s^-) \qquad r \qquad \left[N(\Lambda_b \rightarrow \Sigma_c^+ D_s^-) < 10 \quad Br(\Lambda_b \rightarrow \Sigma_c^+ D_s^-) < 2 \times 10^{-6} \end{array} \right]$

$$Br(\Lambda_b \to \Sigma_c^+ D_s^-) = \frac{N(\Lambda_b \to \Sigma_c^+ D_s^-)}{N(B^- \to D^{*0} D_s^-)} Br(B^- \to D^{*0} D_s^-) \frac{r}{\epsilon(p)} \begin{cases} N(\Lambda_b \to \Sigma_c^- D_s^-) < 10 & Br(\Lambda_b \to \Sigma_c^- D_s^-) < 2 \times 10 \\ N(\Lambda_b \to \Sigma_c^+ D_s^-) < 100 & Br(\Lambda_b \to \Sigma_c^+ D_s^-) < 2 \times 10^{-5} \end{cases}$$

Productions of pentaquark states in b-hadron decays

Coupled-channel potentials

$$\bar{D}^* \Sigma_c^* - \bar{D}^* \Sigma_c - \bar{D} \Sigma_c - \bar{D}^* \Lambda_c - \bar{D} \Lambda_c - J/\psi N - \eta_c N$$

$$\begin{pmatrix} C_a - \frac{5}{3}C_b & -\frac{\sqrt{2}}{3}C_b & -\sqrt{\frac{2}{3}}C_b & \sqrt{\frac{2}{3}}C_b' & \sqrt{2}C_b' & -\frac{\sqrt{2}}{3}g_2 & \sqrt{\frac{2}{3}}g_2 \\ -\frac{\sqrt{2}}{3}C_b & C_a - \frac{4}{3}C_b & \frac{2}{\sqrt{3}}C_b & -\frac{2}{\sqrt{3}}C_b' & C_b' & \frac{5}{6}g_2 & \frac{1}{2\sqrt{3}}g_2 \\ -\sqrt{\frac{2}{3}}C_b & \frac{2}{\sqrt{3}}C_b & C_a & C_b' & 0 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 \\ \sqrt{\frac{2}{3}}C_b' & -\frac{2}{\sqrt{3}}C_b' & C_b' & C_a' & 0 & \frac{1}{2}g_1 & \frac{\sqrt{3}}{2}g_1 \\ \sqrt{2}C_b' & C_b' & 0 & 0 & C_a' & \frac{\sqrt{3}}{2}g_1 & -\frac{1}{2}g_1 \\ -\frac{\sqrt{2}}{3}g_2 & \frac{5}{6}g_2 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 & \frac{\sqrt{3}}{2}g_1 & 0 & 0 \\ \sqrt{\frac{2}{3}}g_2 & \frac{1}{2\sqrt{3}}g_2 & \frac{1}{2}g_2 & \frac{\sqrt{3}}{2}g_1 & -\frac{1}{2}g_1 & 0 \end{pmatrix}$$

$$\mathcal{A}\left(\Lambda_b \to \Lambda_c D_s^{-}\right) = \frac{G_F}{\sqrt{2}} V_{cb} V_{cs} a_1 \left\langle D_s^{-} | (s\bar{c}) | 0 \right\rangle \left\langle \Lambda_c | (c\bar{b}) | \Lambda_b \right\rangle$$
$$\mathcal{A}\left(\Lambda_b \to \Lambda_c D_s^{*-}\right) = \frac{G_F}{\sqrt{2}} V_{cb} V_{cs} a_1 \left\langle D_s^{*-} | (s\bar{c}) | 0 \right\rangle \left\langle \Lambda_c | (c\bar{b}) | \Lambda_b \right\rangle$$

Branching fractions

Scenario			А			
Molecule	$P_{\psi 1}^N$	$P_{\psi 2}^N$	$P_{\psi 3}^N$	$P_{\psi 4}^N$	$P_{\psi 5}^N$	$P_{\psi 6}^N$
Ours	7.11	1.44	8.21	0.09	1.77	4.82
ChUA [103]	1.82	8.62	0.13	0.83	0.04	2.36
Exp	0.96	-	3.55	1.70	-	-
Scenario			В			
Molecule	$P_{\psi 1}^N$	$P_{\psi 2}^N$	$P_{\psi 3}^N$	$P_{\psi 4}^N$	$P_{\psi 5}^N$	$P_{\psi 6}^N$
Ours	18.24	2.22	6.06	1.79	3.83	2.76
ChUA [103]	-	-	-	-	-	-
Exp	0.96	-	1.70	3.55	-	-

The order of magnitude of production rates can be explained

Pan et al., Phys.Rev.D 108 (2023) 114022

- Heavy flavor hadronic molecular candidates and their partners
- Decays of the heavy flavor hadronic molecules
- Productions of the heavy flavor hadronic molecules
- Summary and Outlook

Summary and outlook

- \triangleright We propose to verify the molecular nature of three P_c states discovered by LHCb Collaboration by searching for their relevant partners associated with symmetry.
 - The three-body and two-body decays of HQSS $\overline{D}^{(*)}\Sigma_c^{(*)}$ molecules are investigated, indicating that ٠ $\overline{D}^{(*)}\Sigma_c^{(*)}$ molecules decaying into $\overline{D}^{(*)}\Lambda_c\pi$ are so sizable that could be the good channels to experimentally search for pentaquark states. In particular, a state around 4.52 GeV discovered in the $\overline{D}\Lambda_c\pi$ mass distribution possibly correspond to one of HQSS partner of three P_c states.
 - The productions of HQSS $\overline{D}^{(*)}\Sigma_{c}^{(*)}$ molecules in Λ_{h} decay are investigated by the final state interaction, further revealing the production mechanism of pentaquark states in b-baryon decays.
- \blacktriangleright Three-body weak decays may contribute to the productions of pentaquark states

LHCb Collaboration, Phys.Rev.D 110 (2024) L031104

Thanks for your attention!

Backup

$$\frac{N(B^- \to D^{*0}D_S^-)}{N(B^- \to D^{*0}\pi^-)} \sim \frac{N(B^- \to D^0D_S^-)}{N(B^- \to D^0\pi^-)}$$

$$N(B^{-} \to D^{*0}D_{s}^{-}) = N(B^{-} \to D^{*0}\pi^{-}) \xrightarrow[N(B^{-} \to D^{0}D_{s}^{-})]{N(B^{-} \to D^{0}\pi^{-})} \qquad N(B^{-} \to D^{0}D_{s}^{-}) \xrightarrow[1302.5854]{1302.5854} 5 \times 10^{3}$$

$$N(B^{-} \to D^{*0}\pi^{-}) \xrightarrow[2012.09903]{1.1 \times 10^{6}} \qquad N(B^{-} \to D^{0}\pi^{-}) \xrightarrow[1203.3662]{1203.3662} 4 \times 10^{4}$$

26

Backup

Process	Amplitude	Process	Amplitude
$\overline{\Lambda_b^0 \to P_p K^-}$	T_1	$\Lambda_b^0 \to P_n \bar{K}^0$	T_1
$\Lambda_b^0 \to P_\Lambda \eta$	$\frac{1}{3}[(2T_1+T_2-2T_3)\cos\theta]$	$\Lambda_b^0 \to P_\Lambda \eta'$	$\frac{1}{3}[-\sqrt{2}(T_1 - T_2 + 2T_3)\cos\theta]$
	$+(2T_1+T_2-2T_3)\sin\theta]$		$+\sqrt{2}(T_1 - T_2 + 2T_3)\sin\theta]$
$\Lambda_b^0 o P_{\Sigma^+} \pi^-$	T_2	$\Lambda_b^0 o P_{\Sigma^-} \pi^+$	T_2
$\Lambda^0_b \to P_{\Xi^0} K^0$	$T_2 - T_3$	$\Lambda_b^0 \to P_{\Xi^-} K^+$	$T_2 - T_3$
$\Lambda^0_b o P_{\Sigma^0} \pi^0$	T_2	$\Lambda_b^0 o P_\Lambda \pi^0$	0
$\Lambda^0_b o P_{\Sigma^0} \eta$	0	$\Lambda^0_b o P_{\Sigma^0} \eta'$	0
$\Xi_b^0 \to P_{\Sigma^+} K^-$	$T_1 - T_2$	$\Xi_b^0 o P_{\Sigma^0} ar K^0$	$\frac{1}{\sqrt{2}}(-T_1+T_2)$
$\Xi_b^0 \to P_{\Xi^0} \eta$	$-\frac{1}{\sqrt{6}}(2T_1-2T_2+T_3)\cos\theta$	$\Xi_b^0 \to P_{\Xi^0} \eta'$	$\frac{1}{\sqrt{3}}(T_1 - T_2 + 2T_3)\cos\theta$
	$-\frac{1}{\sqrt{6}}(2T_1-2T_2+T_3)\sin\theta$		$-\frac{1}{\sqrt{3}}(T_1 - T_2 + 2T_3)\sin\theta$
$\Xi_b^0 \to P_{\Xi^-} \pi^+$	$-T_3$	$\Xi_b^0 o P_{\Xi^0} \pi^0$	$\frac{1}{\sqrt{2}}T_3$
$\Xi_b^0 \to P_\Lambda \bar{K}^0$	$\frac{1}{\sqrt{6}}(T_1 - T_2 + 2T_3)$		• -
$\Xi_b^- \to P_{\Sigma^-} \bar{K}^0$	$T_1 - T_2$	$\Xi_b^- \to P_{\Sigma^0} K^-$	$\frac{1}{\sqrt{2}}(T_1 - T_2)$
$\Xi_b^- \to P_{\Xi^-} \pi^0$	$-\frac{1}{\sqrt{2}}T_{3}$	$\Xi_b^- \to P_{\Xi^0} \pi^-$	$-T_3$
$\Xi_b^- \to P_{\Xi^-} \eta$	$-\frac{1}{\sqrt{6}}(2T_1-2T_2+T_3)\cos\theta$	$\Xi_b^- \to P_{\Xi^-} \eta'$	$\frac{1}{\sqrt{3}}(T_1 - T_2 + 2T_3)\cos\theta$
	$-\frac{1}{\sqrt{3}}(T_1 - T_2 + 2T_3)\sin\theta$		$-\frac{1}{\sqrt{6}}(2T_1-2T_2+T_3)\sin\theta$
$\Xi_b^- \to P_\Lambda K^-$	$\frac{1}{\sqrt{6}}(T_1 - T_2 + 2T_3)$		
$\Omega_b^- \to P_{\Xi^-} \bar{K}^0$	$t_1 - t_3$	$\Omega_b^- o P_{\Xi^0} K^-$	$-t_1 + t_3$

Backup

Process	Amplitude	Process	Amplitude
$\overline{\Lambda^0_b \to P_p \pi^-}$	$T'_{1} - T'_{2}$	$\Lambda_b^0 \to P_n \pi^0$	$-\frac{1}{\sqrt{2}}(T'_1 - T'_2)$
$\Lambda^0_b \to P_{\Sigma^0} K^0$	$\frac{1}{\sqrt{2}}T'_{3}$	$\Lambda^0_b \to P_{\Sigma^-} K^+$	$-T'_3$
$\Lambda_b^0 \to P_n \eta$	$\left(\frac{\cos\theta}{\sqrt{6}} - \frac{\sin\theta}{\sqrt{3}}\right)\left(T_1' - T_2' + 2T_3'\right)$	$\Lambda^0_b \to P_n \eta'$	$\left(\frac{\cos\theta}{\sqrt{3}} + \frac{\sin\theta}{\sqrt{6}}\right)\left(T_1' - T_2' + 2T_3'\right)$
$\Lambda^0_b \to P_\Lambda K^0$	$-\frac{1}{\sqrt{6}}(2T'_1-2T'_2+T'_3)$		
$\Xi_b^0 \to P_{\Sigma^+} \pi^-$	T'_1	$\Xi_b^0 \to P_{\Sigma^0} \pi^0$	$\frac{1}{2}(T_1' + T_2' - T_3')$
$\Xi_b^0 o P_{\Xi^0} K^0$	T_1'	$\Xi_b^0 \to P_{\Xi^-} K^+$	T'_2
$\Xi_b^0 \to P_\Lambda \eta$	$\frac{1}{6}\cos\theta(T_1'+5T_2'-T_3')$	$\Xi_b^0 \to P_\Lambda \eta'$	$\frac{1}{3\sqrt{2}}\cos\theta(T'_1 - T'_2 + 2T'_3)$
	$-\frac{1}{3\sqrt{2}}\sin\theta(T'_1 - T'_2 + 2T'_3)$		$+\frac{1}{6}\sin\theta(T_1'+5T_2'-T_3')$
$\Xi_b^0 o P_{\Sigma^0} \eta$	$\frac{1}{2\sqrt{3}}\cos\theta(-T'_1+T'_2+T'_3)$	$\Xi_b^0 o P_{\Sigma^0} \eta'$	$-\frac{1}{\sqrt{6}}\cos\theta(T'_1 - T'_2 + 2T'_3)\frac{1}{2\sqrt{3}}\sin\theta(-T'_1 + T'_2 + T'_3)$
	$+\frac{1}{\sqrt{6}}\sin\theta(T_1'-T_2'+2T_3')$		
$\Xi_b^0 \to P_p K^-$	T'_2	$\Xi_b^0 \to P_n \bar{K}^0$	$T'_{2} - T'_{3}$
$\Xi_b^0 o P_{\Sigma^-} \pi^+$	$T'_{2} - T'_{3}$	$\Xi_b^0 \to P_\Lambda \pi^0$	$rac{1}{2\sqrt{3}}(-T_1'+T_2'+T_3')$
$\Xi_b^- \to P_{\Xi^-} K^0$	$T'_{1} - T'_{2}$	$\Xi_b^- \to P_n K^-$	$-T'_3$
$\Xi_b^- \to P_{\Sigma^-} \eta$	$\frac{1}{\sqrt{6}}\cos\theta(T_1'-T_2'-T_3')$	$\Xi_b^- \to P_{\Sigma^-} \eta'$	$\frac{1}{\sqrt{3}}\cos\theta(T'_1 - T'_2 + 2T'_3)$
	$-\frac{1}{\sqrt{3}}\sin\theta(T_1'-T_2'+2T_3')$		$+\frac{1}{\sqrt{6}}\sin\theta(T'_{1}-T'_{2}-T'_{3})$
$\Xi_b^- \to P_{\Sigma^-} \pi^0$	$-\frac{1}{\sqrt{2}}(T_1' - T_2' + T_3')$	$\Xi_b^- o P_{\Sigma^0} \pi^-$	$\frac{1}{\sqrt{2}}(T'_1 - T'_2 + T'_3)$
$\Xi_b^- \to P_\Lambda \pi^-$	$\frac{1}{\sqrt{6}}(T'_1 - T'_2 - T'_3)$		v -
$\Omega_b^- o P_{\Xi^-} \pi^0$	$-\frac{1}{\sqrt{2}}t'_{1}$	$\Omega_b^- o P_{\Xi^0} \pi^-$	$-t_1'$
$\Omega_b^- \to P_{\Xi^-} \eta$	$\frac{1}{\sqrt{6}}\cos\theta(t_1'-2t_2') - \frac{1}{\sqrt{3}}\sin\theta(t_1'+t_2')$	$\Omega_b^- \to P_{\Xi^-} \eta'$	$\frac{1}{\sqrt{3}}\cos\theta(t_1'+t_2')+\frac{1}{\sqrt{6}}\sin\theta(t_1'-2t_2')$
$\Omega_b^- \to P_{\Sigma^-} \bar{K}^0$	$t_2' - t_3'$	$\Omega_b^- o P_{\Sigma^0} K^-$	$\frac{1}{\sqrt{2}}(t'_2 - t'_3)$
$\Omega_b^- \to P_\Lambda K^-$	$\frac{1}{\sqrt{6}}(t'_2+t'_3)$		v -