

基于手征有效场论的双粲重子研究

-ChPT studies of doubly charmed baryons-

Ze-Rui Liang (梁泽锐)

河北师范大学

-第九届手征有效场论研讨会-

Oct. 18-22, 2024, 湖南大学, 长沙

Contents

Introduction

- The necessity of doubly charmed baryons
- Experimental efforts and theoretical status

One-loop analysis of the interactions between DCBs and GBs

- Chiral effective Lagrangian
- Calculation of scattering amplitudes in BChPT
- Prediction of scattering lengths and phase shifts

Summary and Outlook

I. Introduction

Doubly charmed baryons in quark model

Quark model with u, d, s, c

- ${f \ }$ Mesons: ${f 4}\otimes ar {f 4}={f 15}\oplus {f 1}$
- \blacksquare Baryons: $\mathbf{4} \otimes \mathbf{4} \otimes \mathbf{4} = \mathbf{20}_S \oplus \mathbf{20}_M \oplus \mathbf{20}_M \oplus \mathbf{4}_A$

Experimental efforts

- □ In 2002, the SELEX Collaboration firstly reported that the Ξ_{cc}^+ state was observed with measured mass 3519 ± 2 MeV [M. Mattson, PRL89(2002)112001].
- Other experimental groups: FOCUS [S. Ratti, Nucl.Phys.B, Proc.Suppl.115(2003)33], BABAR [B. Aubert, PRD74(2006)011103], Belle [R. Chistov, PRL97(2006)162001], LHCb [R. Aaij, JHEP12(2013)090].
- □ In 2017, the LHCb Collaboration announced the observation of the Ξ_{cc}^{++} , via the decay mode $\Lambda_c^+ K^- \pi^+ \pi^+$ [R. Aaij, PRL119(2017)112001].

• Reported value of mass (Ξ_{cc}^{++}) : $3621.40 \pm 0.72 \pm 0.27 \pm 0.14$ MeV

Inspired by a theoretical work [F.-S. Yu, H.-Y. Jiang, R.-H. Li, C.-D. Lü, W. Wang, and Z.-X. Zhao, CPC42(2018)]

Theoretical studies

- Uvarious theoretical studies on the properties of doubly charmed (DC) baryons:
 - Heavy quark effective theory, e.g. [J. Korner, M. Kramer, and D. Pirjol, Prog.Part.Nucl.Phys.33(1994)787]
 - Quark model, e.g. [D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, PRD66(2002)014008] [L-Y. Xiao, K.-L. Wang, Q.-F. Lu, X.-H. Zhong, and S.-L. Zhu, PRD96(2017)094005]
 - Ffective potential method, e.g. [M. Karliner and J. L. Rosner, PRD90(2014)094007]
 - Lattice QCD, e.g. [L. Liu, et al, PRD81(2010)094505] [Z. S. Brown, et al, PRD90(2014)094507]
 - 🌃 Light-front approach, e.g. [W. Wang, Z.-P. Xing, and J. Xu, EPJC77(2017)800] [W. Wang, F.-S. Yu, and Z.-X. Zhao, EPJC77(2017)781]
 - Chiral effective field theory
 - 🕸 etc.

Recent Reviews, e.g.

[D.-L. Yao, L.-Y. Dai, H.-Q. Zheng and Z.-Y. Zhou, Rept. Prog. Phys. 84, 076201 (2021)]
 [L. Meng, B. Wang, G.-J. Wang and S.-L. Zhu, Phys. Rept. 1019 (2023) 1-149]

Status in chiral perturbation theory

- □ Chiral effective field theory (or Chiral perturbation theory)
 - Heavy baryon approach
 - Magnetic moments [H.-S. Li, L. Meng, Z.-W. Liu, and S.-L. Zhu, PLB 777(2018)]
 - Strong and radiative decays [L.-Y. Xiao, K.-L. Wang, Q.-F. Lu, X.-H. Zhong, and S.-L. Zhu, PRD 96(2017)]]
 - Covariant formalism with EOMS scheme
 - Masses [Z.-F. Sun and M.J. Vicente Vacas, PRD93(2016)] [D.-L. Yao, PRD97(2018)]
 - Electromagnetic form factors, etc.

[Hiller Blin, Z.-F. Sun, and Vicente Vacas, PRD98(2018)] [R.-X. Shi, Y. Xiao and L.-S. Geng, PRD100(2019)]

- The spectroscopy of the DC baryons [tree level and unitarization]
 - e.g. [Z.-H. Guo, PRD96(2017)074004] [M.-J. Yan, et al, PRD98 (2018)]

Our works:

 ${\tt I}{\tt S}$ Scattering lengths at one-loop level \longrightarrow DC baryon spectrum

[Z.-R. Liang, P.-C. Qiu and D.-L. Yao, JHEP07(2023)124]

 ${\it I}$ A lattice QCD study of the S-wave scattering lengths and phase shifts

[J.-Y. Yi, Z.-R. Liang, Q.-Z. Li, L. Liu, P. Sun, X. Xiong, Y.-B. Yang and D.-L. Yao, work in progress]

II. One-loop analysis of the interactions between DCBs and GBs

1

Chiral effective Lagrangian

 \Box For $\psi\phi$ scattering, only a subset of operators is needed

$$\mathcal{L}_{\text{eff}} = \sum_{i=1}^{2} \mathcal{L}_{\phi\phi}^{(2i)} + \sum_{j=1}^{3} \mathcal{L}_{\psi\phi}^{(j)},$$

- ${\it \blacksquare}$ Purely mesonic sector \rightarrow required by renormalization
- Saryonic sector (unknown LECs: $1 g + 7 b_j + 10 c_k$)

$$\begin{split} \mathcal{L}_{\psi\phi}^{(1)} &= \bar{\psi} \left(i \not{D} - m \right) \psi + \frac{g}{2} \bar{\psi} \not{\mu} \gamma_5 \psi \ , \\ \mathcal{L}_{\psi\phi}^{(2)} &= b_1 \bar{\psi} \left\langle \chi_+ \right\rangle \psi + b_2 \bar{\psi} \widetilde{\chi}_+ \psi + b_3 \bar{\psi} u^2 \psi + b_4 \bar{\psi} \left\langle u^2 \right\rangle \psi + \frac{b_5}{m^2} \bar{\psi} \left(\left\{ u^{\mu}, u^{\nu} \right\} D_{\mu\nu} + H.c. \right) \psi \\ &+ \frac{b_6}{m^2} \bar{\psi} \left(\left\langle u^{\mu} u^{\nu} \right\rangle D_{\mu\nu} + H.c. \right) \psi + i b_7 \bar{\psi} \left[u^{\mu}, u^{\nu} \right] \sigma_{\mu\nu} \psi \ , \\ \mathcal{L}_{\psi\phi}^{(3)} &= i c_{11} \bar{\psi} \left[u_{\mu}, h^{\mu\nu} \right] \gamma_{\nu} \psi + \frac{c_{12}}{m^2} \bar{\psi} \left(i \left[u^{\mu}, h^{\nu\rho} \right] \gamma_{\mu} D_{\nu\rho} + H.c. \right) \psi + \frac{c_{13}}{m} \bar{\psi} \left(i \left\{ u^{\mu}, h^{\nu\rho} \right\} \\ &\times \sigma_{\mu\nu} D_{\rho} + H.c. \right) \psi + \frac{c_{14}}{m} \bar{\psi} \left(i \sigma_{\mu\nu} \left\langle u^{\mu} h^{\nu\rho} \right\rangle D_{\rho} + H.c. \right) \psi + c_{15} \bar{\psi} \left\{ u^{\mu}, \widetilde{\chi}_+ \right\} \gamma_5 \gamma_{\mu} \psi \\ &+ c_{16} \bar{\psi} u^{\mu} \gamma_5 \gamma_{\mu} \left\langle \chi_+ \right\rangle \psi + c_{17} \bar{\psi} \gamma_5 \gamma_{\mu} \left\langle u^{\mu} \widetilde{\chi}_+ \right\rangle \psi + i c_{18} \bar{\psi} \gamma_5 \gamma_{\mu} \left[D^{\mu}, \widetilde{\chi}_- \right] \psi \\ &+ i c_{19} \bar{\psi} \gamma_5 \gamma_{\mu} \left\langle [D^{\mu}, \chi_-] \right\rangle \psi + c_{20} \bar{\psi} \left[\widetilde{\chi}_-, u^{\mu} \right] \gamma_{\mu} \psi \ . \end{split}$$

Generic structure of scattering amplitude

□ SU(3) symmetry constraint: $SU(3) \rightarrow SU(2) \otimes U(1)$ © Classify the physics amplitudes into 16 different one with given (S, I), e.g.

$$\mathcal{T}_{\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}}^{(-2,\frac{1}{2})}(s,t,u)=\mathcal{T}_{\Omega_{cc}^{+}K^{-}\to\Omega_{cc}^{+}K^{-}}(s,t,u),\cdots$$

Lorentz decomposition:

 ${\it \ensuremath{\boxtimes}} A$ and B are two independent scalar functions.

Tree amplitudes

LO contribution

$$A_{\text{tree}}^{(1)} = \frac{g^2}{8F^2} \left[\mathcal{C}_S^{(1)} \mathcal{F}(s) + \mathcal{C}_U^{(1)} \mathcal{F}(u) \right] , \quad B_{\text{tree}}^{(1)} = \frac{\mathcal{C}_{WT}^{(1)}}{4F^2} - \frac{g^2}{4F^2} \left[\mathcal{C}_S^{(1)} \mathcal{G}(s) - \mathcal{C}_U^{(1)} \mathcal{G}(u) \right]$$

NLO contribution

$$\begin{split} A^{(2)}_{\rm tree} &= \frac{\mathcal{C}^{(2)}_1}{6F^2} + \mathcal{C}^{(2)}_2 \frac{m_{\phi_1}^2 + m_{\phi_2}^2 - t}{2F^2} + \frac{\mathcal{C}^{(2)}_3 \mathcal{H}(s,t)}{2m^2 F^2} + \mathcal{C}^{(2)}_4 \frac{u-s}{F^2} \ , \\ B^{(2)}_{\rm tree} &= \mathcal{C}^{(2)}_4 \frac{2(m_{\psi_1} + m_{\psi_2})}{F^2} \ . \end{split}$$

□ The NNLO tree amplitude can be derived straightforwardly, but in more complicated form.

梁泽锐 (Ze-Rui Liang)

Coefficients in tree amplitudes

		1	o (1)	1	2 (2)
(S, I)	Processes		$O(p^{\perp})$		$O(p^2)$
() /		$\mathcal{C}_{WT}^{(1)}$	$\mathcal{C}_{S}^{(1)}$	$\mathcal{C}_U^{(1)}$	$\mathcal{C}_1^{(2)}$ [$\mathcal{C}_2^{(2)}, \cdots$]
$(-2, \frac{1}{2})$) $\Omega_{cc}\bar{K} \to \Omega_{cc}\bar{K}$	-2	0	$2 [\Xi_{cc}]$	$-4(6b_1+b_2)m_K^2$
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	-2	0	$2 \left[\Omega_{cc}\right]$	$-4(6b_1+b_2)m_K^2$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	2	0	$-2 \left[\Omega_{cc}\right]$	$-4(6b_1+b_2)m_K^2$
$(0, \frac{3}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	-2	0	$2 [\Xi_{cc}]$	$-4(6b_1-5b_2)m_K^2$
(-1, 0)	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	4	$4 \left[\Omega_{cc}\right]$	0	$-8(3b_1+2b_2)m_K^2$
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	0	$\frac{4}{3}$ [Ω_{cc}]	$\frac{4}{3} [\Omega_{cc}]$	$-\frac{32}{3}(3b_1+2b_2)m_K^2+(8b_1+\frac{40}{3}b_2)m_\pi^2$
	$\Xi_{cc}\bar{K} \to \Omega_{cc}\eta$	$-2\sqrt{3}$	$-\frac{4}{\sqrt{3}} \left[\Omega_{cc}\right]$	$\frac{2}{\sqrt{3}} [\Xi_{cc}]$	$2\sqrt{3}b_2(5m_K^2-3m_\pi^2)$
(-1,1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0	0	0	$2\sqrt{3}b_2(5m_K^2-3m_\pi^2)$
	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	0	0	0	$-8(3b_1-b_2)m_K^2$
	$\Omega_{cc}\pi\to \Xi_{cc}\bar{K}$	-2	0	$2 [\Xi_{cc}]$	$-6b_2(m_K^2+m_\pi^2)$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	4	$3 [\Xi_{cc}]$	$-1 [\Xi_{cc}]$	$-4(6b_1+b_2)m_{\pi}^2$
	$\Xi_{cc}\eta \to \Xi_{cc}\eta$	0	$\frac{1}{3}$ [Ξ_{cc}]	$\frac{1}{3} [\Xi_{cc}]$	$-\frac{32}{3}(3b_1-b_2)m_K^2 + (8b_1-\frac{20}{3}b_2)m_\pi^2$
	$\Omega_{cc}K\to\Omega_{cc}K$	2	$2 [\Xi_{cc}]$	0	$-4(6b_1+b_2)m_K^2$
	$\Xi_{cc}\pi \to \Xi_{cc}\eta$	0	$1 [\Xi_{cc}]$	$1 [\Xi_{cc}]$	$-12b_2m_{\pi}^2$
	$\Xi_{cc}\pi\to\Omega_{cc}K$	$\sqrt{6}$	$\sqrt{6} [\Xi_{cc}]$	0	$-3\sqrt{6}b_2(m_K^2+m_\pi^2)$
	$\Xi_{cc}\eta\to\Omega_{cc}K$	$\sqrt{6}$	$\frac{\sqrt{6}}{3}$ [Ξ_{cc}]	$-\frac{2\sqrt{6}}{3} \left[\Omega_{cc}\right]$	$\sqrt{6}b_2(5m_K^2-3m_\pi^2)$

Loop amplitudes

Loop amplitudes

Power counting breaking problem & Solutions

PCB problem in Baryon Chiral Perturbation Theory (BChPT)

red dots denote possible PCB terms

□ Solutions (we prefer EOMS)

梁泽锐 (Ze-Rui Liang)

Extended-On-Mass-Shell (EOMS) scheme

Essence: two-step renormalization (\widetilde{MS} +finite)

1. UV subtraction:
$m = m^r(\mu) + \beta_m \frac{R}{16\pi^2 F^2} \ ,$
$g = g^r(\mu) + \beta_g \frac{R}{16\pi^2 F^2} \ , \label{eq:gradient}$
$b_i = b_i^r(\mu) + \beta_{b_i} \frac{R}{16\pi^2 F^2} \ , \label{eq:bi}$
$c_j = c_j^r(\mu) + \beta_{c_j} \frac{R}{16\pi^2 F^2} \; .$

2. Finite subtraction:							
$m^r(\mu) = \widetilde{m} + rac{\widetilde{eta}_m}{16\pi^2 F^2} \; ,$							
$g^r(\mu) = \widetilde{g} + rac{\widetilde{eta}_g}{16\pi^2 F^2} \; ,$							
$b^r_i(\mu) = \widetilde{b}_i + rac{\widetilde{eta}_{b_i}}{16\pi^2 F^2} \; .$							

Advantages:

- ${\tt I}{\tt S}{\tt S}$ Power counting is restored \longrightarrow predictive power
- Is Respect original analytic properties → spectroscopy (poles and cuts), chiral extrapolation, finite volume corrections
- Fast convergency behaviour in many cases, w.r.t. IR, HB, etc

Low energy constants

Priority principle for the LEC determination

Heavy Diquark Antiquark Symmetry (HDAS)

- In HQL, the heavy diquark belongs to the color $\overline{3}_c$ representation and serves as a static color source for the light quarks.
- The same color dynamics arises in the mesons containing a single heavy antiquark.

Heavy diquark antiquark symmetry

Unknown LECs connected with the ones in the charmed sector.

- Solution $\mathbb{C}^{(*)} \in \mathcal{S} = \operatorname{diag}\{\tilde{H}, T\}$, where $\psi^{(\prime)} \in T$ and $D^{(*)} \in H$.
- \blacksquare The $D\phi$ interaction is well determined!

Being able to make predictions now!

$\psi \phi$	scattering	$D\phi$	scattering
LECs	Value	LECs	Value
\tilde{g}	-0.19	$ ilde{g}_0$	1.095
\tilde{b}_1	-0.04	\tilde{h}_0	0.0172
\tilde{b}_2	-0.11	\tilde{h}_1	0.4266
\tilde{b}_3	$-1.46\substack{+0.43\\-0.46}$	\tilde{h}_3	$5.59^{-2.07}_{-1.96}$
\tilde{b}_4	0.66 ± 0.19	\tilde{h}_2	$2.52^{+0.73}_{-0.74}$
\tilde{b}_5	$-0.17\substack{+0.05 \\ -0.06}$	\tilde{h}_5	$-0.71\substack{+0.23 \\ -0.24}$
\tilde{b}_6	0.11 ± 0.04	\tilde{h}_4	$-0.47\substack{+0.17 \\ -0.17}$
\tilde{c}_{11}	$-0.08\substack{+0.21\\-0.14}$	\tilde{g}_2	$-0.16^{+0.52}_{-0.39}$
\tilde{c}_{12}	$0.08\substack{+0.03 \\ -0.02}$	\tilde{g}_3	$0.08\substack{+0.03 \\ -0.03}$
\tilde{c}_{20}	$0.49^{+0.09}_{-0.15}$	\tilde{g}_1	$-0.99\substack{+0.30\\-0.18}$

Basics of scattering lengths

□ Partial-wave amplitude:

$$\begin{split} f_{\ell\pm}^{(S,I)}(s) &= \frac{1}{16\pi\sqrt{s}} \left\{ (E+m_{\psi}) \left[A_{\ell}^{(S,I)}(s) + \left(\sqrt{s} - m_{\psi}\right) B_{\ell}^{(S,I)}(s) \right] \right. \\ &+ (E-m_{\psi}) \left[-A_{\ell\pm1}^{(S,I)}(s) + \left(\sqrt{s} + m_{\psi}\right) B_{\ell\pm1}^{(S,I)}(s) \right] \right\}. \end{split}$$

Generic definition of scattering lengths:

$$a_{\ell\pm} = \lim_{|\mathbf{q}| \to 0} \frac{f_{\ell\pm}(s)}{\mathbf{q}^{2\ell}}$$
 (numerical 0/0 problem)

 $\hfill\square$ Formulae for S- and P-wave scattering lengths

$$\begin{split} a_{0+}^{(S,I)} &= \frac{m_{\psi}}{4\pi \left(m_{\psi} + m_{\phi}\right)} \bigg\{ \left[A^{(S,I)}(s,0) \right]_{\mathbf{q}^{2}=0} + m_{\phi} \left[B^{(S,I)}(s,0) \right]_{\mathbf{q}^{2}=0} \bigg\} ,\\ a_{1+}^{(S,I)} &= \frac{m_{\psi}}{6\pi \left(m_{\psi} + m_{\phi}\right)} \bigg\{ \left[\partial_{t} A^{(S,I)}(s,t) \right]_{t=0,\mathbf{q}^{2}=0} + m_{\phi} \left[\partial_{t} B^{(S,I)}(s,t) \right]_{t=0,\mathbf{q}^{2}=0} \bigg\} ,\\ a_{1-}^{(S,I)} &= a_{1+}^{(S,I)} - \frac{1}{16\pi m_{\psi} \left(m_{\psi} + m_{\phi}\right)} \bigg\{ \left[A^{(S,I)}(s,0) \right]_{\mathbf{q}^{2}=0} - (2m_{\psi} + m_{\phi}) \left[B^{(S,I)}(s,0) \right]_{\mathbf{q}^{2}=0} \bigg\} . \end{split}$$

Therefore, the S- and P-wave scattering lengths can be calculated analytically!

S-wave scattering lengths: $J^P = (1/2)^-$

(S I)	Processes	$\mathcal{O}(n^1)$	$\mathcal{O}(n^2)$		$\mathcal{O}(p^3)$	Total-FOMS	HB
(0,1)	110003503	C (p)	C(p)	Tree	Loop		
$(-2,\frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	-0.27	0.29	-0.11	-0.001	$-0.09\substack{+0.12\\-0.13}$	-0.20(1)
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	-0.27	0.27	-0.13	-0.47	-0.60 ± 0.13	-0.25(1)
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	0.27	0.34	0.13	0.30	1.03 ± 0.19	0.92(2)
$(0, \frac{3}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	-0.12	0.04	-0.01	-0.06	-0.16 ± 0.02	-0.10(2)
(-1, 0)	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0.54	0.24	0.25	0.16	$1.19^{+0.22}_{-0.21}$	2.15(11)
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	-0.001	0.37	0.0	0.05 + 0.55i	$0.42^{+0.18}_{-0.19} + 0.55i$	0.57(3) + 0.21i
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0.0	0.04	0.0	-0.04	-0.01 ± 0.02	-0.002(1)
	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0.0	0.31	0.0	-0.04 + 0.10i	$0.27^{+0.13}_{-0.13} + 0.10i$	0.26(1) + 0.19i
$(0, \frac{1}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	0.25	0.04	0.01	0.04	0.34 ± 0.02	0.36(1)
	$\Xi_{cc}\eta \to \Xi_{cc}\eta$	-0.001	0.32	0.0	-0.26	$0.06\substack{+0.14 \\ -0.15}$	0.34(1) + 0.10i
	$\Omega_{cc}K\to\Omega_{cc}K$	0.27	0.29	0.11	-0.01 + 0.55i	$0.66^{+0.13}_{-0.13} + 0.55i$	1.18(6) + 0.29i

Differences between **EOMS** and **HB** results:

Rel. corrections; HQL-vanishing diagrams;

Res.-exchange contributions

P-wave scattering lengths: $J^P = (3/2)^+$

(S I)	Processes	$\mathcal{O}(n^1)$	$\mathcal{O}(n^2)$		$\mathcal{O}(p^3)$	Total
(0,1)	110003303	$\mathcal{O}(p^{-})$	$\mathcal{O}(p^{-})$	Tree	Loop	Total
$(-2, \frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	0.16	0.60	-0.22	-3.00	$-2.47^{+3.04}_{-2.64}$
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	0.10	0.59	-0.22	-1.19	$-0.73^{+3.02}_{-2.64}$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	-0.10	-8.77	0.22	1.71	$-6.93^{+2.83}_{-3.21}$
$(0, \frac{3}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	0.62	0.75	-0.18	-41.8	$-40.6^{+3.20}_{-2.97}$
(-1, 0)	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0.0	5.27	0.45	0.48	$6.19^{+4.78}_{-5.40}$
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	0.07	2.0	0.0	-1.13 + 0.01i	$0.93^{+2.04}_{-1.96} + 0.01i$
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0.0	-6.23	0.001	-0.10	$-6.32^{+1.85}_{-1.82}$
	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	0.0	-4.09	0.0	-0.11 + 0.01i	$-4.2^{+1.23}_{-1.21} + 0.01i$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	-0.31	0.75	0.35	21.2	$21.9^{+3.39}_{-3.70}$
	$\Xi_{cc}\eta \to \Xi_{cc}\eta$	0.02	-2.31	0.0	-0.01 + 0.01i	$-2.30^{+1.13}_{-1.13} + 0.01i$
	$\Omega_{cc}K\to\Omega_{cc}K$	0.0	0.6	0.22	0.19 + 0.01i	$1.0^{+2.67}_{-3.01} + 0.01i$

□ The NNLO loop contribution turns out to be large for some channels

IT he size of NNLO trees might be underestimated, due to the poor information on the NNLO LECs.

P-wave scattering lengths: $J^P = (1/2)^+$

(S I)	Processes	$\mathcal{O}(p^1)$	$\mathcal{O}(p^2)$		$\mathcal{O}(p^3)$	– Total
(0,1)	110003303			Tree	Loop	
$(-2, \frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	-0.38	0.58	-0.34	0.02	$-0.13^{+3.03}_{-2.64}$
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	-0.36	0.57	-0.37	-1.74	$-1.90^{+3.01}_{-2.61}$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	0.36	-8.80	0.37	0.46	$-7.59^{+2.82}_{-3.20}$
$(0, \frac{3}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	-0.80	0.75	-0.2	19.5	$19.3^{+3.19}_{-2.97}$
(-1, 0)	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0.16	5.25	0.74	-9.77	$-3.61^{+4.77}_{-5.37}$
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	-0.13	1.97	0.0	-2.16 + 0.01i	$-0.32^{+2.03}_{-1.95} + 0.01i$
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0.0	-6.23	0.0	-0.53	$-6.75^{+1.85}_{-1.82}$
	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0.0	-4.11	0.0	-0.60 + 0.01i	$-4.72_{-1.22}^{+1.24} + 0.01i$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	-0.27	0.75	0.39	-104.9	$-104.1^{+3.38}_{-3.70}$
	$\Xi_{cc}\eta \to \Xi_{cc}\eta$	-0.03	-2.33	0.0	-1.43 + 0.01i	$-3.79^{+1.13}_{-1.14} + 0.01i$
	$\Omega_{cc} K \to \Omega_{cc} K$	0.16	0.58	0.34	-3.77 + 0.01i	$-2.69^{+2.67}_{-2.00} + 0.01i$

Results for *P*-wave scattering lengths for DCBs for the first time.

Full results vs HQL results

(S I)	Processes	$a_{0+} [J^{I}]$	$r = \frac{1}{2}$	$a_{1+} [J^P = \frac{3}{2}^+]$		
(D, I)	TTOCESSES	Full results	HQL results	Full results	HQL results	
$(-2,\frac{1}{2})$	$\Omega_{cc}\bar{K}$	$-0.09^{+0.12}_{-0.13}$	$-0.08^{+0.12}_{-0.13}$	$-2.47^{+3.04}_{-2.64}$	$0.34^{+3.04}_{-2.64}$	
(1, 1)	$\Xi_{cc}K$	-0.60 ± 0.13	-0.62 ± 0.13	$-0.73^{+3.02}_{-2.64}$	$0.39^{+3.02}_{-2.62}$	
(1, 0)	$\Xi_{cc}K$	1.03 ± 0.19	1.03 ± 0.19	$-6.93^{+2.83}_{-3.21}$	$-8.19\substack{+2.83\\-3.21}$	
$(0, \frac{3}{2})$	$\Xi_{cc}\pi$	-0.16 ± 0.02	-0.15 ± 0.02	$-40.6^{+3.20}_{-2.97}$	$0.63\substack{+3.20 \\ -2.97}$	
(-1, 0)	$\Xi_{cc}\bar{K}$	$1.19^{+0.22}_{-0.21}$	$1.19\substack{+0.22\\-0.21}$	$6.19\substack{+4.78 \\ -5.40}$	$6.36\substack{+4.78 \\ -5.40}$	
	$\Omega_{cc}\eta$	$0.42^{+0.18}_{-0.19} + 0.55i$	$0.42^{+0.18}_{-0.19} + 0.56i$	$0.93^{+2.04}_{-1.96} + 0.01i$	$2.03^{+2.04}_{-1.96}$	
(-1,1)	$\Omega_{cc}\pi$	-0.01 ± 0.02	0.0 ± 0.02	$-6.32^{+1.85}_{-1.82}$	$-6.23^{+1.85}_{-1.82}$	
	$\Xi_{cc}\bar{K}$	$0.27^{+0.13}_{-0.13} + 0.10i$	$0.28^{+0.13}_{-0.13} + 0.10i$	$-4.2^{+1.23}_{-1.21} + 0.01i$	$-4.14^{+1.23}_{-1.21}$	
$(0, \frac{1}{2})$	$\Xi_{cc}\pi$	0.34 ± 0.02	0.33 ± 0.02	$21.9^{+3.39}_{-3.70}$	$1.41_{-3.70}^{+3.39}$	
	$\Xi_{cc}\eta$	$0.06\substack{+0.14 \\ -0.15}$	$0.05\substack{+0.14 \\ -0.15}$	$-2.30^{+1.13}_{-1.13} + 0.01i$	-2.16 ± 1.13	
	$\Omega_{cc}K$	$0.66^{+0.13}_{-0.13} + 0.55i$	$0.64^{+0.13}_{-0.13} + 0.55i$	$-2.30^{+1.13}_{-1.13} + 0.01i$	$1.14^{+2.67}_{-3.01}$	

Those HQL-vanishing diagrams are significant for *P*-wave scattering lengths.

S-wave phase shifts: single channels

- Cancellation exists between the LO and NLO contributions.
- Suffer from poor convergence property as usual in SU(3) ChPT!
- The HQL-vanishing diagrams contribute negligible!

S-wave phase shifts: coupled channels

Only for elastic processes in elastic scattering regions

 ${f
m I}$ Same conclusion can be drawn as the single-channel cases, except for the $\Xi_{cc}\pi(I=1/2)$ channel.

梁泽锐 (Ze-Rui Liang)

III. Summary and Outlook

Summary and outlook

\Box One-loop analysis of the $\psi\phi$ interactions within relativistic BChPT using EOMS

- Analytical chiral amplitudes are obtained, HDAS is used to estimate the low-energy constants.
- S- and P-wave scattering lengths are predicted.
- ${}^{
 m ss}$ S-wave phase shifts for elastic scattering processes are presented in the energy region near threshold.

I To draw more solid conclusions, one needs more data from Lattice QCD.

- Lattice computation of all the single channels is ongoing.
- so Coupled channels with dis-connected diagrams, more types of interpolating operators.

ChPT & Lattice $QCD \rightarrow$ the spectroscopy of doubly charmed baryons

Thank you very much!

Backup

Why phase shifts?

Disclaimer:

- Challenging to measure phase shifts experimentally!
- Yet, Lüscher formula links phase shifts to energy levels from lattice simulations!

Lüscher formula

$$det[\mathbf{1} + i\rho \cdot \mathbf{t} \cdot (1 + i\mathbf{M})] = 0$$

🕫 t is infinite-volume scattering matrix (ERE, S-matrix parametrization)

 \bowtie $\mathbf{M}(E_{cm}, L)$ encodes finite-volume information

ho meson from $\pi\pi$ scatteing [M. Werner, et al., Eur.Phys.J.A 56 (2020) 2, 61]