非淬火图像下粲重子和粲奇异介子的 谱学和电磁衰变研究

报告人:张紫乐 导师:刘占伟教授 兰州大学

2024年10月18日-2024年10月22日 湖南·长沙

第九届手征有效场论研讨会

- 一. 研究背景
- 二. A_c(2910)和A_c(2940)的谱学研究
- 三. D^{*}_{s0}(2317)和D'_{s1}(2460)的谱学和电磁衰变研究

四. 总结

 $\Lambda_{c}(2940) 和 \Lambda_{c}(2910) 的发现$

一、 $\Lambda_c(2940)$ 和 $\Lambda_c(2910)$ 的谱学

		κ <u></u> ι _		12410-1	
$J^P(nL)$	Exp. [1]	This work	Ref. [9]	Ref. [50]	Ref. [51]
$\frac{1}{2}^+(1S)$	2286.86	2286	2286	2286	2265
$\frac{1}{2}^{+}(2S)$	2766.6	2766	2769	2791	2775
$\frac{1}{2}^{+}(3S)$		3112	3130	3154	3170
$\frac{1}{2}^{+}(4S)$		3397	3437		
$\frac{1}{2}^{-}(1P)$	2592.3	2591	2598	2625	2630
$\frac{3}{2}^{-}(1P)$	2628.1	2629	2627	2636	2640
$\frac{1}{2}^{-}(2P)$	2020-2	2989	2983		[2780]
$\frac{3}{2}^{-}(2P)$	2939.3	3000	3005		[2840]
$\frac{1}{2}^{-}(3P)$		3296	3303		[2830]
$\frac{3}{2}^{-}(3P)$		3301	3322		[2885]
$\frac{3}{2}^{+}(1D)$		2857	2874	2887	2910
$\frac{5}{2}^{+}(1D)$	2881.53	2879	2880	2887	2910
$\frac{3}{2}^{+}(2D)$		3188	3189	3120	3035
$\frac{5}{2}^{+}(2D)$		3198	3209	3125	3140
$\frac{5}{2}^{-}(1F)$		3075	3097	[2872]	[2900]
$\frac{7}{2}^{-}(1F)$		3092	3078		3125
$\frac{7}{2}^{+}(1G)$		3267	3270		3175
$\frac{9}{2}^+(1G)$		3280	3284		

传统垫模型下Λ+ 重子谱学预测

Eur. Phys. J. A 51, 82 (2015)

- 1. 已发现的大部分 Λ_c 重子可以通过传统势模型描述得很好;
- Λ_c(2940)的实验值要比传统强子谱预言低70MeV 左右;
- 3. Λ_c(2910)在强子谱中的位置尚不明确。
 - ▶ 传统强子

Phys. Rev. D 106, 074020解释Λ_c(2910)作 为1P态的ρ模激发.....

▶ 分子态

.

▶

Phys. Rev. D 101 (2020) 9, 094035 Phys. Rev. D 82, 114029

➢ 裸核+S波强子道耦合

Eur. Phys. J. C 80 (2020) 4, 301

第九届手征有效场论研讨会

 $D_{s0}^{*}(2317) 和 D_{s1}^{\prime}(2460) 的发现$

 $m_{D_{s0}^*}(2317) = 2317.7 \pm 0.5 \text{ MeV},$ $\Gamma_{D_{s0}^*}(2317) < 3.8 \text{ MeV},$ $m_{D_{s1}'}(2460) = 2459.5 \pm 0.6 \text{ MeV},$ $\Gamma_{D_{s1}'}(2460) < 3.5 \text{ MeV}.$

 $D_{s0}^{*}(2317) 和 D_{s1}^{\prime}(2460)$ 的谱学

Phys. Rev. Lett. 128 (2022) 11, 112001

- 实验上发现的D_s态大多数可以通过传统势模 型描述的很好;
- D^{*}_{s0}(2317)和D'_{s1}(2460)的理论质量比传统 强子谱预言低100MeV左右。
 - ▶ 势模型
 Phys. Rev. D 91, 054031 (2015)
 Phys. Rev. D 105, no.7, 074037 (2022)

 ▶ 分子态
 Phys. Rev. D 68, 054006 (2003)
 Phys. Rev. D 76, 074016 (2007)

 ▶ 多夸克态
 Phys. Rev. Lett. 93, 232001 (2004)

 ▶ 裸核+S波强子道
 Phys. Rev. Lett. 128 (2022) 11, 112001

.

.

存在低质量问题的强子态

几个具有低质量问题强子的实验质量(红色点)与对应裸质量(蓝色实线)的比较

- ▶ 在耦合道框架下,进一步引入强子道自相互作用去理解D^{*}_{s0}(2317), D'_{s1}(2460), Λ_c(2940);
- ▶ 新发现的A_c(2910)如何解释?
- ▶ 除了谱学,强子衰变研究是理解强子结构很重要的方面。

二、 $\Lambda_c(2910)$ 和 $\Lambda_c(2940)$ 的谱学研究

Based on Zi-Le Zhang et al., $\Lambda_c(2910)$ and $\Lambda_c(2940)$ as conventional baryons dressed with the D^*N channel, Phys.Rev.D 107 (2023) 3, 034036.

□ 理论框架

非淬火图像下,强子的裸态可以和相应强子道耦合,引起 强子的质量移动,强子物理态波函数可以写为

 $|\Psi\rangle = c_0 |\Psi_0\rangle + \int \mathrm{d}^3 \mathbf{p} \chi_{BC}(\mathbf{p}) |BC, \mathbf{p}\rangle$

这里, |Ψ₀)是裸态**udc**核, c₀是裸核的几率振幅; |BC, **p**)是强子道**D**^{*}N, χ_{BC}(**p**)是强子道**D**^{*}N的波函数;

同时哈密顿量定义为

得到耦合道方程:

$$\hat{H} = \hat{H}_0 + \hat{H}_I + \hat{H}_{BC}$$

裸态和强

 \hat{H}_0 只对裸态| Ψ_0 〉起作用, \hat{H}_{BC} 描述 $D^*N - D^*N$ 的相互作用, \hat{H}_I 连接裸态和强子道的跃迁哈密顿量。

方程的求解: 高斯展开法
$$\chi_{BC}(\mathbf{p}) = \sum_{i=1}^{N_{max}} C_{il}\phi_{ilm}^{p}(\mathbf{p})$$

 $\phi_{nlm}^{r}(\nu_{n}, \mathbf{r}) = N_{nl}r^{l}e^{-\nu_{n}r^{2}}Y_{lm}(\hat{\mathbf{r}})$ $\phi_{nlm}^{p}(\nu_{n}, \mathbf{p}) = (-i)^{l}\phi_{nlm}^{r}\left(\frac{1}{4\nu_{n}}, \mathbf{p}\right)$
 $v_{n} = 1/r_{n}^{2},$ $r_{n} = r_{1}a^{n-1}$ $(n = 1, 2...N_{max})$

所以哈密顿量对应的矩阵元可以写为

$$T_{fi} = \int d^{3}\mathbf{p}' \phi_{flm}^{p*}(\nu_{f}, \mathbf{p}') E_{BC}(\mathbf{p}') \phi_{ilm}^{p}(\nu_{i}, \mathbf{p}'),$$

$$\mathcal{M}_{fi} = \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \frac{H_{\Psi_{0} \to BC}^{*}(\mathbf{p}) H_{\Psi_{0} \to BC}(\mathbf{p}')}{M - M_{0}}$$

$$\times \phi_{flm}^{p*}(\nu_{f}, \mathbf{p}') \phi_{ilm}^{p}(\nu_{i}, \mathbf{p}),$$

$$V_{fi} = \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \phi_{flm}^{p*}(\nu_{f}, \mathbf{p}') V_{BC \to BC}(\mathbf{p}, \mathbf{p}') \phi_{ilm}^{p}(\nu_{i}, \mathbf{p}),$$

$$N_{if} = \int d^{3}\mathbf{r}' \phi_{flm}^{r*}(\nu_{f}, \mathbf{r}') \phi_{ilm}^{r}(\nu_{i}, \mathbf{r}').$$

强子
道的
自由
部分
$$+E_{BC}(\mathbf{p}')\chi_{BC}(\mathbf{p}') = M\chi_{BC}(\mathbf{p}').$$

效势 $N_{if} = \int d^{\circ}\mathbf{r} \, \phi_{flm}^{*}(\nu_{f},\mathbf{r}) \phi_{ilm}^{*}(\nu_{i},\mathbf{r}').$
本征值方程 $\sum_{i=1}^{N_{max}} C_{il}(T_{fi} + \mathcal{M}_{fi} + V_{fi}) = M \sum_{i=1}^{N_{max}} C_{il}N_{fi}.$

强子-强子有

□裸质量和相应的波函数:传统势模型

$$H|\Psi_{JM}
angle=E|\Psi_{JM}
angle$$

$$\begin{split} H &= \sum_{i=1}^{3} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(\mathbf{r}) \\ V_{ij} &= H_{ij}^{\text{conf}} + H_{ij}^{\text{hyp}} + H_{ij}^{\text{so}(\text{cm})} + H_{ij}^{\text{so}(\text{tp})} \\ H_{ij}^{\text{conf}} &= -\frac{2\alpha_s}{3r_{ij}} + \frac{b}{2}r_{ij} + \frac{1}{2}C \\ H_{ij}^{\text{hyp}} &= \frac{2\alpha_s}{3m_im_j} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij})\mathbf{s}_i \cdot \mathbf{s}_j + \frac{1}{r_{ij}^3} S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) \right] \\ H_{ij}^{\text{so}(\text{cm})} &= \frac{2\alpha_s}{3r_{ij}^3} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_i - \mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_j}{m_i m_j} \right) \\ H_{ij}^{\text{so}(\text{tp})} &= -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\text{conf}}}{\partial r_{ij}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} \right). \\ \tilde{\delta}(r) &= \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2 r^2} \quad S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) = \frac{3\mathbf{s}_i \cdot \mathbf{r}_{ij} \mathbf{s}_j \cdot \mathbf{r}_{ij}}{r_{ij}^2} - \mathbf{s}_i \cdot \mathbf{s}_j \end{split}$$

Phys. Rev. D 108 (2023) 3, 034002

□裸核和强子道的耦合: QPC模型

QPC模型的算符为

$$\hat{\mathcal{T}} = -3\gamma \sum_{m} \langle 1, m; 1, -m | 0, 0 \rangle \int d^{3} \mathbf{p}_{i} d^{3} \mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j})$$

$$\times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2} \right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{1,-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j}).$$

裸核到强子-强子道的跃迁振幅可以写为

$$M^{SL}_{A\to BC}(p) = \langle BC, S, L, p | \hat{\mathcal{T}} | A \rangle,$$

γ值: 重现Σ_c(2520)的宽度,最终被确定为9.45。

裸的
$$\Lambda_{c}(2P)$$
耦合到S波 $D^{*}N$ 的跃迁振幅:

$$H_{\Lambda_{c}^{\text{bare}}(2P,1/2^{-}) \rightarrow D^{*}N}(\mathbf{p}) = \langle D^{*}N, \mathbf{p} | \hat{H}_{I} | \Lambda_{c}^{\text{bare}}(2P,1/2^{-}) \rangle$$

$$\mathcal{M}_{fi} = \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \frac{H_{\Psi_{0} \rightarrow BC}^{*}(\mathbf{p})H_{\Psi_{0} \rightarrow BC}(\mathbf{p}')}{M - M_{0}}$$

$$\mathcal{M}_{fi} = \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \frac{H_{\Psi_{0} \rightarrow BC}^{*}(\mathbf{p})H_{\Psi_{0} \rightarrow BC}(\mathbf{p}')}{M - M_{0}}$$

$$\times \phi_{flm}^{p*}(\nu_{f}, \mathbf{p}')\phi_{ilm}^{p}(\nu_{i}, \mathbf{p}),$$

 $\square D^*N$ 手征有效势

计算方法: 手征有效场理论;

手征有效场理论:低能有效场理论,研究对象为强子,最初广泛应用于NN系统,并获得了极大的成功。 **在重强子系统的应用**:重夸克对称性,简化计算。

Phys. Rev. D 101 (2020) 9, 094035

□ D*N手征有效势:数值结果

▶ D*N 0(1/2⁻):单π和双π提供排斥作用,吸引作用主要由接触项提供;

 $> D^*N 0(3/2^-): 单\pi 和接触项提供吸引作用, 双\pi提供排斥作用。$

口计算结果

引入非淬火效应前后 $\Lambda_c(2P, 1/2^-)$ 和 $\Lambda_c(2P, 3/2^-)$ 的质量比较

淬火;非淬火不考虑D*N相互作用;非淬火考虑D*N相互作用的结果

Cases	Quenched	picture	Unquenched	picture without I	D*N interaction	Unquenched picture with D^*N interaction		
$\overline{J^P}$	M_0 (M	eV)	M (MeV)	$r_{\rm RMS}$ (fm)	P(udc) (%)	M (MeV)	r _{RMS} (fm)	P(udc) (%)
$1/2^{-}$	Ref. [3]	2989	2974	×	×	2936	1.93	16.2
$3/2^{-}$		3000	2933	1.67	39.7	2908	1.31	29.4
$1/2^{-}$	Ref. [13]	2980	2955	×	×	2934	1.83	21.9
$3/2^{-}$		3004	2935	1.74	37.0	2909	1.31	27.9
$1/2^{-}$	Ref. [2]	2983	2962	×	×	2935	1.87	19.8
$3/2^{-}$		3005	2935	1.76	36.3	2909	1.32	27.5
$1/2^{-}$	Ref. [46]	2996	2985	×	×	2937	2.00	13.4
$3/2^{-}$		3012	2937	1.95	31.4	2911	1.33	25.2
$1/2^{-}$	Ref. [4]	3030	3036	×	×	2940	2.32	5.08
3/2-		3035	2943	2.93	15.8	2916	1.38	18.7

Quenched	Unquenched	Experimental
picture	picture	value

- Λ_c(2P,3/2⁻)的质量移动比Λ_c(2P,1/2⁻)更强;
- 引入D*N相互作用后,两个态的裸质量下移至2911 MeV和2937 MeV,分别对应Λ_c(2910)和Λ_c(2940)实验值;
- ●非淬火图像下,两个Λ_c(2P)态出现质量反转现象,这种质量反转在N(1535)1/2⁻和N(1520)3/2⁻中出现;
- ●物理态是裸态和D*N的混合,有显著的D*N成分。

三、 D_{s0}^* (2317)和 D_{s1}' (2460)的谱学和电磁衰变研究

Based on Zi-Le Zhang et al., Masses and radiative decay widths of the $D_{s0}^*(2317)$ and $D_{s1}'(2460)$ and their bottom analogs, arXiv: 2409. 05337 [hep-ph].

$\square D_{s0}^*$ (2317)和 D_{s1}' (2460)的谱学:理论框架

 $D'_{s1}(2460) 涉及到两个裸核, 对应的物理态表示为$ $|\Psi\rangle = c_{\alpha_1} |\Psi_{\alpha_1}\rangle + c_{\alpha_2} |\Psi_{\alpha_2}\rangle + \int d^3 \mathbf{p} \, \phi_{BC}(\mathbf{p}) |BC, \mathbf{p}\rangle$

这里, $|\Psi_{\alpha 1}\rangle$ 和 $|\Psi_{\alpha 2}\rangle$ 分别是裸的 $|c\bar{s}, 1^+, j_l = \frac{1}{2}$ 核和裸的 $|c\bar{s}, 1^+, j_l = \frac{3}{2}$, $c_{\alpha 1}$ 和 $c_{\alpha 2}$ 分别是对应的裸核几率振幅;

 $|BC, \mathbf{p}\rangle$ 是强子道 D^*K , $\phi_{BC}(\mathbf{p})$ 是强子道 D^*K 的波函数;

哈密顿量为

$$\hat{H} = \hat{H}_0 + \hat{H}_I + \hat{H}_{BC},$$

 \hat{H}_0 只对裸态 $|\Psi_{\alpha 1}\rangle$ 和 $|\Psi_{\alpha 2}\rangle$ 起作用, \hat{H}_{BC} 只对强子道 $|BC, \mathbf{p}\rangle$ 起作用, \hat{H}_I 连接裸核和强子道的跃迁哈密顿量。

$$E_{BC}(\mathbf{p})\phi_{BC}(\mathbf{p}) + \int d^{3}\mathbf{p}'\phi_{BC}(\mathbf{p}') \Big[V_{BC\to BC}(\mathbf{p}, \mathbf{p}') \\ + H_{\alpha_{1}\to BC}(\mathbf{p}) \Big(d_{1}H^{*}_{\alpha_{1}\to BC}(\mathbf{p}') + d_{2}H^{*}_{\alpha_{2}\to BC}(\mathbf{p}') \Big) \\ + H_{\alpha_{2}\to BC}(\mathbf{p}) \Big(d_{2}H^{*}_{\alpha_{1}\to BC}(\mathbf{p}') + d_{3}H^{*}_{\alpha_{2}\to BC}(\mathbf{p}') \Big) \Big]$$

= $M\phi_{BC}(\mathbf{p}).$

方程的求解: 高斯展开法

$$\chi_{BC}(\mathbf{p}) = \sum_{i=1}^{N_{max}} C_{il}\phi_{ilm}^{p}(\mathbf{p})$$

$$T_{fi} = \int d^{3}\mathbf{p}'\phi_{flm}^{p*}(v_{f},\mathbf{p}')E_{BC}(\mathbf{p}')\phi_{ilm}^{p}(v_{i},\mathbf{p}'),$$

$$\mathcal{M}_{fi} = \int d^{3}\mathbf{p}'d^{3}\mathbf{p} \Big[H_{\alpha_{1}\to BC}(\mathbf{p}')\Big(d_{1}H_{\alpha_{1}\to BC}^{*}(\mathbf{p}) + d_{2}H_{\alpha_{2}\to BC}^{*}(\mathbf{p})\Big) + H_{\alpha_{2}\to BC}(\mathbf{p}')$$

$$\times \Big(d_{2}H_{\alpha_{1}\to BC}^{*}(\mathbf{p}) + d_{3}H_{\alpha_{2}\to BC}^{*}(\mathbf{p})\Big)\Big]$$

$$\times \phi_{flm}^{p*}(v_{f},\mathbf{p}')\phi_{ilm}^{p}(v_{i},\mathbf{p}),$$

$$V_{fi} = \int d^{3}\mathbf{p}'d^{3}\mathbf{p}\phi_{flm}^{p*}(v_{f},\mathbf{p}')V_{BC\to BC}(\mathbf{p},\mathbf{p}')\phi_{ilm}^{p}(v_{i},\mathbf{p}),$$

$$N_{fi} = \int d^{3}\mathbf{r}'\phi_{flm}^{r*}(v_{f},\mathbf{r}')\phi_{ilm}^{r}(v_{i},\mathbf{r}').$$

$$\sum_{i=1}^{N_{max}} C_{il}(T_{fi} + \mathcal{M}_{fi} + V_{fi}) = M \sum_{i=1}^{N_{max}} C_{il} N_{fi}$$

$\square D_{s0}^*(2317) \square D_{s1}'(2460)$ 的谱学:理论框架

□裸质量和相应的波函数:传统势模型

$$\begin{aligned} H |\Psi_{JM}\rangle &= E |\Psi_{JM}\rangle \\ \hat{H}_0 &= \sum_{i=1} \left(m_i + \frac{p_i^2}{2m_i} \right) + \sum_{i < j} V_{ij}, \\ V_{ij} &= H_{ij}^{\text{conf}} + H_{ij}^{\text{hyp}} + H_{ij}^{\text{so}(\text{cm})} + H_{ij}^{\text{so}(\text{tp})} \\ H_{ij}^{\text{conf}} &= -\frac{2\alpha_s}{3r_{ij}} + \frac{b}{2}r_{ij} + \frac{1}{2}C \\ H_{ij}^{\text{hyp}} &= \frac{2\alpha_s}{3m_im_j} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j + \frac{1}{r_{ij}^3} S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) \right] \\ H_{ij}^{\text{so}(\text{cm})} &= \frac{4\alpha_s}{3r_{ij}^3} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \left(\frac{\mathbf{s}_i}{m_i} + \frac{\mathbf{s}_j}{m_j} \right) \cdot \mathbf{L} \\ H_{ij}^{\text{so}(\text{tp})} &= -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\text{conf}}}{\partial r_{ij}} \left(\frac{\mathbf{s}_i}{m_i^2} + \frac{\mathbf{s}_j}{m_j^2} \right) \cdot \mathbf{L} \end{aligned}$$

□ 裸核和中间态的耦合: QPC模型

$$\begin{aligned} \hat{\mathcal{T}} &= -3\gamma \sum_{m} \langle 1, m; 1, -m | 0, 0 \rangle \int d^{3} \mathbf{p}_{i} d^{3} \mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j}) \\ &\times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2} \right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{1,-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j}). \\ M_{A \to BC}^{SL}(p) &= \langle BC, S, L, p | \hat{\mathcal{T}} | A \rangle \end{aligned}$$

□ 强子-强子相互作用: 基于有效拉氏量的有效场理论

- 1、根据有效拉氏量得到费曼振幅;
- 2、布雷特近似得到动量空间有效势;
- 3、傅里叶变换获得坐标空间的有效势。

$D_{s0}^{*}(2317) 和 D'_{s1}(2460)$ 的谱学:计算结果

▶ 裸质量

Core	M_0	M_1	M_2	M'
cs	2447	2537	2526	4
$sar{b}$	5821	5862	5861	2

*M*₀: *D*^{*}_{s0}(2317)对应的裸质量;

 $M_1: D'_{s1}(2460)$ 对应的 $j_l = 1/2$ 的裸质量; $M_2: D'_{s1}(2460)$ 对应的 $j_l = 3/2$ 的裸质量。

> QPC模型中的参数γ值

根据解裸质量得到的波函数,获得裸核到强子道的跃 迁振幅,通过拟合*D*^{*}₅₂(2573)的总宽度,拟合为5.7。 再进一步得到我们所要求的跃迁振幅

▶ D*K相互作用势

$D_{s0}^{*}(2317) 和 D'_{s1}(2460)$ 的谱学:计算结果

引入非淬火效应前后 $D_{s0}^*(1P)$ 和 $D_{s1}'(1P)$ 态的质量比较

裸质量(绿色点线)

非淬火图像不考虑D^(*)K-D^(*)K相互作用(蓝色点线) 非淬火图像考虑D^(*)K-D^(*)K相互作用(红色实线) 实验值(**黑色点**)

- ▶ 引入D^(*)K-D^(*)相互作用后,D^{*}_{s0}(2317) 和D'_{s1}(2460)的理论质量逐渐和实验重合;
- ▶ D^{*}_{s0}(2317)和D'_{s1}(2460)包含裸核和强子 道成分;
- ▶ 强子道的自相互作用对于理解D^{*}_{s0}(2317) 和D'_{s1}(2460)比较重要;
- ▶ 基于重夸克味道对称性,我们给出了底奇 异对应态的预测,质量分别为5714MeV 和5762MeV。

 $\square D_{s0}^*$ (2317)和 D_{s1}' (2460)的电磁衰变

第九届手征有效场论研讨会

$D_{s0}^{*}(2317)和 D'_{s1}(2460)$ 的电磁衰变

Process	$\Gamma[D_{s0}^*]$	$\rightarrow D_s^* \gamma$]	$\Gamma[D'_{s1}]$	$\rightarrow D_s^* \gamma$]	$\Gamma[D'_{s1}]$	$\rightarrow D_s \gamma$]	$\Gamma[B_{s0}^*$ -	$\rightarrow B_s^* \gamma$]	$\Gamma[B'_{s1}]$	$\rightarrow B_s^* \gamma$]	$\Gamma[B'_{s1}]$ -	$\rightarrow B_s \gamma$]
Λ' (GeV)	Ι	II	Ι	II	Ι	Π	Ι	Π	Ι	II	Ι	Π
0.5	10.79	1.41	1.65	1.74	5.58	0.98	29.37	0.01	0.68	13.08	3.5	2.42
1.0	32.06	4.27	1.60	2.19	15.36	6.41	153.69	17.56	1.31	10.62	107.83	17.27
1.5	38.97	3.12	1.17	2.75	16.26	6.99	216.48	27.61	1.37	10.26	210.77	37.27

▶ 引入裸核后, $D_{s0}^*(2317) \rightarrow D_s^*\gamma$, $D_{s1}'(2460) \rightarrow D_s\gamma$, $B_{s0}^* \rightarrow B_s^*\gamma$, $B_{s1}' \rightarrow B_s^*\gamma$, $B_{s1}' \rightarrow B_s \gamma$ 的宽度改变较为 显著。

其他理论文章的结果

Method	Ref.	$D^*_{s0} \to D^*_s \gamma$	$D_{s1}' \to D_s^* \gamma$	$B^*_{s0} \to B^*_s \gamma$	$B_{s1}' \to B_s^* \gamma$
S. Godfrey et al.	[11, 84]	9.0	9.6	70.0	57.3
Parity doubling model	[29]	1.74	4.66	58.3	56.9
Effective Lagrangian approach	[38, 114]	0.55 - 1.41	-	3.07-4.06	0.04 - 0.18
Effective Lagrangian approach	[115]	_	_	_	0.4 - 2.6
Light-cone sum rules	[178, 179]	1.3 – 9.9	-	1.3 – 13.6	0.3 - 6.1
Light-cone sum rules	[107]	4 - 6	0.6 - 1.1	_	_
Lutz and Soyeur	[106]	1.94(6.47)	21.8(12.47)	_	_
H. L. Fu et al.	[109]	3.7 ± 0.3	13 ± 2	59 ± 8	100 ± 15

四、总结

- 在完整的耦合道框架下我们重现出 $\Lambda_c(2940)$ 和 $\Lambda_c(2910)$ 的实验质量,另外还解释了 $D_{s0}^*(2317)$ 和 $D_{s1}'(2460);$
- ϵ耦合道框架下Λ_c(2940), Λ_c(2910), D^{*}_{s0}(2317)和D'_{s1}(2460)包含裸核和强子-强子 道成分;
- 强子-强子道的自相互作用对于理解强子谱的反常现象比较重要;
- *D*^{*}_{s0}(2317), *D*'_{s1}(2460)的辐射衰变可以进一步帮助我们理解它们的内部结构。

谢谢大家请批评指正