

兰州大学物理科学与技术学院

Isospin Violation Effect and Three-Body Decay of T_{cc}

孙志峰 10月21日

Z. F. Sun, N. Li, X. Liu, arXiv: 2405.00525

Outline

- Motivation
- The Isospin violation effect
- The three-body decay
- Summary

Motivation

> T_{cc} was observed in the final states: $D^0 D^0 \pi^+$

Mass and width:

- > Very close to the $D^0 D^{*+} / D^+ D^{*0}$ threshold
- > Good candidate of $D^0 D^{*+} / D^+ D^{*0}$ molecular state
- Isospin violation effect can not be neglected

 $m_{D^+D^{*0}} - m_{D^0D^{*+}} \sim 1.4 \text{ MeV} > \delta m$

To confirm the molecular explanation Three-body decay

Nature Phys. 18, 751 (2022) Nature Commun. 13, 3351 (2022)

Motivation

Our prediction in 2013:

PHYSICAL REVIEW D 88, 114008 (2013)

Coupled-channel analysis of the possible $D^{(*)}D^{(*)}$, $\bar{B}^{(*)}\bar{B}^{(*)}$ and $D^{(*)}\bar{B}^{(*)}$ molecular states

Ning Li,^{1,2,*} Zhi-Feng Sun,^{3,4,†} Xiang Liu,^{3,4,‡} and Shi-Lin Zhu^{1,5,6,§}

We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of $D^{(*)}D^{(*)}$ with double charm, $\bar{B}^{(*)}\bar{B}^{(*)}$ with double bottom, and $D^{(*)}\bar{B}^{(*)}$ with both charm and bottom, within the one-boson-exchange potential model. In our study, we take into account the *S*-*D* mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our results, the state $D^{(*)}D^{(*)}[I(J^P) = 0(1^+)]$ with double charm, the states $\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P) = 0(1^+), 1(1^+)]$, $(\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P = 1^+, 2^+]$ and $(\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P = 1^+, 2^+]$ with double bottom, and the states $D^{(*)}\bar{B}^{(*)}[I(J^P) = 0(1^+), 0(2^+)]$ with both charm and bottom might be good molecule candidates. However, the states $D^{(*)}D^{(*)}[I(J^P) = 0(2^+), 1(0^+), 1(1^+), 1(2^+)]$, $(D^{(*)}D^{(*)})_s[J^P = 0^+, 2^+]$ and $(D^{(*)}D^{(*)})_{ss}[J^P = 0^+, 1^+, 2^+]$ with double charm and bottom are not supported to be

Binding energy LHCb result of T_{cc} 273 (360) keV Our prediction 470 keV

						$D^{(*)}$	$D^{(*)}$			
Ι	J^P	OPE					OBE			
	0+		* * *				* * *			
0	1+	Λ (GeV)	1.05	1.10	1.15	1.20	0.95	1.00	1.05	1.10
		B.E. (MeV)	1.24	4.63	11.02	20.98	0.47	5.44	18.72	42.82
		M (MeV)	3874.61	3871.22	3864.83	3854.87	3875.38	3870.41	3857.13	3833.03
		$r_{\rm rms}$ (fm)	3.11	1.68	1.12	0.84	4.46	1.58	0.91	0.64
		P_1 (%)	96.39	92.71	88.22	83.34	97.97	92.94	85.64	77.88
		P_2 (%)	0.73	0.72	0.57	0.42	0.58	0.55	0.32	0.15
		$P_{3}(%)$	2.79	6.45	11.07	16.11	1.41	6.42	13.97	21.91
		P_4 (%)	0.08	0.13	0.14	0.13	0.04	0.09	0.08	0.05

Perfect *DD*^{*} molecular prediction matching the *T_{cc}* observation at LHCb

Motivation

Studies on double-charm tetraquark before LHCb's observation:

- E. Braaten, L. He, PRD 103, 016001 (2021)
- J. Cheng, S. Y. Li, Y. R. Liu, Z. G. SI, T. Yao, CPC 45 (2021) 043102
- R. Faustov, V. Galkin, E. M. Savchenko, Universe 7 (2021) 4, 94
- M. Z. Liu, J. J. Xie, L. S. Geng, PRD 102 (2020) 091502
- Q. F Lv, D. Y Chen, Y. B Dong, PRD 102034012 (2020)
- C. Deng, H. Chen, J. Ping, EPJA 56 (2020) 9
- P. Junnarkar, N. Mathur, and M. Padmanath, PRD 99 (2019) 034057
- W. park, S. Noh, S. Lee, NPA 983 (2019) 1
- Z. G. Wang, ACTA Physica Polonica B 49 (2018) 1781
- E. J. Eichten, and C. Quigg, PRL 119 (2017) 202002
- M. Karliner, J. L. Rosner, PRL 119 (2017) 202001

HAL QCD Collaboration, PLB 729 (2014) 85

G. Q. Feng, X. H. Guo, B. S. Zou, arXiv:1309.7813 (2013)

spontaneously breaking $[U(3)_L \otimes U(3)_R]_{global} \otimes [U(3)_V]_{local}$ symmetry

 π , *K*, η , η' as Goldstone bosons

 ρ , ω , K^* , ϕ as gauge bosons

Lagrangians \geq

$$\begin{split} \mathcal{L}_{P^{(*)}P^{(*)}M} &= -i\frac{2g}{f_{\pi}}\epsilon_{\alpha\mu\nu\lambda}v^{\alpha}P^{*\mu}\partial^{\nu}MP^{*\lambda^{\dagger}} - \frac{2g}{f_{\pi}}(P\partial^{\lambda}MP^{*\dagger}_{\lambda} + P^{*}_{\lambda}\partial^{\lambda}MP^{\dagger}), \\ \mathcal{L}_{P^{(*)}P^{(*)}V} &= -\sqrt{2}\beta g_{V}P(v\cdot\hat{\rho})P^{\dagger} - 2\sqrt{2}\lambda g_{V}\epsilon_{\lambda\mu\alpha\beta}v^{\lambda}(P\partial^{\alpha}\hat{\rho}^{\beta}P^{*\mu^{\dagger}} + P^{*\mu}\partial^{\alpha}\hat{\rho}^{\beta}P^{\dagger}) \\ &+ \sqrt{2}\beta g_{V}P^{\mu*}(v\cdot\hat{\rho})P^{*\dagger}_{\mu} - i2\sqrt{2}\lambda g_{V}P^{*\mu}(\partial_{\mu}\hat{\rho}_{\nu} - \partial_{\nu}\hat{\rho}_{\mu})P^{*\nu^{\dagger}} \\ \hat{\rho}^{\mu} &= \begin{pmatrix} \frac{p^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{p^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}^{\mu} \\ M &= \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta + \frac{\eta'}{\sqrt{3}} \end{pmatrix} \\ P &= (D^{0}, D^{+}, D^{*}_{s}) \qquad P^{*} = (D^{*0}, D^{*+}, D^{*+}_{s}) \end{split}$$

· P^(*)

light meson

Breit approximation:

$$V(\boldsymbol{q}) = -\frac{\mathcal{M}(\boldsymbol{q})}{4\sqrt{m_1m_2m_3m_4}}$$

Fourier transformation:

$$V(r) = \frac{1}{(2\pi)^3} \int d^3q e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}) F^2(\boldsymbol{q})$$

Monopole form factor:

$$F_M(q) = \frac{\Lambda^2 - m_{ex}^2}{\Lambda^2 - q_0^2 + q^2}$$
 suppress the amplitude
when m_{ex} is large

Exponential form factor is used in our work:

 $F(\boldsymbol{q}) = e^{(q_0^2 - \boldsymbol{q}^2)/\Lambda^2}$

> Potentials with exponential form factor:

$$Y(\Lambda,\mu,q_0,r) = \int \frac{d^3q}{(2\pi)^3} e^{iq \cdot r} \frac{1}{q^2 + \mu^2 - i\epsilon} e^{2(q_0^2 - q^2)/\Lambda^2} \\ = -\frac{e^{2q_0^2/\Lambda^2}}{(2\pi)^2 r} \frac{\partial}{\partial r} \left\{ \frac{\pi}{2\mu} \left[e^{-\mu r} + e^{\mu r} + e^{-\mu r} \operatorname{erf}\left(\frac{r\Lambda}{2\sqrt{2}} - \frac{\sqrt{2}\mu}{\Lambda}\right) - e^{\mu r} \operatorname{erf}\left(\frac{r\Lambda}{2\sqrt{2}} + \frac{\sqrt{2}\mu}{\Lambda}\right) \right] e^{2\mu^2/\Lambda^2} \right\}$$

$$U(\Lambda,\mu,q_0,r) = \int \frac{d^3q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \frac{1}{\mathbf{q}^2 - \mu^2 - i\epsilon} e^{2(q_0^2 - \mathbf{q}^2)/\Lambda^2}$$

$$= \frac{e^{2q_0^2/\Lambda^2}}{(2\pi)^2 r} \frac{\partial}{\partial r} \left\{ \pi \left[-\frac{1}{2i\mu} \left(e^{-i\mu r} \operatorname{erf}\left(\frac{r\Lambda}{2\sqrt{2}} - \frac{\sqrt{2}i\mu}{\Lambda}\right) - e^{i\mu r} \operatorname{erf}\left(\frac{r\Lambda}{2\sqrt{2}} + \frac{\sqrt{2}i\mu}{\Lambda}\right) \right) - \frac{i}{\mu} \cos(\mu r) \right] e^{-2\mu^2/\Lambda^2} \right\}$$

$$\begin{split} V_{V}^{D} &= \frac{1}{4}\beta^{2}g_{V}^{2}(\boldsymbol{\epsilon}_{1}\cdot\boldsymbol{\epsilon}_{3}^{\dagger})Y(\Lambda,m_{V},q_{0},r), \\ V_{V}^{C} &= 2\lambda^{2}g_{V}^{2}\left[\frac{2}{3}\boldsymbol{\epsilon}_{1}\cdot\boldsymbol{\epsilon}_{4}^{\dagger}\nabla^{2}Y(\Lambda,\tilde{m}_{V},q_{0},r)-\frac{1}{3}S(\hat{\boldsymbol{r}},\boldsymbol{\epsilon}_{1},\boldsymbol{\epsilon}_{4}^{\dagger})r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}Y(\Lambda,\tilde{m}_{V},q_{0},r)\right], \\ V_{p}^{C} &= \frac{g^{2}}{f_{\pi}^{2}}\left[\frac{1}{3}\boldsymbol{\epsilon}_{1}\cdot\boldsymbol{\epsilon}_{4}^{\dagger}\nabla^{2}Y(\Lambda,\tilde{m}_{p},q_{0},r)+\frac{1}{3}S(\hat{\boldsymbol{r}},\boldsymbol{\epsilon}_{1},\boldsymbol{\epsilon}_{4}^{\dagger})r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}Y(\Lambda,\tilde{m}_{p},q_{0},r)\right], \\ \tilde{V}_{p}^{C} &= \frac{g^{2}}{f_{\pi}^{2}}\left[\frac{1}{3}\boldsymbol{\epsilon}_{1}\cdot\boldsymbol{\epsilon}_{4}^{\dagger}\nabla^{2}U(\Lambda,\tilde{m}_{p}',q_{0},r)+\frac{1}{3}S(\hat{\boldsymbol{r}},\boldsymbol{\epsilon}_{1},\boldsymbol{\epsilon}_{4}^{\dagger})r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}U(\Lambda,\tilde{m}_{p}',q_{0},r)\right]. \end{split}$$

Discussion of the potentials

We first neglect the imaginary part, and discuss it later.

> $D^{*+}D^0$ Potentials with exponential and monopole form factors

Long range: >2 fm; Midium range: 0.3-2 fm; short range: <0.3 fm

Schrodinger equation

 $(\hat{K} + \hat{M} + \hat{V}) \Psi = E \Psi$ $\psi_{T_{cc}^{+}}^{T} = \left(\frac{u_{S}^{D^{*0}D^{+}}}{r} |^{3}S_{1}\rangle, \frac{u_{D}^{D^{*0}D^{+}}}{r} |^{3}D_{1}\rangle, \frac{u_{S}^{D^{*+}D^{0}}}{r} |^{3}S_{1}\rangle, \frac{u_{D}^{D^{*+}D^{0}}}{r} |^{3}D_{1}\rangle \right)$

- Probabilities with exponential and monopole form factors
 - P_S^{Mo} and P_S^{Ex} are almost the same
 - P_D^{Mo} is larger than P_D^{Ex}
- Numerical result
 - $\Lambda = 782 798$ MeV: binding energy 200.3 358.6 keV
 - $D^{*+}D^0$ component is dominant
 - S-wave contribution is dominant
 - Different choises of the FFs do not affect the result.

Λ	E	R _{rms}	$P_{D^{*0}D^+({}^3S_1)}$	$P_{D^{*0}D^+(^3D_1)}$	$P_{D^{*+}D^0({}^3S_1)}$	$P_{D^{*+}D^0(^3D_1)}$
782	200.3	6.7	23.9	0.1	75.7	0.2
786	236.2	6.2	25.3	0.1	74.3	0.2
790	274.5	5.7	26.6	0.1	73.0	0.2
794	315.3	5.4	27.8	0.1	71.9	0.2
798	358.6	5.1	28.9	0.1	70.7	0.2
(MeV) (keV)	(fm)	(%)	(%)	(%)	(%)

Representation transformation

$$\psi_{T_{cc}^{+}} = \begin{pmatrix} \frac{u_{S}^{D^{*0}D^{+}}}{r} | {}^{3}S_{1} \rangle \\ \frac{u_{D}^{D^{*0}D^{+}}}{r} | {}^{3}D_{1} \rangle \\ \frac{u_{S}^{D^{*+}D^{0}}}{r} | {}^{3}S_{1} \rangle \\ \frac{u_{D}^{D^{*+}D^{0}}}{r} | {}^{3}D_{1} \rangle \end{pmatrix} \xrightarrow{\psi_{T_{cc}^{+}}^{+}} \psi_{T_{cc}^{+}}^{+} = \begin{pmatrix} -\frac{u_{S}^{D^{*0}D^{+}} + u_{S}^{D^{*+}D^{0}}}{\sqrt{2}r} | {}^{3}S_{1} \rangle \\ -\frac{u_{D}^{D^{*0}D^{+}} + u_{D}^{D^{*+}D^{0}}}{\sqrt{2}r} | {}^{3}D_{1} \rangle \\ \frac{u_{D}^{D^{*0}D^{+}} - u_{S}^{D^{*+}D^{0}}}{r} | {}^{3}D_{1} \rangle \end{pmatrix}$$

The probabilities of isovector and isoscalar

$$\rho_{10} = \int dr \frac{\left[u_{S}^{D^{*0}D^{+}} + u_{S}^{D^{*+}D^{0}}\right]^{2} + \left[u_{D}^{D^{*0}D^{+}} + u_{D}^{D^{*+}D^{0}}\right]^{2}}{2} \longrightarrow \text{Isovector}$$

$$\rho_{00} = \int dr \frac{\left[u_{S}^{D^{*0}D^{+}} - u_{S}^{D^{*+}D^{0}}\right]^{2} + \left[u_{D}^{D^{*0}D^{+}} - u_{D}^{D^{*+}D^{0}}\right]^{2}}{2} \longrightarrow \text{Isoscalar}$$

• $\Lambda = 790 - 798 \text{ MeV}$: $\rho_{00} = 90.2\% - 92.2\%$, $\rho_{10} = 9.8\% - 7.8\%$

Isoscalar component is dominant

Three-body decay

Feynman diagrams of the three-body decays

The decay occur via one-boson exchange

- The molecular state is depicted by the wave function of the Schrodinger equation
- Only consider S-wave contribution

Three-body decay

The amplitudes of strong decay and radiative decay

$$\mathcal{M}_{T_{cc}^{+} \to \pi^{+} D^{0} D^{0}} = -\sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*0}} E_{D^{+}}}} \int_{0}^{\infty} drr j_{0}(k_{5}r) u_{S}^{D^{*0}D^{+}}(r) \mathcal{A}_{\rho^{-}}^{(a} - \sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*0}} E_{D^{+}}}} \int_{0}^{\infty} drr j_{0}(k_{4}r) u_{S}^{D^{*0}D^{+}}(r) \mathcal{A}_{\rho^{-}}^{(b)},$$

$$\mathcal{M}_{T_{cc}^{+} \to \pi^{0}D^{+}D^{0}} = -\sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*0}} E_{D^{+}}}} \int_{0}^{\infty} drr j_{0}(k_{5}r) u_{S}^{D^{*0}D^{+}}(r) \mathcal{A}_{\rho^{-}}^{(c)} - \sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*+}} E_{D^{0}}}} \int_{0}^{\infty} drr j_{0}(k_{4}r) u_{S}^{D^{*+}D^{0}}(r) \mathcal{A}_{\rho^{+}}^{(d)},$$

$$\mathcal{M}_{T_{cc}^{+} \to \gamma D^{+}D^{0}} = -\sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*0}} E_{D^{+}}}} \int_{0}^{\infty} drr j_{0}(k_{5}r) u_{S}^{D^{*0}D^{+}}(r) \mathcal{A}_{\rho^{-}}^{(e)} - \sqrt{\frac{2\pi m_{T_{cc}^{+}}}{E_{D^{*+}} E_{D^{0}}}} \int_{0}^{\infty} drr j_{0}(k_{4}r) u_{S}^{D^{*+}D^{0}}(r) \mathcal{A}_{\rho^{+}}^{(f)},$$

The widths of strong decay and radiative decay

$$\Gamma_{T_{cc}^{+} \to \pi^{+,0} D^{0,+} D^{0}} = \frac{1}{(2\pi)^{3}} \frac{1}{32m_{T_{cc}^{+}}^{3}} \int dm_{34}^{2} dm_{45}^{2} \frac{1}{3} \sum_{S_{z}^{T}} |\mathcal{M}_{T_{cc}^{+} \to \pi^{+,0} D^{0,+} D^{0}}|^{2} \frac{1}{S}$$

$$\Gamma_{T_{cc}^{+} \to \gamma D^{+} D^{0}} = \frac{1}{(2\pi)^{3}} \frac{1}{32m_{T_{cc}^{+}}^{3}} \int dm_{34}^{2} dm_{45}^{2} \frac{1}{3} \sum_{S_{z}^{T}, S_{z}^{\gamma}} |\mathcal{M}_{T_{cc}^{+} \to \gamma D^{+} D^{0}}|^{2}$$

Numerical results:

Λ (MeV)	782	786	790	794	798
Γ_R (keV)	0.7	0.8	0.9	0.9	1.0
Γ_S (keV)	17.3	18.6	19.9	21.2	22.4
Γ_{tot} (keV)	18.0	19.4	20.7	22.1	23.4

- ✓ mass difference of D^0 and D^+ leads to $\Gamma_{\pi^+ D^0 D^0} \neq \Gamma_{\pi^0 D^+ D^0}$
- The total decay width is close to the lower limit of the experimental value
- \checkmark The result suports the molecular explanation of T_{cc}

 $\delta m_U = -360 \pm 40^{+4}_{-0} \text{ keV}, \ \Gamma_U = 48 \pm 2^{+0}_{-14} \text{ keV}.$

Discussion

Using perturbation theory to deal with the imaginary part of potentials:

$$H_{ab}\psi_{b} = E\psi_{a}$$

$$\psi_{a} = \phi_{a0} + \phi_{a1} + \phi_{a2} + \cdots$$

$$E = E_{0} + E_{1} + E_{2} + \cdots$$

$$H_{ab} = H_{0} + H'_{ab}$$

$$H'_{ab} = \operatorname{Im}(V_{ab})$$

consider only the 1st order

$$E_1 = \int \phi_{a0}^* H'_{ab} \phi_{b0} dV.$$

• numerical result:

 $E_1 = -38.6i$ keV, i.e., $\Gamma = 77.2$ keV

• comparable with the experimental value:

$$\Gamma_U = 48 \pm 2^{+0}_{-14}$$
 keV.

Summary

- Our predicted binding energy of T_{cc} in 2013 is consistent with the LHCb's result (PRD 88 (2013) 114008)
- Isospin violation effect within one-boson-exchange model
 - We use the exponential FF, and get the analytic form of potentials
 - The probability of isoscalar component is about 91%, that of isovector component is about 9%

> We develop a method to calculate the three-body decays of T_{cc}

- mass difference of D^0 and D^+ leads to $\Gamma_{\pi^+ D^0 D^0} \neq \Gamma_{\pi^0 D^+ D^0}$
- The total decay width is close to the lower limit of the experimental value
- The result suports the molecular explanation of T_{cc}
- The imaginary part of potentials generate the width, but not affect the mass (up to the first order)

Z. F. Sun, N. Li, X. Liu, arXiv:2405.00525

