

Dispersive Determination of Nucleon Gravitational Form Factors

Xiong-Hui Cao (曹雄辉)

Institute of Theoretical Physics, Chinese Academy of Sciences in collaboration with Qu-Zhi Li, De-Liang Yao and Feng-Kun Guo

2024/10/18–10/22 Changsha, Hunan

Dispersive Determination of Nucleon Gravitational Form Factors

1

EM structure of nucleons

Definition:
$$t \equiv q^2 = (p' - p)^2$$

$$\left\langle N(p') \middle| j_{EM}^{\mu} | N(p) \rangle = \bar{u} (p') \left[F_1(t) \gamma^{\mu} + i \frac{F_2(t)}{2m_N} \sigma^{\mu\nu} q_{\nu} \right] u(p)$$
Normalization: $F_1^p(0) = 1, F_1^n(0) = 0, F_2^p(0) = \kappa_p, F_2^n(0) = \kappa_n$
Sachs form factors: $G_E = F_1 + \frac{t}{4m^2} F_2, \quad G_M = F_1 + F_2$

- Charge radius (proton): $G_E(t) = 1 + t \langle r_C^2 \rangle / 6 + \dots$
- Extracted from the lepton-nucleon elastic scattering or the hydrogen(like) atom spectroscopy
 - ⇒ "proton radius puzzle"

0.84 fm v.s. 0.88 fm

https://physics.aps.org/articles/v12/s28

Gravitational structure of nucleons

3

Gravity couples to matter through energy-momentum tensor (EMT) $T^{\mu\nu}$

No direct experiment for detection of the nucleon-graviton interaction (10⁻³⁹ times weaker than electromagnetic interaction)

Gravitational structure of nucleons

- Gravity couples to matter through energy-momentum tensor (EMT) $T^{\mu\nu}$
- No direct experiment for detection of the nucleon-graviton interaction (10^{-39} times weaker than electromagnetic interaction)

Total (quark+gluon) QCD EMT matrix element is renormalization-scale-independent

D = ?

• Definition:
$$a_{\{\mu}b_{\nu\}} = a_{\mu}b_{\nu} + a_{\nu}b_{\mu}, P = p' + p, \Delta = p' - p$$

 $\left\langle N(p') \left| T^{\mu\nu} \right| N(p) \right\rangle = \frac{1}{4m_N} \bar{u}(p') \left[A(t)P^{\mu}P^{\nu} + J(t) \left(iP^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho} \right) + D(t) \left(\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2 \right) \right] u(p)$
Kobzarev, Okun (1962); Pagels (1966)
M.V. Polyakov, P. Schweitzer, (2018)
• Mass normalization: • Spin normalization: • D-term: $D \equiv D(0)$
 $m_N = \int d^3r T_{00}(r) \qquad J^i = \epsilon^{ijk} \int d^3r r^j T_{0k}(r) \qquad D = -\frac{m_N}{2} \int d^3r \left(r^i r^j - \frac{1}{3} \delta_{ij} \right) T_{ij}(r)$
 $A(0) = 1 \qquad J(0) = 1/2 \qquad D = 2$

A(0) = 1

Dispersive Determination of Nucleon Gravitational Form Factors

Gravitational structure of nucleons

- Gravity couples to matter through energy-momentum tensor (EMT) $T^{\mu\nu}$
 - No direct experiment for detection of the nucleon-graviton interaction $(10^{-39}$ times weaker than electromagnetic interaction)

P-term as the "last unknown global property"

em:	$\partial_\mu J^\mu_{ m em}~=0$	$\langle N' J^{\mu}_{f em} N angle$	\longrightarrow	Q =	$1.602176487(40) \times 10^{-19}$ C
				$\mu =$	$2.792847356(23)\mu_N$
weak:	PCAC	$\langle N' J^{\mu}_{\mathbf{weak}} N\rangle$	\longrightarrow	$g_A =$	1.2694(28)
				$g_p =$	8.06(55)
gravity:	$\partial_{\mu}T^{\mu\nu}_{\mathbf{grav}} = 0$	$\langle N' T^{\mu\nu}_{\mathbf{grav}} N \rangle$	\longrightarrow	m =	$938.272013(23){ m MeV}/c^2$
				J =	$\frac{1}{2}$
				D =	<u>?</u>

M.V. Polyakov, P. Schweitzer, (2018)

Mass radius puzzle

Trace FF:

$$\left\langle N(p') \left| T^{\mu}_{\mu} \right| N(p) \right\rangle = m_N \bar{u}(p') \left[A(t) - \frac{t}{4m_N^2} [A(t) - 2J(t) + 3D(t)] \right] u(p) \equiv \bar{u}(p') \Theta(t) u(p)$$

• Trace anomaly in QCD:
$$T^{\mu}_{\ \mu} \equiv \frac{\beta(g)}{2g} F^{a,\mu\nu} F^{a,}_{\ \mu\nu} + \left(1 + \gamma_m\right) \sum_{q} m_q \bar{\psi}_q \psi_q$$

$$> 90\% \qquad <10\% \text{ due to the small } \sigma\text{-term, } \sim 60 \text{ MeV} \ll 940 \text{ MeV}$$

$$= Mass \text{ radius:} \quad \Theta(t) = 1 + t \left\langle r_M^2 \right\rangle / 6 + \dots$$

Mass radius puzzle

Trace FF:

$$\left\langle N(p') \left| T^{\mu}_{\mu} \right| N(p) \right\rangle = m_N \bar{u}(p') \left[A(t) - \frac{t}{4m_N^2} [A(t) - 2J(t) + 3D(t)] \right] u(p) \equiv \bar{u}(p') \Theta(t) u(p)$$

• Trace anomaly in QCD:
$$T^{\mu}_{\ \mu} \equiv \frac{\beta(g)}{2g} F^{a,\mu\nu} F^{a,}_{\ \mu\nu} + \left(1 + \gamma_m\right) \sum_{q} m_q \bar{\psi}_q \psi_q$$

$$> 90\% \quad <10\% \text{ due to the small } \sigma\text{-term, } \sim 60 \text{ MeV} \ll 940 \text{ MeV}$$

$$= Mass \text{ radius:} \quad \Theta(t) = 1 + t \left\langle r_M^2 \right\rangle / 6 + \dots$$

Mass (scalar, trace or dilatation) radius v.s. Energy radius

Energy FF:

$$\left\langle N(p') \left| \left| \frac{T^{00}}{V(p)} \right| N(p) \right\rangle = m_N \bar{u}(p') \left[A(t) - \frac{t}{4m_N^2} [A(t) - 2J(t) + D(t)] \right] u(p) \equiv \bar{u}(p') E(t) u(p)$$

Energy radius: $E(t) = 1 + t \langle r_E^2 \rangle / 6 + \dots$

Reference frame dependent

XHC

Mass radius puzzle

Trace FF:

$$\left\langle N(p') \left| T^{\mu}_{\mu} \right| N(p) \right\rangle = m_N \bar{u}(p') \left[A(t) - \frac{t}{4m_N^2} [A(t) - 2J(t) + 3D(t)] \right] u(p) \equiv \bar{u}(p') \Theta(t) u(p)$$

Trace anomaly in QCD:
$$T^{\mu}_{\ \mu} \equiv \frac{\beta(g)}{2g} F^{a,\mu\nu} F^{a,}_{\ \mu\nu} + \left(1 + \gamma_m\right) \sum_{q} m_q \bar{\psi}_q \psi_q$$

$$> 90\% \qquad <10\% \text{ due to the small } \sigma\text{-term, } \sim 60 \text{ MeV} \ll 940 \text{ MeV}$$

Mass radius:
$$\Theta(t) = 1 + t \langle r_M^2 \rangle / 6 + \dots$$

Kharzeev proposed it can be extracted from the threshold photoproduction of the vectormeson, e.g., J/ψ , and the fit result is ~0.5 fm Kharzeev, (2021).....

Recently, two LQCD calculations at near physical quark mass result in a large mass radius, ~1 fm Hackett et al., (2024); Wang et al., (2024)

fits to low-t data \Leftrightarrow dispersive analyses of "all" data

Why data driven dispersion theory?

Based on fundamental principles: unitarity, analyticity and crossing symmetry

Simultaneous analysis of all four FFs (A, J, D and Θ)

Connects FFs over full range of momentum transfers: time-like and spacelike data

• Connects to data from other processes ($\pi\pi$, $K\bar{K}$ and πN , KN scatterings...)

• Constraints from χ PT, pQCD

Model-independet extraction of nucleon radii based on broad theoretical and experimental input

Dispersive representations

• Crossing: space-like
$$\left\langle N(p') \left| T^{\mu\nu} \right| N(p) \right\rangle \Leftrightarrow \text{time-like} \left\langle N(p') \overline{N}(p) \left| T^{\mu\nu} \right| 0 \right\rangle$$

Take A(t) as an example

Nucleon sector:

 πN amplitudes $f_{\pm}^{0,2}$ from modern Roy-Steiner eq. analyses

C. Ditsche, et al., JHEP (2012); M. Hoferichter et.al., JHEP (2012); M. Hoferichter, et al., PRL 115, 092301(2015); PRL 115, 192301 (2015); Phys. Rept. (2016); PLB (2016); EPJA (2016); J. Ruiz de Elvira et.al., JPG (2018); M. Hoferichter, et al., PRL (2018); **XHC, et.al., JHEP (2022)**; M. Hoferichter, et al., PLB (2024)...

Gravitational form factors of pion

Meson sector: Im
$$A^{\pi}(t) = \rho_{\pi}(t) (t_2^0(t))^* A^{\pi}(t)$$

Single (D-wave) and couple (S-wave) channel Muskhelishvili-Omnes problem

$$\equiv \exp\left\{\frac{t}{\pi}\int_{4m_{\pi}^2}^{\infty}\frac{\mathrm{d}t'}{t'}\frac{\delta_2^0(t')}{t'-t'}\right\}$$

Match to $\chi PT O(p^4)$ result Donoghue & Leutwyler, (1991)

D-wave phase-shift from experiment

Dispersive Determination of Nucleon Gravitational Form Factors

Gravitational form factors of nucleon

Rigorous πN Roy-Steiner equation analysis

Muskhelishvili-Omnes formalism

- Unsubtracted dispersion relation: $A(t) = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} dt' \frac{\text{Im } A(t')}{t'-t}$
- Constraints:

Solutions: mass m_N , spin 1/2

 \Rightarrow sum rules saturated by $\pi\pi$, $K\bar{K}$ continuum and some higher mass states ($f_0(1500)\ldots; f_2(1565)\ldots$)

pQCD behavior for large momentum transfer (madule same lage);

Tanaka, (2018); Tong, et al. (2021) (2022)

$$\Rightarrow A(Q^2) \sim J(Q^2) \sim \Theta(Q^2) \sim \frac{1}{Q^2} \text{ and } D(Q^2) \sim \frac{1}{Q^2}$$

spacelike timelike Re t t $4m_{\pi}^2$

IIII

0000

Results: space-like GFFs

Nucleon gravitational form factors:

XHC

Results: D-term

Dispersive Determination of Nucleon Gravitational Form Factors

XHC

Dispersive Determination of Nucleon Gravitational Form Factors

Results: mechanical radius

Dispersive Determination of Nucleon Gravitational Form Factors

Summary and outlook

The unity of dispersive techniques and experiment data is powerful to investigate nucleon FF

Quantification of systematic and theoretical uncertainties

 \checkmark Predictions for various proton radii, $\langle r_{\text{Mass}}^2 \rangle > \langle r_{\text{Char}}^2 \rangle > \langle r_{\text{Mech}}^2 \rangle$

Pion-mass dependence of pion and nucleon GFFs (in progress)

□ Matching the results to χ PT ⇒ pure gravitational LECs c_8 and c_9 (in progress) Alharazin et al., (2020)

SD (static) and 2D (light-front) distributions (in progress) Lorcé et al., (2019)

Hyperon gravitational structure.....

