

Study of the structure near proton-antiproton threshold in $J/\psi \to \gamma 3(\pi^+\pi^-)$

Qin-He Yang

with Ling-Yun Dai.

School of Physics & Eletronics, Hunan University

2024年10月21日

Contents

Background

Theoretical framework

Results

Summary

J/ψ decay

- There is structure near $p\bar{p}$ threshold on the $\eta'\pi^+\pi^-$ invariant spectrum in $J/\psi \rightarrow \gamma \eta'\pi^+\pi^-$, the X(1835) was firstly discovered by BES. [Phys.Rev.Lett.95:262001(2005)]
- The anomalous structures near $p\bar{p}$ threshold were found in the processes $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, $J/\psi \rightarrow \gamma K^0_S K^0_S \eta$ and $J/\psi \rightarrow \gamma \phi$ by BESIII. [Phys.Rev.D 88(9):091502(2013), Phys.Rev.Lett.95:262001(2005), Phys.Rev.D 97(5):051101(2018)]
- The latest measurement for $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ was performed by BESIII. [Phys.Rev.Lett.132(15):151901(2024)]
 - Higher statistics and more precision.
 - X(1880) and X(1835) are reported.

Threshold effect

The threshold enhancement effect:

■ The enhancement effect of cross section, for example the processes of $e^+e^- \rightarrow p\bar{p}/n\bar{n}$, $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$, $J/\psi \rightarrow \gamma p\bar{p}$ and etc, can be described by final-state interaction.

Phys.Lett.B 761:456-461(2016)
 J.Haidenbauer, X.-W. Kang Nucl.Phys.A929:102-118(2014)
 J.Haidenbauer Phys.Rev.D103(1):014028(2021)
 X. Cao Phys.Rev.D105(7):L071503(2022)
 C. Chen, J.J.Xie Chin.Phys.Lett.41(2):021302(2024)
 R.-Q. Qian, X.Liu Phys.Rev.D107(9):L091502(2023)

L.-Y. Dai Phys.Rev.D96(11):116001(2017)

Threshold effect

Anomalous behaviors around the threshold

- For example there are kinks near the threshold for the processes of $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$, $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ and $J/\psi \rightarrow \gamma \phi$.
- X.-W. Kang Phys.Rev.D91(7):074003(2015)
 J. P. Dedonder Phys.Rev.C97(6):065026(2018)
 A.I. Milstein Nucl.Phys.A966:54-63(2017)
 L.-Y.Dai Phys.Rev.D98(1):014005(2018)

For $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- Can anomalous behaviors around the threshold for $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ be described by threshold effect?
- Can other partial wave described more better than ${}^{1}S_{0}$ partial wave?

[L.Y.Dai Phys.Rev.D98(1):014005(2018), Q.H.-Yang Phys.Rev.D107(3):034030(2023)]

$N\bar{N}$ scattering

The Feynman diagram for $J/\psi \to \gamma 3 (\pi^+\pi^-)$

Lippmann-Schwinger equation

$$T_{L''L'}(p'',p';E_k) = V_{L''L'}(p'',p') + \sum_L \int \frac{dpp^2}{(2\pi)^3} V_{L''L}(p'',p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}(p,p';E_k)$$

 $V_{L^{\prime\prime}L^{\prime}}(p^{\prime\prime},p^{\prime})$ is SU(2) interaction potential. For single channel $L^{\prime\prime}=L^{\prime}=L$

The Feynman diagram of $N\bar{N}$ scattering up to N³LO

- Meson exchange potential: one pion, two pion and three pion exchange;
- Contact potential;
- Annihilation potential.

Regulation

Meson exchange potential

- Transform to position space by Fourier transformation
- Regulating in position space by following function

$$f(r) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^6$$

where the cut-off are took R=0.9,1.0,1.1 fm

Transform to momentum space by inverse Fourier transformation

Contact and annihilation potential

Regulating in momentum space by following function

$$f(p',p) = \exp\left(-\frac{p'^2 + p^2}{\Lambda^2}\right)$$

where the cut off $\Lambda=2R^{-1}$

Two step DWBA

The amplitude of $J/\psi \to \gamma 3(\pi^+\pi^-)$ can be obtained through solving the following set of couple equations

$$\begin{split} F_{J/\psi \to \gamma 3(\pi^+\pi^-)}(Q) &= A^0_{J/\psi \to \gamma 3(\pi^+\pi^-)}(Q) + \int_0^\infty \frac{\mathrm{d}kk^2}{(2\pi)^3} \\ F_{J/\psi \to \gamma N\bar{N}}(E_k) \frac{1}{Q - 2E_k + i\epsilon} V_{N\bar{N} \to 3(\pi^+\pi^-)}(k) \,, \\ F_{N\bar{N} \to 3(\pi^+\pi^-)}(Q) &= V_{N\bar{N} \to 3(\pi^+\pi^-)}(p) + \int_0^\infty \frac{\mathrm{d}kk^2}{(2\pi)^3} \\ T_{N\bar{N} \to N\bar{N}}(p,k;E_k) \frac{1}{2E_k - Q + i\epsilon} V_{N\bar{N} \to 3(\pi^+\pi^-)}(k) \,. \end{split}$$

The transition Born amplitude $A^0_{J/\psi\to\gamma3(\pi^+\pi^-)}$ and annihilation potential $V_{N\bar{N}\to3(\pi^+\pi^-)}$

$$V_{N\bar{N}\to3(\pi^{+}\pi^{-})}(p) = \tilde{C}_{N\bar{N}\to3(\pi^{+}\pi^{-})} + C_{N\bar{N}\to3(\pi^{+}\pi^{-})}p^{2},$$

$$A^{0}_{J/\psi\to\gamma3(\pi^{+}\pi^{-})}(Q) = \tilde{C}_{J/\psi\to\gamma3(\pi^{+}\pi^{-})} + C_{J/\psi\to\gamma3(\pi^{+}\pi^{-})}Q,$$

The decay rate and cross section

The Lorentz invariant amplitudes $\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)}$ and $\mathcal{M}_{p\bar{p}\to 3(\pi^+\pi^-)}$

$$\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)} = -32\pi^{\frac{7}{2}} \sqrt{E_{\gamma} E_{J/\psi} E_1 E_2 E_3} F_{J/\psi},$$

$$\mathcal{M}_{N\bar{N} \to 3(\pi^+\pi^-)} = -32\pi^{\frac{7}{2}} E_N \sqrt{E_1 E_2 E_3} F_{N\bar{N}}.$$

In order to simplify phase integration, $\pi^+\pi^-$ regard as a whole. $E_i(i = 1, 2, 3)$ denote the energy of three ($\pi^+\pi^-$) in the final state. The decay rate and cross section

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}Q} &= \int_{\beta(Q)} \mathrm{d}t_1 \mathrm{d}t_2 \frac{(m_{J/\psi}^2 - Q^2) |\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)}|^2}{6144 \tilde{N} \pi^5 m_{J/\psi}^3 Q} \,, \\ \sigma(Q) &= \int_{\beta(Q)} \mathrm{d}t_1 \mathrm{d}t_2 \frac{|\mathcal{M}_{p\bar{p} \to 3(\pi^+\pi^-)}|^2}{1024 \tilde{N} \pi^3 Q^3 \sqrt{Q^2 - 4m_p^2}} \,. \end{aligned}$$

where Q is both the invariant mass $M_{3(\pi^+\pi^-)}$ and the center-mass energy of $N\bar{N}$.

The model parameters

The LECs \tilde{C}_i , C_i and D_i in contact potential, and \tilde{C}_i^a , C_i^a and D_i^a in annihilation potential

$$V({}^{1}S_{0}) = \tilde{C}_{{}^{1}S_{0}} + C_{{}^{1}S_{0}}(p^{2} + p'^{2}) + D_{{}^{1}S_{0}}^{1}p^{2}p'^{2} + D_{{}^{1}S_{0}}^{2}(p^{4} + p'^{4})$$

$$V_{\text{ann}}({}^{1}S_{0}) = -i(\tilde{C}_{{}^{1}S_{0}}^{a} + C_{{}^{1}S_{0}}^{a}p^{2} + D_{{}^{1}S_{0}}^{a}p'^{4})(\tilde{C}_{{}^{1}S_{0}}^{a} + C_{{}^{1}S_{0}}^{a}p'^{2} + D_{{}^{1}S_{0}}^{a}p'^{4})$$

They are took the results from L.-Y.Dai JHEP07(2017)

- $\tilde{C}_i, C_i \text{ in transition Born amplitude } A^0_{J/\psi \to \gamma 3(\pi^+\pi^-)} \text{ and annihilation potential } V_{N\bar{N} \to 3(\pi^+\pi^-)}$
- Some normalization factor.

The partial wave

The partial wave and quantum number for $p\bar{p}$ system ($P = (-1)^{L+1}, C = (-1)^{L+S}$)

J = 0		${}^{1}S_{0}(0^{-+})$	${}^{3}P_{0}(1^{++})$	
J = 1	$^{1}P_{1}(1^{+-})$	${}^{3}P_{1}(1^{++})$	${}^{3}S_{1}(1^{})$	$^{3}D_{1}(1^{})$
J=2	$^{1}D_{2}(2^{-+})$	$^{3}D_{2}(2^{})$	${}^{3}P_{2}(1^{++})$	•••

The quantum number of both J/ψ and γ : $J^{PC} = 1^{--}$.

The allowed partial wave of $3(\pi^+\pi^-)$ and $p\bar{p}$ system:

- \blacksquare ${}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{1}D_{2}, {}^{3}P_{2};$
- Higher partial wave are ignored.

The fitting for isospin I = 0, 1 are considered.

The fitting results for *R*=0.9 fm

Better fits

 $I = 0: {}^{3}P_{1};$ $I = 1: {}^{3}P_{0}, {}^{3}P_{1}$

The fitting results for *R*=1.0 fm

Better fits

$$I = 0: {}^{1}S_{0}, {}^{3}P_{1}, {}^{1}D_{2};$$
$$I = 1: {}^{3}P_{0}, {}^{3}P_{1}.$$

The fitting results for *R*=1.1 fm

Better fits

$$I = 0: {}^{1}S_{0}, {}^{3}P_{1};$$
$$I = 1: {}^{3}P_{1};$$

 χ^2/N

			${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{1}D_{2}$	${}^{3}P_{2}$
R=0.9	χ^2/N	I = 0	1.86	12.84	2.15	2.06	1.94
		I = 1	1.35	3.07	2.18	2.03	2.22
		I = 0	0.93	3.40	0.69	0.02	11.27
		I = 1	24.08	1.04	2.04	0.04	0.79
		I = 0	10.33	2.05	8.81	12.18	9.60
		I = 1	17.38	5.67	8.31	10.99	11.61
R=1.0	χ^2/N	I = 0	1.86	13.06	2.00	2.02	3.21
		I = 1	1.49	3.63	2.23	1.96	2.23
		I = 0	0.66	3.41	0.66	0.04	13.19
		I = 1	19.44	0.89	1.98	0.07	0.81
		I = 0	6.70	2.06	8.87	11.78	9.49
		I = 1	12.51	6.88	7.97	10.63	11.45
R=1.1	χ^2/N	I = 0	1.85	12.73	1.93	2.00	5.05
		I = 1	1.64	4.25	2.28	1.94	2.25
		I = 0	0.36	4.10	0.76	0.05	16.17
		I = 1	19.00	0.87	2.10	0.10	0.81
		I = 0	3.58	2.02	8.70	11.33	9.58
		I = 1	8.56	10.62	7.69	10.17	11.38

The partial wave for best fit: ${}^{3}P_{1}(I = 1, 0)$.

Summary

- The amplitudes of the processes $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, $J/\psi \rightarrow \gamma p\bar{p}$ and $p\bar{p} \rightarrow 3(\pi^+\pi^-)$ are obtained through solving LS equation and a set of couple equation of DWBA;
- Fitting the $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ latest measurement results, analysing the results of different partial wave.
- The latest data can be described very well by threshold effect, the partial wave ${}^{3}P_{1}(I = 1, 0)$ give the best fitting.

Thank you for your patience!