

Charmonium-like states with

the exotic quantum number JPC=3−+

Speaker: Hong-Zhou Xi

Collaborators: Hua-Xing Chen, Wei Chen, T. G. Steele, Yong Zhang, Dan Zhou

School of Physics, Southeast University

2024.10

第九届手征有效场论研讨会

1

Outline

Method: QCD sum rules

Results and Discussion

- Ø **Traditional quark model: mesons() , baryons().** qq qqq
- Ø **QCD also allows for the existence of the exotic hadron states:tetraquark states, pentaquark states, glueballs, hybrid states, etc.**
- Ø **There exist some exotic hadron states can not be explained as traditional hadrons with such quantum numbers JP ^C = 0−−, 0+− , 1−+ , 2+− , 3−+ , etc.**

 2^{++}

 $,3^{++}$

 $\overline{3}$

 3^{+-}

東南

SCHOOL OF PHYSICS SOUTHEAST

Charmonium (-like) states

 \triangleright Below the $\mathbf{p}\overline{\mathbf{p}}$ threshold, charmonium states are well understood, while above this threshold **many charmonium-like states (XYZ states) have been observed.**

- **"X" states: Neutral, JPC ≠ 1− [−]**
- **"Y" states: Neutral, JPC = 1− [−]**
- **"Z" states: Charged, isospin triplet**

Phys.Rev.D81:105018

JHEP 08 (2024) 130

Phys. Rev. Lett. 133,

Ø **Some tetraquark states with exotic quantum number have been investigated using the QCD sum rules.**

Background

- Ø **229 molecular states predicted by solving the Bethe-Salpeter equation.**
- \triangleright A study on the $\mathbf{D}^*\overline{\mathbf{D}}^*$ molecular state with $\mathbf{J}^{\text{PC}} = 3^{-+}$ by OBE **model before.** Chin. Phys. C39 (2) 023101 $\mathbf{D}^* \overline{\mathbf{D}}_2^*$
- \triangleright **A** study on the glueball with $J^{PC} = 3^{-+}$ by Lattice QCD forty
	- **years ago.** HEPNP 8 :573–578
- \triangleright No theoretical study on the cqcq tetraquark state with $J^{PC} =$
	- **3−+ by QCD sum rules yet.**
- X. K. Dong, F. K. Guo and B. S. Zou, Progr. Phys. 41, 65-93

Ø **We consider the two-point correlation function (η is an interpolating current) :**

$$
\Pi_{\alpha_1 \alpha_2 \alpha_3, \beta_1 \beta_2 \beta_3}^{ii} (q^2)
$$
\n
$$
\equiv i \int d^4 x e^{iqx} \langle 0 | \mathbf{T} [\eta_{\alpha_1 \alpha_2 \alpha_3}^i(x) \eta_{\beta_1 \beta_2 \beta_3}^{i, \dagger}(0)] | 0 \rangle
$$
\n
$$
= (-1)^J \mathcal{S}'[\tilde{g}_{\alpha_1 \beta_1} \tilde{g}_{\alpha_2 \beta_2} \tilde{g}_{\alpha_3 \beta_3}] \Pi_{ii} (q^2)
$$

Ø **At the hadron level, the correlation function can be expressed by the dispersion relation:**

$$
\Pi(q^2) = \int_{4m_c^2}^{\infty} \frac{\rho^{\text{phen}}(s)}{s - q^2 - i\varepsilon} ds \qquad \text{When } s \to \infty, \text{ it could not be neglected!}
$$

Ø **At the quark-gluon level, we perform the Operator Product Expansion (OPE) .**

Ø **We perform the Borel transformation at both the hadron and quark-gluon levels to obtain:**

$$
\Pi(s_0, M_B^2) \equiv f^2 e^{-M^2/M_B^2} = \int_{4m_c^2}^{s_0} e^{-s/M_B^2} \rho(s) ds
$$

$$
M^2(s_0, M_B) = \frac{\frac{\partial}{\partial (-1/M_B^2)} \Pi(s_0, M_B^2)}{\Pi(s_0, M_B^2)} = \frac{\int_{4m_c^2}^{s_0} e^{-s/M_B^2} \rho(s) ds}{\int_{4m_c^2}^{s_0} e^{-s/M_B^2} \rho(s) ds}
$$

 \triangleright Providing $\frac{1}{\sqrt{2}}$ $(k-1)!$ **suppression factor to improve the convergence of OPE and multiple differentiation to eliminate subtraction terms with q2 polynomials.**

Ø **Two phenomenological parameters:**

Threshold s_0 **Borel mass M_B**

Ø **Hadronic spectral density with one pole dominance for the state and a continuum contribution:**

$$
\rho^{\text{phen}}(s) = \rho^{\text{pole}}(s) + \rho^{\text{cont}}(s)
$$

$$
\rho^{\text{pole}}(s) = \lambda^2 \delta(s - m^2)
$$

- Ø **Some researchers also have examined finite-width spectral densities(such as the Breit-Wigner Distribution Function) .**
	- Increasing the mass at a small Borel window region.
	- Strongly favoring the molecular description of these states instead of the tetraquark description.

For the charmonium-like states $X(3872)$, $Z(4430)$, $Z_2(4250)$.

Phys.Rev.D78:076001

 \triangleright Interpolating currents (for diquark-antidiquark currents)

• $D_{\alpha} = \partial_{\alpha} + i g_{s} A_{\alpha}$

• S : symmetrization and subtracting trace terms in $\{\alpha_1\alpha_2\alpha_3\}$

$$
\eta = [c_a^T C \Gamma_1 \overset{\leftrightarrow}{D}_{\alpha} q_b] (\bar{c}_c \Gamma_2 C \bar{q}_d^T)
$$

$$
\eta' = (c_a^T C \Gamma_1 q_b) [\bar{c}_c \Gamma_2 C \overset{\leftrightarrow}{D}_{\alpha} \bar{q}_d^T]
$$

$$
\eta_{\alpha_1\alpha_2\alpha_3}^1 = \epsilon^{abe}\epsilon^{cde} \times \mathcal{S}\Big\{ \Big[c_a^T C\gamma_{\alpha_1} \overleftrightarrow{D}_{\alpha_3} q_b \Big] (\overrightarrow{c}_c \gamma_{\alpha_2} C \overrightarrow{q}_d^T) + (c_a^T C\gamma_{\alpha_1} q_b) \Big[\overrightarrow{c}_c \gamma_{\alpha_2} C \overleftrightarrow{D}_{\alpha_3} \overrightarrow{q}_d^T \Big] \Big\},
$$
\n
$$
\eta_{\alpha_1\alpha_2\alpha_3}^2 = (\delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc}) \times \mathcal{S}\Big\{ \Big[c_a^T C\gamma_{\alpha_1} \overleftrightarrow{D}_{\alpha_3} q_b \Big] (\overrightarrow{c}_c \gamma_{\alpha_2} C \overrightarrow{q}_d^T) + (c_a^T C\gamma_{\alpha_1} q_b) \Big[\overrightarrow{c}_c \gamma_{\alpha_2} C \overleftrightarrow{D}_{\alpha_3} \overrightarrow{q}_d^T \Big] \Big\},
$$
\n
$$
\eta_{\alpha_1\alpha_2\alpha_3}^3 = \epsilon^{abe}\epsilon^{cde} \times \mathcal{S}\Big\{ \Big[c_a^T C\gamma_{\alpha_1} \gamma_5 \overleftrightarrow{D}_{\alpha_3} q_b \Big] (\overrightarrow{c}_c \gamma_{\alpha_2} \gamma_5 C \overrightarrow{q}_d^T) + (c_a^T C\gamma_{\alpha_1} \gamma_5 q_b) \Big[\overrightarrow{c}_c \gamma_{\alpha_2} \gamma_5 C \overleftrightarrow{D}_{\alpha_3} \overrightarrow{q}_d^T \Big] \Big\},
$$
\n
$$
\eta_{\alpha_1\alpha_2\alpha_3}^4 = (\delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc}) \times \mathcal{S}\Big\{ \Big[c_a^T C\gamma_{\alpha_1} \gamma_5 \overleftrightarrow{D}_{\alpha_3} q_b \Big] (\overrightarrow{c}_c \gamma_{\alpha_2} \gamma_5 C \overrightarrow{q}_d^T) + (c_a^T C\gamma_{\alpha_1} \gamma_5 q_b) \Big[\overrightarrow{c}_c \gamma_{\alpha_2} \gamma_5 C \overleftrightarrow{D}_{\alpha_3} \overrightarrow{q}_d^T \Big] \Big\},
$$
\n
$$
\eta_{\alpha_1\alpha_2\alpha_3}^5 = \epsilon^{abe}\epsilon^{cde} \times g^{\
$$

> Interpolating currents (for meson-antimeson currents)

$$
\xi_{\alpha_1\alpha_2\alpha_3}^1 = S \Big\{ (\bar{c}_a \gamma_{\alpha_1} c_a) \overleftrightarrow{D}_{\alpha_3} (\bar{q}_b \gamma_{\alpha_2} q_b) \Big\}
$$
\n
$$
\xi_{\alpha_1\alpha_2\alpha_3}^3 = S \Big\{ (\bar{c}_a \gamma_{\alpha_1} \gamma_5 c_a) \overleftrightarrow{D}_{\alpha_3} (\bar{q}_b \gamma_{\alpha_2} \gamma_5 q_b) \Big\}
$$
\n
$$
\xi_{\alpha_1\alpha_2\alpha_3}^3 = S \Big\{ [\bar{c}_a \gamma_{\alpha_1} \overleftrightarrow{D}_{\alpha_3} q_a] (\bar{q}_b \gamma_{\alpha_2} c_b) - (\bar{c}_a \gamma_{\alpha_1} q_a) [\bar{q}_b \gamma_{\alpha_2} \gamma_5 \overleftrightarrow{D}_{\alpha_3} c_b] \Big\}
$$
\n
$$
\xi_{\alpha_1\alpha_2\alpha_3}^5 = S \Big\{ [\bar{c}_a \gamma_{\alpha_1} \overleftrightarrow{D}_{\alpha_3} q_a] (\bar{q}_b \gamma_{\alpha_2} \gamma_5 c_b) - (\bar{c}_a \gamma_{\alpha_1} \gamma_5 q_a) [\bar{q}_b \gamma_{\alpha_2} \gamma_5 \overleftrightarrow{D}_{\alpha_3} c_b] \Big\}
$$
\n
$$
\xi_{\alpha_1\alpha_2\alpha_3}^6 = g^{\mu\nu} S \Big\{ [\bar{c}_a \sigma_{\alpha_1 \mu} \overleftrightarrow{D}_{\alpha_3} q_a] (\bar{q}_b \sigma_{\alpha_2 \nu} c_b) - (\bar{c}_a \sigma_{\alpha_1 \mu} q_a) [\bar{q}_b \sigma_{\alpha_2 \nu} \overleftrightarrow{D}_{\alpha_3} c_b] \Big\}
$$
\n
$$
\Big\}
$$
\n
$$
\Big\{ \xi = [\bar{c} \bar{D} q] [\bar{q} c] - [\bar{c} q] [\bar{q} \bar{D} c] \Big\}
$$

Fierz rearrangement

- Ø **Since any given four-fermion couplings, the fermion fields entering them can always be rearranged by the Fierz transformations.**
- Ø **This transformation indicates that these two configurations are equivalent, which will be applied to study the decay properties later. ¹²**

Ø **Some vacuum condensate values in QCD sum rules:**

$$
\begin{array}{|l|l|} \hline \langle \alpha_s GG \rangle & = & (6.35 \pm 0.35) \times 10^{-2} \ {\rm GeV}^4 \\ \hline \langle \bar{q} q \rangle & = & -(0.240 \pm 0.010)^3 \ {\rm GeV}^3 \\ \hline \langle g_s \bar{q} \sigma G q \rangle & = & -M_0^2 \times \langle \bar{q} q \rangle \\ M_0^2 & = & (0.8 \pm 0.2) \ {\rm GeV}^2 \\ m_c(m_c) & = & 1.275^{+0.025}_{-0.035} \ {\rm GeV} \end{array}
$$

高 東南大學·物

Ø **Pole Dominance**

$$
P C \equiv \left| \frac{\Pi_{11}(s_0, M_B^2)}{\Pi_{11}(\infty, M_B^2)} \right| \ge 40\%
$$
\n
\n
$$
\triangleright
$$
 OPE Convergence
\n
$$
CVG \equiv \left| \frac{\Pi_{11}^{D=10}(\infty, M_B^2)}{\Pi_{11}(\infty, M_B^2)} \right| \le 5\%
$$
\n
\n
$$
CVG \equiv \left| \frac{\Pi_{11}^{D=10}(\infty, M_B^2)}{\Pi_{11}(\infty, M_B^2)} \right| \le 5\%
$$
\n
\nThese requirements together determine that the Borel window
\nto be 3.40 GeV² $\le M_B^2 \le 3.63$ GeV² when setting s₀ = 30.0 GeV².

Results and Discussion

Ø **Stability**

- **There are non-vanishing Borel windows as long** $aS_0 \geq 28.4 \text{ GeV}^2$.
- **Value to be** 27.0 **GeV**²≤ **s**₀ ≤33.0 **GeV**². Around $s_0 \sim 30.0$ GeV², we choose the threshold
- **Within this working regions, we obtain:** $\left(2.89^{+2.26}_{-1.46} \right) \, \times \, 10^{-2} \textrm{GeV}^5$ 0.49 $M_1 = 4.66^{+0.49}_{-0.46}$ GeV $f^{}_1 = \left(2.89^{+2.26}_{-1.46}\right)\,\times\,10^{-2}\text{GeV}$ -

Summary table

TABLE I: QCD sum rule results extracted from the diquark-antidiquark currents $\eta_{\alpha_1\alpha_2\alpha_3}^{1\cdots6}$ and the mixing currents $J_{\alpha_1\alpha_2\alpha_3}^{1\cdots2}$ with the exotic quantum number $J^{PC} = 3^{-+}$.

Currents	M_B^2 [GeV ²]	s_0 [GeV ²]	Pole $[\%]$	Mass [GeV]	f_X [GeV ⁵]
$\eta_{\alpha_1\alpha_2\alpha_3}^1$	$3.40 - 3.63$	30.0 ± 3.0	40-48	$4.66^{+0.49}_{-0.46}$	$(2.89^{+2.26}_{-1.46}) \times 10^{-2}$
$\eta_{\alpha_1\alpha_2\alpha_3}^2$	3.40-3.60	29.0 ± 3.0	40-47	$4.50^{+0.45}_{-0.41}$	$(3.37^{+2.47}_{-1.69}) \times 10^{-2}$
$\eta_{\alpha_1\alpha_2\alpha_3}^3$	3.63-4.00	35.0 ± 3.0	$40 - 46$	$5.75^{+0.21}_{-0.14}$	$(11.71^{+4.53}_{-3.07}) \times 10^{-2}$
$\eta_{\alpha_1\alpha_2\alpha_3}^4$	$3.65 - 4.05$	35.0 ± 3.0	40-47	$5.71^{+0.21}_{-0.14}$	$(16.07^{+6.09}_{-4.35}) \times 10^{-2}$
$\eta_{\alpha_1\alpha_2\alpha_3}^5$	3.57-3.78	32.0 ± 3.0	$40 - 45$	$5.12^{+0.28}_{-0.28}$	$(7.15^{+4.16}_{-3.20}) \times 10^{-2}$
$\eta_{\alpha_1\alpha_2\alpha_3}^6$	$3.35 - 3.80$	32.0 ± 3.0	$40 - 53$	$5.08^{+0.27}_{-0.28}$	$(10.10^{+5.68}_{-4.46}) \times 10^{-2}$
$J^1_{\alpha_1\alpha_2\alpha_3}$	3.40-3.61	30.0 ± 3.0	40-47	$4.67^{+0.51}_{-0.42}$	$(2.87^{+2.31}_{-1.49}) \times 10^{-2}$
$J_{\alpha_1\alpha_2\alpha_3}^2$	3.39-3.59	29.0 ± 3.0	40-47	$4.49^{+0.45}_{-0.41}$	$(3.35^{+2.43}_{-1.67}) \times 10^{-2}$

Results and Discussion

 \triangleright We also investigated the mixing of $\eta_{\alpha_1\alpha_2\alpha_3}^1$ and $\eta_{\alpha_1\alpha_2\alpha_3}^2$ by calculating their off-diagonal correlation

function $\prod_{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}^{12} (q^2)$ by setting $s_0 = 29.0$ GeV² and $M_B^2 = 3.40$ GeV².

Decay behavior

- Ø **We investigated the charmonium-like states with JPC =3−+ by QCD sum rules and find the corresponding interpolating currents are composed of two quark fields and two antiquark fields as well as one covariant derivative operator.**
- Ø **Through the identification of an effective Borel window, we find the mass of the lowest-lying state is around 4.49 GeV.**
- Ø **Above the open-charm threshold and combined with the Fierz rearrangement, we analyzed p**otential decay channels around the $\mathbf{D}^*\overline{\mathbf{D}_2^*}$ threshold: $\mathbf{X}\rightarrow$ [ωJ/ψ]/[ρJ/ψ].
- Ø **We hope that such states can be found in future experiments at BESIII, Belle-II, LHCb, etc., to further enrich the study of charmonium-like hadronic states.**

Thanks for your attention!