

Hyperon Time-like Electromagnetic Form Factors in Vector Meson Dominance model

Ju-Jun Xie 谢聚军

Institute of Modern Physics, Chinese Academy of Sciences (中国科学院近代物理研究所) 2024年10月19日@第九届手征有益场论研讨会 湖南长沙

Outline

Introduction: Electromagnetic Form Factors

The model: Vector Meson Dominance

Hyperon electromagnetic form factors

Summary

Electromagnetic form factors (space-like)

S. Pacetti, R. Baldini Ferroli and E. Tomasi-Gustafsson, "Proton electromagnetic form factors: Basic notions, present achievements and future perspectives," **Phys. Rept. 550-551, 1-103 (2015).**

Electromagnetic form factors (time-like)

VMD: vector meson dominance model

Dirac and Pauli isoscalar and isovector form factors are

$$F_{1}^{\text{we}}(t) = \frac{e}{2}g(t) \Big[(1 - \beta_{\omega} - \beta_{\phi}) + \beta_{\omega} \frac{\mu_{\omega}^{2}}{\mu_{\omega}^{2} - t} + \beta_{\phi} \frac{\mu_{\phi}^{2}}{\mu_{\phi}^{2} - t} \Big] \qquad F_{1} = F_{1}^{S} + F_{1}^{V}$$

$$F_{1}^{\text{v}}(t) = \frac{e}{2}g(t) \Big[(1 - \beta_{\rho}) + \beta_{\rho} \frac{\mu_{\rho}^{2}}{\mu_{\rho}^{2} - t} \Big] \qquad F_{2} = F_{2}^{S} + F_{2}^{V}$$

$$F_{2}^{\text{s}}(t) = \frac{e}{2}g(t) \Big[(-0.120 - \alpha_{\phi}) \frac{\mu_{\omega}^{2}}{\mu_{\omega}^{2} - t} + \alpha_{\phi} \frac{\mu_{\phi}^{2}}{\mu_{\phi}^{2} - t} \Big] \qquad G_{E} = F_{1} - \tau F_{2}$$

$$F_{2}^{\text{v}}(t) = \frac{e}{2}g(t) \Big[3.706 \frac{\mu_{\rho}^{2}}{\mu_{\rho}^{2} - t} \Big] \qquad G_{M} = F_{1} + F_{2}$$

SEMI-PHENOMENOLOGICAL FITS TO NUCLEON ELECTROMAGNETIC FORM FACTORS

F. IACHELLO* and A.D. JACKSON**

The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 2100

and

A. LANDE

Institute for Theoretical Physics, University of Groningen, Groningen, The Netherlands

Received 31 August 1972

Several theoretically interesting forms of the nucleon EM form factor have been considered and found to provide quantitative descriptions of available data with as few as three adjustable parameters.

6

Λ

J. Haidenbauer and U. G. Meißner, Phys. Lett. B 761, 456-461(2016).

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022). Figure: Cross section of the reaction $e^+e^- \rightarrow \overline{\Lambda}\Lambda$.

Blue: without X(2231) Red: with X(2231) Green: only dipole

$$G_{\text{eff}} = C_0 g(q^2) = \frac{C_0}{(1 - \gamma q^2)^2}$$

Table: Values of model parameters determined in this work.

Parameter	Value	Parameter	Value
$\gamma ({\rm GeV}^{-2})$	0.43	eta_{ω}	-1.13
$eta_{oldsymbol{\phi}}$	1.35	$lpha_{\phi}$	-0.40
eta_x	0.0015	$m_x \; ({\rm MeV})$	2230.9
$\Gamma_x({ m MeV})$	4.7		

New state X(2231) ?

> Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

Flatté formula for the X(2231)

S.M. Flatte, Phys. Lett. B 63, 224-227 (1976).

$$\frac{d\sigma_i}{dm} = C \left| \frac{m_R \sqrt{\Gamma_o \Gamma_i}}{m_R^2 - m^2 - im_R (\Gamma_{\pi\eta} + \Gamma_{K\bar{K}})} \right|^2$$

$$\Gamma_{\pi\eta} = g_\eta q_\eta$$

$$\Gamma_{K\bar{K}} = \begin{cases} g_K \sqrt{(1/4)m^2 - m_K^2} & \text{above threshold} \\ ig_K \sqrt{m_K^2 - (1/4)m^2} & \text{below threshold} \end{cases}$$

Parameter	Value	Parameter	Value
γ (GeV ⁻²)	0.57 ± 0.21	$\beta_{\omega\phi}$	-0.3 ± 0.31
β_x	-0.03 ± 0.09	m_x (MeV)	2237.7 ± 50.2
Γ_0 (MeV)	8.8 ^{+75.9} -8.8	$g_{\Lambda \bar{\Lambda}}$	3.0±1.9

$$\Gamma_x = \Gamma_0 + \Gamma_{\Lambda \overline{\Lambda}} (s) \qquad \Gamma_{\Lambda \overline{\Lambda}} = \frac{g^2}{4\pi} \sqrt{\frac{s}{4} - M_{\Lambda}^2}$$

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

Where is the X(2231)?

M. Ablikim, et al., Phys. Rev. D 100, 032009(2019).

Σ

The ratio $\Sigma^+ \overline{\Sigma}^-$: $\Sigma^0 \overline{\Sigma}^0$: $\Sigma^- \overline{\Sigma}^+$ is about 9.7 ± 1.3 : 3.3 ± 0.7 : 1.

BESIII, Phys. Lett. B 814, 136110 (2021); Phys. Lett. B 831, 137187 (2022).

EMFFs of Σ^+ , Σ^- , and Σ^0 baryons (VMD)

$$\begin{split} |\Sigma^{+}\bar{\Sigma}^{-}\rangle &= \frac{1}{\sqrt{2}} |1,0\rangle + \frac{1}{\sqrt{3}} |0,0\rangle + \frac{1}{\sqrt{6}} |2,0\rangle \\ |\Sigma^{-}\bar{\Sigma}^{+}\rangle &= -\frac{1}{\sqrt{2}} |1,0\rangle + \frac{1}{\sqrt{3}} |0,0\rangle + \frac{1}{\sqrt{6}} |2,0\rangle \\ |\Sigma^{0}\bar{\Sigma}^{0}\rangle &= -\frac{1}{\sqrt{3}} |0,0\rangle + \sqrt{\frac{2}{3}} |2,0\rangle \\ F_{1}^{\Sigma^{+}} &= g(q^{2})(f_{1}^{\Sigma^{+}} + \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{+}} &= g(q^{2})(f_{2}^{\Sigma^{+}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{-}} &= g(q^{2})(f_{1}^{\Sigma^{-}} - \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{1}^{\Sigma^{-}} &= g(q^{2})(f_{2}^{\Sigma^{-}} B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}} B_{\omega\phi}), \\ F_{2}^{\Sigma^{0}} &= g(q^{2})(f_{2}^{\omega\phi} - q^{2})(f_{2}^{\omega\phi} - q^{2}) = (1 + \frac{\beta_{\rho}}{\sqrt{2}} + \frac{\beta_{\omega\phi}}{\sqrt{3}}, f_{2}^{\Sigma^{+}} = 2.112 + \frac{\alpha_{\omega\phi}}{\sqrt{3}}, \\ F_{2}^{\Sigma^{0}} &= g(q^{2})(g_{2}^{\omega\phi} - g_{2}^{\omega\phi} - g_{2}^{\omega\phi}), \\ F_{2}^{\Sigma^{0}} &= g(q^{2})(g_{2}^{\omega\phi} - g_{2}^{\omega\phi} - g_{2}^{\omega\phi} - g_{2}^{\omega\phi}), \\ F_{2}^{\Sigma^{0}} &= g(q^{2})(g_{2}^{\omega\phi} - g_{2}^{\omega\phi} - g_{2}^{\omega\phi}$$

EMFFs of Σ^+ , Σ^- , and Σ^0 baryons: Numerical results

Bing Yan, Cheng Chen, and J. J. Xie, Phys. Rev. D107, 076008 (2023).

Dipole behavior of baryon effective form factors

$$G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2}$$

Parameter	п	Λ	Σ^0	Ξ^0
γ	1.41 (fixed)	0.34 ± 0.08	0.26 ± 0.01	0.21 ± 0.02
c_0	3.48 ± 0.06	0.11 ± 0.01	0.033 ± 0.007	0.023 ± 0.008
χ^2/dof	4.3	2.4	1.1	3.0

 10^{-1} 10^{-1} 10^{-2} 2.5 3.0 3.5 4.0 4.5 $\sqrt{5}$ (GeV)

A.X. Dai, Z.Y. Li, L. Chang and J.J. Xie, Chin. Phys. C 46, 073104 (2022).

"Oscillation" of baryon effective form factors

New parametrization for the "oscillation"

$$G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2} \qquad G_{osc} = A \cdot \frac{c_0}{(1 - \gamma \cdot s)^2} \cdot \cos\left(C \cdot \sqrt{s} + D\right)$$

$$G_{eff}(s) = G_D(s) + G_{osc}(s) \qquad data = G_{eff} = G_D + G_{osc}$$

$$= \frac{c_0}{(1 - \gamma s)^2} \left(1 + A\cos(C\sqrt{s} + D)\right) \qquad \rightarrow \qquad G_{osc} = data - G_D$$

A.X. Dai, Z.Y. Li, L. Chang and J.J. Xie, Chin. Phys. C 46, 073104 (2022).

$e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ Cross Sections and the Λ_c^+ Electromagnetic Form Factors within the Extended Vector Meson Dominance Model

Table 1. Masses and widths of the charmonium-like statesconsidered in this work.

State	Mass M_R (MeV)	Width Γ_R (MeV)	References
$\psi(4500)$	4500	125	[33]
$\psi(4660)$	4670	115	[24]
$\psi(4790)$	4790	100	[35]
$\psi(4900)$	4900	100	[36 - 38]

See more details @ 21日上午第二场,分会场一, By Cheng Chen (陈诚)

Summary

1. Threshold enhancement

a) Final state interaction b) Flatté (strong coupling)

2. "Oscillation" of baryon effective form factors

a) Phenomenology b) **Vector states**

A form factor F_{α} is applied

$$F_{\alpha}(k^2) = \left(\frac{\Lambda_{\alpha}^2 - m_{\alpha}^2}{\Lambda_{\alpha}^2 + k^2}\right)^{n_{\alpha}}$$

R. Machleidt, K. Holinde and C. Elster, The Bonn Meson Exchange Model for the Nucleon Nucleon Interaction, Phys. Rept. 149, 1-89 (1987).

Thank you very much for your attention!

南方核科学理论研究中心--建设目标

南方核科学理论研究中心为中国科学院近代物理研究所的内设机构,依托近代

物理研究所,并联合广东省能源科学与技术实验室(东江实验室)共同建设。

建设目标

- ✓ 聚焦近代物理所核物理研究的重点方向和重大任务,开展相关理论研究,形成研究所理论紧密结合实验研究的新局面。
- ✓ 为推动现有、在建和规划中的大装置升级、建设、预研,提供有力理论支撑。

凝聚和培养一批国内外优秀理论科学家,强化理论物理对应用型学科发展和关键核心技术突破的引领和 支持作用,产出和创新一批重要理论研究成果;建成国内一流国际有一定影响力的强相互作用理论研究中心, 为我国乃至世界核科学事业发展做出重要贡献。

学术方向负责人

- 负责中心学术方向发展
- 组织学术活动
- 营造良好的学术风气和氛围

访问科学家、博士后、客座成员

- 中心的学术主体
- 在学术上做出应有的贡献
- 营造良好的学术风气和氛围

薛琴

● 负责中心日常行政工作

南方核科学理论研究中心-组织架构

把握中心的整体运行

谢聚军 中心副主任

协助中心的运行及日常管理

管理委员会

制定中心运行规则

邹冰松、陈旭荣、郭奉坤、肖博文、 谢聚军、许怒、许甫荣、赵宇翔

