第九届手征有效场论研讨会

Lattice spectra of DDK three-body system with Lorentz covariant kinematic

吴佳俊 (Jia-Jun Wu) UCAS Collaborators: Fabian Müller, Akaki Rusetski, 庞锦毅 (Jin-Yi Pang), 肖起超(Xiao-Qi Chao)

UNIVERSITÄT BONN

JHEP 02 (2022) 158, 2408.16590 [hep-lat]

2024.10.20

Outline

- The Quantization Condition (QC) in the finite volume
- The covariant QC of three-particle by NREFT
- DDK three-body system
- Summary and Outlook

The quantization condition in the finite volume

The quantization condition in the finite volume

For the 3-body system, it becomes very complicated,

- 1. There are two free momenta
- 2. How to define the S matrix of three body
- 3. How to deal with the divergent of three-body re-scattering

But the 3-body system is extremely important to describe low energy resonances, such as $\eta \rightarrow 3\pi$, $\omega \rightarrow 3\pi$, N*(1440) $\rightarrow N\pi\pi$.

Why invariant ?

Typical momenta on the lattice $(2\pi/L)$ is comparable with π mass, then purely kinematic effect of the relativistic invariant treatment, especially for the **moving frames**. The true amplitude is invariant.

Why a manifestly invariant formulation ?

Fingding an explicit parameterization of the three-body force that keep the solution of the Faddeev equation invariant! Too difficult and impossible proper short-range three-body force. But it is not only very difficult. Making the tree-level kernel of the Faddeev equation relativistic invariant order by order in the EFT expansion also does not work, since cutoff regularization will break counting rules.

On the contrary, a manifestly invariant formulation will keep the three-body force parameterize in terms of Lorentz-invariant structures, where the coupling constants before these terms are independent and the expansion of the short-range part can be organized in accordance with the will-defined counting rules.

How to obtain a manifestly form ?

Weak Point: additional term will bring new pole when the cut is high.

How to obtain a manifestly form ?

 $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$ $\mathcal{L}_1 = \psi^{\dagger} \left(i\partial_0 - \frac{\nabla^2}{2m} \right) \psi$ $\mathcal{L}_2 = -\frac{C_0}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi - \frac{C_2}{4} \left(\psi^{\dagger} \nabla^2 \psi^{\dagger} \psi \psi + h.c. \right) + \cdots$ $\mathcal{L}_3 = -\frac{D_0}{6} \psi^{\dagger} \psi^{\dagger} \psi^{\dagger} \psi \psi \psi - \frac{D_2}{12} \left(\psi^{\dagger} \psi^{\dagger} \nabla^2 \psi^{\dagger} \psi \psi \psi + h.c. \right) + \cdots$

$$\mathcal{L}_{1} = \psi^{\dagger} 2w_{v}(i(v\partial) - w_{v})\psi$$

$$\mathcal{L}_{2} = -\frac{C_{0}}{2}\psi^{\dagger}\psi^{\dagger}\psi\psi - \frac{C_{2}}{4}\left\{\left((w_{v\mu}\psi)^{\dagger}(w_{v}^{\mu}\psi)^{\dagger} - m^{2}\psi^{\dagger}\psi^{\dagger}\right)\psi\psi + h.c.\right\} + \cdots$$

$$\mathcal{L}_{3} = -\frac{D_{0}}{6}\psi^{\dagger}\psi^{\dagger}\psi^{\dagger}\psi\psi\psi - \frac{D_{2}}{12}\left\{\psi^{\dagger}((w_{v\mu}\psi)^{\dagger}(w_{v}^{\mu}\psi)^{\dagger} - m^{2}\psi^{\dagger}\psi^{\dagger})\psi\psi\psi + h.c.\right\} +$$

Key point, find a new operator replace ∂_0 and $\vec{\nabla}$

Introduce a four-velocity: $v^{\mu} = P^{\mu}/\sqrt{P^2}$ A new energy operator: $\omega_v = \sqrt{m^2 + \partial^2 - (\partial \cdot v)^2}$ A new four momentum operator: $\omega_v^{\mu} = v^{\mu} \omega_v + i \partial_{\perp}^{\mu}$ where $\partial_{\perp}^{\mu} = \partial^{\mu} - v^{\mu} (\partial \cdot v)$

When $v^{\mu} = (1, \vec{0})$, in REST FRAME $\omega_{v} = \sqrt{m^{2} - \vec{\partial}^{2}}$; $\partial_{\perp}^{\mu} = (0, \vec{\partial})$; $\omega_{v}^{\mu} = (\omega_{v}, i\vec{\partial})$

We construct several Lorentzinvariant operators just by $\vec{\partial}$ and v^{μ} !!!

$$\mathcal{L}_{1} = \psi^{\dagger} 2w_{v}(i(v\partial) - w_{v})\psi$$

$$\mathcal{L}_{2} = \sigma T^{\dagger}T + \frac{1}{2} \left[T^{\dagger} \left(\psi\psi + f_{1}((w_{v}\mu\psi)(w_{v}^{\mu}\psi) - m^{2}\psi\psi) + \cdots \right) + h.c. \right] + \cdots$$

$$\mathcal{L}_{3} = h_{0}T^{\dagger}T\psi^{\dagger}\psi + h_{2}T^{\dagger}T \left(\psi^{\dagger}w_{v}^{2}\psi + h.c. \right) + \cdots$$

中国科学

University of Chinese Academy

$$T_{0} = (4C_{0}) + (4C_{0})^{2} \frac{1}{2}I + (4C_{0})^{3} \frac{1}{4}I^{2} + \dots = \frac{1}{(4C_{0})^{-1} - \frac{1}{2}I} \cdot I(s) = J(s) + \frac{i\sigma}{16\pi} \quad \sigma = \left(1 - \frac{4m^{2}}{s + i\varepsilon}\right)^{1/2}$$
$$I = \int \frac{d^{D}k}{(2\pi)^{D}i} \frac{1}{2w_{v}(k)(w_{v}(k) - vk - i\varepsilon)} \frac{1}{2w_{v}(P - k)(w_{v}(P - k) - v(P - k) - i\varepsilon)}$$

 $T_3(p_1, p_2, p_3; q_1, q_2, q_3) = T_3^{\mathsf{disc}} + T_3^{\mathsf{conn}} \,,$

$$T_3^{\text{disc}} = \sum_{i,j=1}^3 (2\pi)^3 \delta^3(p_{i\perp} - q_{j\perp}) 2w_v(p_i)\tau((K - p_i)^2),$$

$$T_3^{\text{conn}} = \sum_{i,j=1}^3 \tau((K - p_i)^2) \mathcal{M}(p_i, q_j, K)\tau((K - q_j)^2).$$

 $\mathcal{M}(p,q;P) = Z(p,q;P) + \int \frac{d^4k}{(2\pi)^4} \Theta_v(k) Z(p,k;P) \tau((P-k)^2) \mathcal{M}(k,q;P).$ $\Theta_v(k) = 2\pi \delta(k^2 - m^2) \theta(\Lambda^2 + k^2 - (v \cdot k)^2)$

$$\mathcal{Z}(p,q) = \frac{1}{2w_v(K-p-q)(w_v(p)+w_v(q)+w_v(K-p-q)-vK-i\varepsilon)} + \frac{H_0(\Lambda)}{\Lambda^2}$$

$$Z(\vec{p}, \vec{q}, E) = \frac{1}{\vec{p}^2 + \vec{q}^2 + \vec{p} \cdot \vec{q} - mE} + h_0$$

- In Box, the "p" become discrete $(2\pi/L)\vec{n}$, $\vec{n} = (n_1, n_2, n_3)$ Propagator of dimer, $\tau_L(s) = \frac{1}{(p_s^{2L}T_{tree}^L)^{-1} \frac{1}{2}I(s)}$

$$I = \int \frac{d^D k}{(2\pi)^D i} \frac{1}{2w_v(k)(w_v(k) - vk - i\varepsilon)} \frac{1}{2w_v(P - k)(w_v(P - k) - v(P - k) - i\varepsilon)}$$

$$D X = \frac{1}{L^3} \sum_{\mathbf{k}} \int \frac{dk^0}{2\pi i} \frac{1}{2w_v(k)(w_v(k) - v \cdot k - i\epsilon)} \frac{1}{2w_v(P - k)(w_v(P - k) - v \cdot (P - k) - i\epsilon)}$$

$$\tau^{FV} = \frac{1}{\left(p_s^{2L} T_{tree}^L\right)^{-1} - \frac{1}{2}I^{FV}} = \frac{1}{\left(p_s^{2L} T_{tree}^L\right)^{-1} - \frac{1}{2}Re[I^\infty] - \frac{1}{2}(I^{FV} - Re[I^\infty])} = \frac{16\sqrt{s}\,\pi}{p_s \cot\delta_L - \frac{1}{32\sqrt{s}\,\pi}(I^{FV} - Re[I^\infty])}$$

$$= \frac{16\sqrt{s}\,\pi}{p_{s} \cot \delta_{L} - \frac{2}{\sqrt{\pi}L\gamma}Z_{00}^{d}(1;q_{0}^{2})}$$

Spurious Pole JHEP 07 (2022) 019 $\tau \to \tau - \frac{R_{\rm f}}{s - s_{\rm f}} + (\text{polynomial in } \delta s).$

• Scattering equation, $\mathcal{M}(p,q;P) = Z(p,q;P) + \int \frac{d^4k}{(2\pi)^4} \Theta_v(k) Z(p,k;P) \tau((P-k)^2) \mathcal{M}(k,q;P).$ $\Theta_v(k) = 2\pi \delta(k^2 - m^2) \theta(\Lambda^2 + k^2 - (v \cdot k)^2)$

$$\mathcal{Box} \qquad \qquad \mathcal{M}^{L}(p,q;P) = Z(p,q;P) + \frac{1}{L^{3}} \sum_{\mathbf{k}} \tilde{\Theta}_{v}(k) Z(p,k;P) \tau^{L}((P-k)^{2}) \mathcal{M}^{L}(k,q;P) \qquad \tilde{\Theta}_{v}(k) = \frac{\theta(\Lambda^{2} + m^{2} - (v \cdot k)^{2})}{2\omega(\mathbf{k})}$$

()中国神学院大学

• QC: det $\left(\delta_{pq} - \frac{1}{L^3}\tilde{\Theta}_v(q)Z(p,q;P)\tau^L((P-q)^2)\right) = 0$

Project to the irreducible representation (irrep)

- Symmetry breaking
- Infinite Volume -> SO(3)
- Box Volume -> O_h

 $Z^{\Gamma}(r,r^{'}) = \sum_{g} \left(\mathscr{T}(g) \right) Z(gp_{r}^{(0)}, q_{r^{'}}^{(0)})$ $\mathcal{M}^{\Gamma}(r,r^{'};P) = Z^{\Gamma}(r,r^{'};P) + \frac{1}{L^{3}} \sum_{r^{''}} \frac{\vartheta_{r^{''}}}{|G|} \tilde{\Theta}_{v}(r^{''}) Z^{\Gamma}(r,r^{''};P) \tau((P-k_{r^{''}})^{2}) \mathcal{M}^{\Gamma}(r^{''},r^{'};P).$

r indicate the momentum shell, \mathcal{J} is the matrix of irrep Γ , g is element of group, $|\mathsf{G}|$ and ϑ are the order of group and the shell.

• QC for fixed irrep: det $\left(\delta_{rr'} - \frac{1}{L^3} \frac{\vartheta_{r'}}{|G|} \tilde{\Theta}_v(r') Z^{\Gamma}(r, r'; P) \tau((P - k_{r'})^2)\right) = 0$

• 3-body bound state of DDK $J^P = 0^-$, $I = \frac{1}{2}$, S = 1, C = 2Binding energy 70 MeV DK attractive interaction

Tian-Wei Wu, Ming-Zhu Liu, Li-Sheng Geng, Emiko Hiyama, Manuel Pavon Valderrama PRD100(2019)3, 034029

FIG. 4: The invariant-mass spectra of $D^+ D_s^{*+}$ in the (a) $\Upsilon(1S)$ and (b) $\Upsilon(2S)$ data samples. The cyan shaded histograms are from the normalized M_{D^+} and $M_{D_s^{*+}}$ sideband events. The blue solid curves show the fitted results with the R^{++} mass fixed at 4.14 GeV/ c^2 and width fixed at 2 MeV, and the blue dashed curves are the fitted backgrounds.

Belle collaboration, Phys.Rev.D 102 (2020) 11, 112001

FIG. 7. *DDK* states in finite volume. The orange curves are calculated at $O(p^0)$, the blue curves at $O(p^2)$, and the purple curves at $O(p^4)$.

Non-covariant form Finite volume spectra of DDK system

Phys.Rev.D

102 (2020

, Jia-14515

Jin-

Pang,

Li-Sheng

Geng,

un

$$\begin{split} \mathcal{L} &= \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3. \\ \mathcal{L}_1 &= D^{\dagger} 2w_v (v \cdot i\partial - w_v) D + K^{\dagger} 2w_v (v \cdot i\partial - w_v) K \\ &+ \sigma_{DK} T_{DK}^{\dagger} T_{DK} + \sigma_{DD} T_{DD}^{\dagger} T_{DD}. \end{split}$$
$$\begin{aligned} \mathcal{L}_2 &= T_{DK}^{\dagger} (D\mathscr{F}_{DK} K) + \frac{1}{2} T_{DD}^{\dagger} (D\mathscr{F}_{DD} D) + \text{h.c.} \\ D\mathscr{F}_{DD} D &= DD + \frac{1}{8} f_{DD} (D\bar{w}_{\perp}^{\mu} \bar{w}_{\perp \mu} D - (\bar{w}_{\perp}^{\mu} D) (\bar{w}_{\perp \mu} D)). \\ D\mathscr{F}_{DK} K &= DK + \frac{1}{8} f_{DK} (u_D^2 D \bar{w}_{\perp}^{\mu} \bar{w}_{\perp \mu} K + u_K^2 K \bar{w}_{\perp}^{\mu} \bar{w}_{\perp \mu} D \\ &- 2u_D u_K (\bar{w}_{\perp}^{\mu} D) (\bar{w}_{\perp \mu} K)). \end{split}$$

Σπζ	\sum_{Π}	

14

Two dimer $\tau_{DK}(s) = \frac{1}{b_0^{(DK)} + b_1^{(DK)}(s - s_{\rm th}) - \Sigma_{DK}(s)}, \quad \tau_{DD}(s) = \frac{2}{b_0^{(DD)} + b_1^{(DD)}(s - s_{\rm th}) - \Sigma_{DD}(s)}.$ fields for $\Sigma_{DK}(s) = \frac{1}{16\pi^2} \left(\frac{2p_{DK}^*}{\sqrt{s}} \log \frac{m_D^2 + m_K^2 - s + 2p_{DK}^* \sqrt{s}}{2m_D m_K} - (m_D^2 - m_K^2) \left(\frac{1}{s} - \frac{1}{(m_D + m_K)^2} \right) \log \frac{m_D}{m_K} \right)$ **DK** and DD $\Sigma_{DD}(s) = \frac{1}{16\pi^2} \frac{2p_{DD}^*}{\sqrt{s}} \log \frac{2m_D^2 - s + 2p_{DK}^*\sqrt{s}}{2m_D^2}$ $\tau_{DK}^{L}(P) = \frac{1}{J_{DK}(s) - \operatorname{Re}\Sigma_{DK}(s) - S_{DK}^{L}(P)}, \quad J(s) = \left[\frac{1}{b_0 + b_1(s - s_{\mathrm{th}}) - \Sigma(s)} - \frac{R_{\mathrm{f}}}{s - s_{\mathrm{f}}} + c_0 + c_1(s - s_{\mathrm{th}})\right]^{-1} + \Sigma(s).$ $\tau_{DD}^{L}(P) = \frac{2}{J_{DD}(s) - \text{Re}\Sigma_{DD}(s) - S_{DD}^{L}(P)} \cdot S_{DK}^{L} = \frac{1}{4\pi^{3/2}L\gamma\sqrt{s}}Z_{00}^{d}(1;\eta_{DK}^{2}) \quad S_{DD}^{L} = \frac{1}{4\pi^{3/2}L\gamma\sqrt{s}}Z_{00}^{d}(1;\eta_{DD}^{2})$

	b_0	b_1	$s_{ m f}$	s^*	$R_{ m f}$	c_1	c_2
DK	-0.0019	0.0152	1.4283	1.5364	276.0684	1612.274	-9415.88
DD	0.0053	0.0723	3.8834	_	33.1097	284.077	-2437.35

$$\begin{aligned} \mathcal{M}(p,q;P) &= Z(p,q;P) + \int \frac{d^4k}{(2\pi)^4} \Theta_v(k) Z(p,k;P) \tau((P-k)^2) \mathcal{M}(k,q;P) \\ \mathcal{M}^L(p,q;P) &= Z(p,q;P) + \frac{1}{L^3} \sum_{\mathbf{k}} \tilde{\Theta}_v(k) Z(p,k;P) \tau^L((P-k)^2) \mathcal{M}^L(k,q;P). \end{aligned} \\ \mathcal{M} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ \mathcal{M}_{21} & \mathcal{M}_{22} \end{pmatrix}, \quad Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \quad \tau = \begin{pmatrix} \tau_{DK} \\ \tau_{DD} \end{pmatrix} \\ Z_{11}(p,q;P) &= \frac{1}{2w_v^K(P-p-q) (w_v^K(P-p-q) - v \cdot (P-p-q))} + \frac{H_0(\Lambda)}{\Lambda^2} + \frac{H_2(\Lambda)}{\Lambda^4} (s-s_{\mathrm{th}}) \\ Z_{12}(p,q;P) &= Z_{21}(q,p;P) = \frac{1}{2w_v^D(P-p-q) (w_v^D(P-p-q) - v \cdot (P-p-q))} \quad Z_{22} = 0 \end{aligned}$$

To fix $H_0(\Lambda)$ and $H_2(\Lambda)$

- $DD_{s0}^*(2317)$ scattering length $a = a(H_0)$
- *DDK* 3-body bound state $B_3 = B_3(H_0, H_2)$

University of

Chinese Academy

The finite volume spectra for different total momentum (\sqrt{s} is scaled by m_D)

O(p⁰) vs O(p²) in (0,0,0)

中国科学院大学

University of Chinese Academy of Sciences

O(p⁰) vs O(p²) in (1,1,1)

Compare with non-relativistic

Summary and Outlook

We present a covariant form for three-body system by using NREFT for the QC in finite volume and scattering equation in infinite volume.

We present the finite spectra of DDK system.

A lot of things can be done ! For example : to $DD\pi$ system to study T_{cc}

Thanks very much !

