Flavor asymmetry from the nonperturbative nucleon sea

Yihan Duan

University of Science and Technology of China, Hefei, China Based on: arxiv 2404.07755

> In collaboration with : Yang Li, Siqi Xu, Shan Cheng, Xingbo Zhao, James Vary

The 9th Workshop on Chiral Effective Field Theory, October 18-22, Changsha

Perturbative sea quarks in nucleon

- Parton model of nucleon :
 - 1. Valence part : 3 quarks compose a nucleon, such as p(uud) [Feynman '69, Bjorken et. al '69]
 - 2. Sea part : gluon splitting ($\overline{d} = \overline{u} = d = u$)

Asymmetry in nucleon sea

Gottfried sum rule (GSR): [Gottfried '67]

$$\int_0^1 \frac{dx}{x} \left[F_2^p(x,Q^2) - F_2^n(x,Q^2) \right] = \frac{1}{3} + \frac{2}{3} \int_0^1 dx \left[\bar{u}(x,Q^2) - \bar{d}(x,Q^2) \right]$$

where F_2^p represents proton structure function and F_2^n represents neutron structure function

- Experimental tests of Gottfried sum rule
 - DIS
 - SIDIS
 - Drell-Yan
- Violation of GSR: non-perturbative effects

Fix-target Drell-Yan experiments at Fermilab [NuSea '98 & '01, SeaQuest '23]

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x_1 \mathrm{d}x_2} = \frac{4\pi\alpha}{9x_1 x_2} \sum_{i \in u, d, s, \cdots} e_i^2 [q_i^A(x_1)\overline{q}_i^B(x_2) + \overline{q}_i^A(x_1)q_i^B(x_2)]$$
$$\Rightarrow \frac{\sigma_D}{\sigma_H} \approx 1 + \frac{\overline{d}_p(x_t)}{\overline{u}_p(x_t)}$$

- NuSea/E866: 800 GeV proton beam from Tevatron bombarding liquid H/D target
- SeaQuest/E906: 120 GeV proton beam from injector bombarding liquid H/D target

Flavor asymmetry from Drell-Yan

- Discrepancy of the sea asymmetry $\overline{d}/\overline{u}$ at large x region
 - NuSea data sketch a dip below unity at $x \sim 0.3$
- Theoretical interpretations:
 - Pauli-Blocking: only few percent effect [Ross et. al '79]
 - Meson cloud model [Thomas et. al. '83, Alberg et. al '21]
 - Statistic model [Basso et. al '16]

Pion cloud model

• Nucleon sea from non-perturbative QCD fluctuation into baryon-meson states:

$$|p\rangle_{\rm ph} = |p\rangle + |n\pi^+\rangle + |\Delta\pi^-\rangle + |\Lambda K\rangle + \cdots$$

• Pion cloud from light-cone chiral effective field theory [Alberg et. al '22]

$$\mathcal{L}_{int} = -\frac{g_A}{2f_\pi} \bar{\psi} \gamma_\mu \gamma_5 \tau^a \psi \partial_\mu \pi^a - \frac{1}{f_\pi^2} \bar{\psi} \gamma_\mu \tau^a \psi \epsilon^{abc} \pi^b \partial_\mu \pi^c - \frac{g_{\pi N\Delta}}{2M} (\overline{\Delta}^i_\mu g^{\mu\nu} \psi \partial_\nu \pi^i + \text{H.C.})$$

- No free parameter
- Solved in light-cone perturbation theory with a Fock sector truncation up to one-pion $|B\pi\rangle$
- Good agreement with NuSea data at small *x*
- Consistent but slightly overshoot SeaQuest data at large *x*
- What about effects of the non-perturbative sea, e.g. multi-pion?

Non-perturbative scalar pion cloud

$$\mathcal{L}_{int} = g_0 N^{\dagger} N \pi + g_{\pi N \Delta} \Delta^{\dagger} N \pi + g_{\pi N \Delta} N^{\dagger} \Delta \pi$$

 $m_N = 0.94 \text{GeV}, m_\Delta = 1.23 \text{GeV}, \mu = 0.14 \text{GeV}, \alpha_{\pi NN} = 0.8, \alpha_{\pi N\Delta} = 0.95, \alpha = \frac{g^2}{16\pi m_P^2}$

• Non-perturbative light cone Hamiltonian approach

$$H_{LC}|\psi\rangle = M^2|\psi\rangle$$

• Systematic Fock sector expansion and truncation: solved with up to $|N\pi\pi\pi\rangle$ sector at non-perturbative couplings

$$|\psi\rangle = |N\rangle + |N\pi\rangle + |N\pi\pi\rangle + |N\pi\pi\pi\rangle + |\Delta\pi\pi\rangle + |\Delta\pi\pi\rangle + |\Delta\pi\pi\pi\rangle \cdots$$

• Observed numerical convergence of Fock sector expansion up to $|N\pi\pi\rangle$ sector

Longitudinal momentum distribution (LMD)

$$p_{i}(x,\mu) = \frac{k^{+}}{2} \int dz^{-} e^{\frac{i}{2}(1-x)p^{+}z^{-}} \left\langle p \left| \psi_{i}^{\dagger} \left(-\frac{z}{2} \right) \psi_{i} \left(\frac{z}{2} \right) \right| p \right\rangle \right|_{z^{+}=z_{\perp}=0,\mu}$$

where $i = \pi, N, \Delta$

- Scalar theory is super-renormalizable and we can take $\mu \to \infty$
- Perturbative sea is dominant at small α
- Multi-pion sea contribution is significant at larger α

LMDs within the physical nucleon

- Parameters $\alpha_{\pi NN} = 0.8$, $\alpha_{\pi N\Delta} = 0.95$ chosen to fit the SeaQuest data
- Fock sector convergence
- Violation of the perturbative ansatz: $f_{\pi B}(x) = f_{B\pi} (1 x)$

Anti-quark PDFs in pion cloud model

$$\bar{d}(x) = \left(\frac{5}{6}f_{\pi N} + \frac{1}{3}f_{\pi \Delta}\right) \otimes q_{\pi}^{\nu} + \bar{q}_{sym}(x)$$
$$\bar{u}(x) = \left(\frac{1}{6}f_{\pi N} + \frac{2}{3}f_{\pi \Delta}\right) \otimes q_{\pi}^{\nu} + \bar{q}_{sym}(x)$$
$$\bar{q}_{sym}(x) \equiv \sum_{B} f_{\pi B} \otimes q_{\pi}^{s} + \sum_{B} f_{B\pi} \otimes q_{B}^{s} + Zq_{N}^{s}(x)$$

where $f_{\pi N}(x)$ is the π LMD within N, $f_{\pi \Delta}(x)$ is the π LMD within Δ , $q_{\pi}^{\nu/s}$ represents valence/sea quark PDF in pion, Z is the bare nucleon probability

- Following Alberg & Miller, we adopt bare nucleon PDFs from Holtmann [Holtmann et al. '97]
- Scale of the quark PDF evolved to $Q^2 = 25.5 \text{ GeV}^2$ by NLO DGLAP

Quark anti-quark asymmetry

[Brodsky & Ma '96]

- Non-perturbative xd(x) and $x\overline{d}$ are in reasonable agreement with CT18 NNLO
- In principle can be used to investigate quark-antiquark sea asymmetry, such as nucleon strangeness and intrinsic charm, as shown by Brodsky et. al.

Anti-quark flavor asymmetry

- Both perturbative and non-perturbative results are consistent with the trend of Alberg et. al.'s predictions as well as the SeaQuest data
- Our perturbative results are in rough agreement with Alberg et. al.'s perturbative results
- Our non-perturbative results are lower than the perturbative results, indicating a significant multi-pion sea

Gottfried sum

	$[x_{min}, x_{max}]$	$\int_{x_{min}}^{x_{max}} (\bar{d} - \bar{u}) \mathrm{d}x$
NMC	[0, 1]	0.15±0.04
NuSea*	[0, 1]	0.118±0.012
SeaQuest	[0.13 <i>,</i> 0.45]	0.0159 ± 0.0060
This work (perturbative)	[0.13 <i>,</i> 0.45]	0.0212
This work (non-perturbative)	[0.13 <i>,</i> 0.45]	0.0122 <u>+</u> 0.0007
This work (perturbative)	[0, 1]	0.112
This work (non-perturbative)	[0, 1]	0.064 <u>+</u> 0.002

* Obtained from extrapolating results within [0.015, 0.3]

Summary

- We calculated the longitudinal moment distribution of a strongly-coupled scalar nucleon using light-front Hamiltonian formalism and apply it to the pion cloud model to investigate the nucleon sea quark PDFs
- Within our model, the non-perturbative results improve the perturbative results and show good agreement with the recent SeaQuest measurement
- Our work indicates there may be large non-perturbative contributions to nucleon sea, originated from the multi-pion Fock sector

Thank You