Revisiting O(N) sigma model at unphysical m_{π} and finite temperature

Zhiguang Xiao

Collaborated with: Lyv Yuan-Lin, Li Qu-Zhi, Zheng Han-Qing Based on: PRD,109,094026; arxiv:2405.11313

Talk given at The 9TH WORKSHOP ON CHIRAL EFFECTIVE FIELD THEORY, Chang Sha, 2024-10-21

2024年10月21日

2 INTRODUCTION OF O(N) SIGMA MODEL

- (3) m_{π} DEPENDENCE OF σ
 - Temperature dependence of σ
- **5** Vacuum structure of the O(N) model with EXPLICIT CHIRAL SYMMETRY BREAKING

Analysing the lattice QCD data $m_{\pi} \neq 139$ MeV: $m_{\pi} = 236$ MeV, [Dudek, et al., PRD86,034031]; $m_{\pi} = 391$ MeV[Briceno,PRL118,022002]

• PKU + crossing using BNR relation: [X. L. Gao, Z.H.Guo, ZX, ZZ, PRD]

105 (2022)9,094002]

• Roy equation: [X.H. Cao, et al., PRD108(2023)3,034009] at $m_{\pi} = 236$ MeV: $c\sqrt{s_{\sigma}} = 543 - i250$ MeV at $m_{\pi} = 391$ MeV: $m_{bound} = 759$ MeV, $\sqrt{s_{sub}} = (269 - i211)$ MeV Propose the pole trajectory:

The proposed explanation:

The reason for the appearence of the subthreshold resonance poles:

- When the VS move through the threshold and becomes a bound state, the branch point of the l.h.c. move right.
- From the positivity of the residue of the bound state pole, it can be proved that near the branch point *S*(*s*) tends to negative infinty.
- The picture is like above. For small m_π, there are two zero point of S(s) below threshold. For larger m_π, S(s) become smaller, no zero points → two resonance pole.

INTRODUCTION: O(N) SIGMA MODEL

• Lagrangian: $a = 1, \ldots, N$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_a \partial^{\mu} \phi_a - \frac{1}{2} \mu_0^2 \phi_a \phi_a - \frac{\lambda_0}{8N} (\phi_a \phi_a)^2 + \alpha \phi_N,$$

• Classical level: when $\alpha = 0$, No explicit breaking $\mu^2 > 0$, no SSB; $\mu^2 < 0$, SSB. $\phi^2 = -2\mu^2 N/\lambda \equiv \langle \phi \rangle^2, \langle \phi \rangle > 0$

• Classical level: when $\alpha \neq 0$, vacuum solution

$$(-\mu_0^2 - \frac{\lambda_0}{4N} |\phi|^2) \phi_a = 0 \Rightarrow \phi_a = 0, \text{ for } a = 1, \dots, N-1$$

 $(-\mu_0^2 - \frac{\lambda_0}{4N} |\phi|^2) \phi_N + \alpha = 0$

 $\langle \phi_N \neq 0 \rangle \sim \mathcal{O}(N^{1/2}), \ \alpha \sim \mathcal{O}(N^{1/2}).$

• To count the N order: Introduce an auxiliary field χ ,

$$\begin{split} \mathcal{L} \rightarrow \mathcal{L} &+ \frac{N}{2\lambda_0} \left(\chi - \frac{\lambda_0}{2N} \phi_a \phi_a - \mu_0^2 \right)^2 \\ &= \frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a + \alpha \phi_N + \frac{N}{2\lambda_0} \chi^2 - \frac{1}{2} \chi \phi_a \phi_a - \frac{N \mu_0^2}{\lambda_0} \chi \,, \end{split}$$

Integrate out χ , come back to the previous path integral.

Count the order: χ propagator: iλ₀/N ~ Θ(1/N); closed φ loop: Θ(N); φ ~ Θ(1)

(a)(b)(c)(d) O(1/N), (e) $O(1/N^2)$ not the same topological structure as (b)

Leading order, only ϕ propagator in loop, 1PI one loop, No χ loop.

Effective action:

$$\Gamma(\phi,\chi) = \int d^4x \left(\frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a + \alpha \phi_N + \frac{N}{2\lambda_0} \chi^2 - \frac{1}{2} \chi \phi_a \phi_a - \frac{N\mu_0^2}{\lambda_0} \chi \right) + \frac{i}{2} N \text{Tr} \log(\partial^2 + \chi - i\epsilon) , \qquad (1)$$

Effective potential: (ϕ, χ constants)

$$V(\phi,\chi) = -\alpha\phi_N - \frac{N}{2\lambda_0}\chi^2 + \frac{1}{2}\chi\phi_a\phi_a + \frac{N\mu_0^2}{\lambda_0}\chi - \frac{i}{2}N\int\frac{d^4\ell}{(2\pi)^4}\log(-\ell^2 + \chi - i)$$
(2)

Renormalization condition:

$$\frac{\mu(M)^2}{\lambda(M)} = \frac{\mu_0^2}{\lambda_0} + \frac{i}{2} \int \frac{\mathrm{d}^4 \ell}{(2\pi)^4} \frac{1}{\ell^2 + i\epsilon} \,, \tag{3}$$

$$\frac{1}{\lambda(M)} = \frac{1}{\lambda_0} - \frac{i}{2} \int \frac{\mathrm{d}^4 \ell}{(2\pi)^4} \frac{1}{(\ell^2 + i\epsilon)(\ell^2 - M^2 + i\epsilon)} \,. \tag{4}$$

After renormalization:

$$V(\phi,\chi) = -\alpha\phi_N + \frac{1}{2}\chi\phi^2 + \frac{N\mu^2(M)}{\lambda(M)}\chi - \frac{N}{64\pi^2}\chi^2\left(\log\frac{M^2}{\chi} + \frac{1}{2}\right), \quad (5)$$

$$\frac{\partial V}{\partial \chi} = 0 \text{ and } \frac{\partial V}{\partial \phi_a} = 0$$

$$\frac{\partial V}{\partial \chi} = 0 \Rightarrow \quad \phi_a \phi_a = \frac{2N}{\lambda} \chi - \frac{2N\mu^2}{\lambda} - \frac{N}{16\pi^2} \chi \log \frac{\chi}{M^2}, \quad (6)$$

$$\frac{\partial V}{\partial \phi_a} = 0 \Rightarrow \quad \chi \phi_a = 0 \ (a < N), \quad \chi \phi_N - \alpha = 0. \quad (7)$$

• For $\alpha \neq 0$, With explicit broken, one solution: $\chi \neq 0$, $\phi_a = 0$, for a = 1, ..., N - 1, $\chi = \frac{\alpha}{\phi_N} \neq 0$.

$$\phi_N^3 = \frac{2N\alpha}{\lambda} - \frac{2N\mu^2}{\lambda}\phi_N - \frac{N\alpha}{16\pi^2}\log\frac{\alpha}{M^2\phi_N}$$

 $\langle \phi_N \rangle \sim \mathcal{O}(N^{1/2}), \langle \chi \rangle \sim \mathcal{O}(1), \, \alpha \sim \mathcal{O}(N^{1/2}).$

- minimum condition is $\chi > 0$ and $\frac{32\pi^2 \phi_N/N}{\log(M^2/\chi) 1} + \chi > 0$ • π mass $m_{\pi}^2 = \chi$.
- For N = 4, compared with PCAC: $\partial^{\mu}A^{a}_{\mu} = m_{\pi}^{2}f_{\pi}\pi^{a}$, and with explicit SSB, $\partial^{\mu}A^{a}_{\mu} = \alpha\pi^{a}$. From $\chi = \frac{\alpha}{\phi_{N}} = m_{\pi}^{2}$, we see $\langle \phi_{N} \rangle = f_{\pi} \sim \mathcal{O}(N^{1/2})$.

 $\mathbb{E}: O(N)$ model leading order $\pi\pi$ amplitude [Coleman,et.al.,PRD10,2491]

 $\pi\pi$ amplitude to the leading 1/N order: (σ , τ have mixing)

$$\mathcal{I}_{\pi_a \pi_b \to \pi_c \pi_d} = i D_{\tau\tau}(s) \delta_{ab} \delta_{cd} + i D_{\tau\tau}(t) \delta_{ac} \delta_{bd} + i D_{\tau\tau}(u) \delta_{ad} \delta_{bc} , \qquad (8)$$

$$D^{-1}(p^2) = -i \begin{pmatrix} p^2 - m_\pi^2 & -f_\pi \\ -f_\pi & N/\lambda_0 + NB_0(p^2, m_\pi) \end{pmatrix},$$
(9)

$$\tau \equiv \chi - \langle \chi \rangle, \quad B_0(p^2, m_\pi) = \frac{-i}{2} \int \frac{\mathrm{d}^4 \ell}{(2\pi)^4} \frac{1}{(\ell^2 - m_\pi^2 + i\epsilon)((\ell + p)^2 - m_\pi^2 + i\epsilon)}$$

After renormalization:

$$\frac{1}{\lambda_0} + B_0(p^2, m_\pi) = \frac{1}{\lambda(M)} + B(p^2, m_\pi, M), \qquad (10)$$
$$B(s, m_\pi, M) = \frac{1}{32\pi^2} \left(1 + \rho(s) \log \frac{\rho(s) - 1}{\rho(s) + 1} - \log \frac{m_\pi^2}{M^2} \right), \qquad (11)$$

After projection to IJ = 00 channel, $\mathcal{O}(N)$ amplitude \mathcal{T}_{00}^{LO} (define M such that $1/\lambda(M) = 0$),

$$\begin{aligned} \mathcal{I}_{00}^{LO}(s) &= \frac{iND_{\tau\tau}(s)}{32\pi} = \frac{N}{32\pi} \mathcal{A}(s), \\ \mathcal{A}(s) &= \frac{m_{\pi}^2 - s}{(s - m_{\pi}^2)B(s, m_{\pi}, M) - f_{\pi}^2/N}, \end{aligned}$$

• Adler zero: $s_A = m_\pi^2$.

• σ pole : solve

$$(s - m_{\pi}^2)B^{II}(s, m_{\pi}, M) - f_{\pi}^2/N = 0.$$

 m_π dependence of σ at leading 1/N

• Adjust the $M \sim 550 MeV$, at $m_{\pi} = 139 MeV$, $\sqrt{s_{\sigma}} = 356 - i148 MeV$.

- As m_{π} increases, $\sqrt{s_{\sigma}}$ moves \rightarrow real axis \rightarrow two virtual state poles \rightarrow one virtual move left, the other move right $\rightarrow (m_c \simeq 337 \,\text{MeV})$ one virtual, one bound
- No crossing symmetry: $\sigma \rightarrow$ bound state, l.h.c brach point $\rightarrow s = 4m_{\pi}^2 m_{\sigma}^2$.
- Direct adding t and u channel contribution: violate unitarity.
- Unitarization method: IAM or K matrix, No control of the spurious poles, we resort to N/D.

$\rm N/D$: Unitarity with partial recovery of crossing

N/D Method: Basic ideas

- T matrix: $T(s) = \frac{N(s)}{D(s)}$: N(s) only has left-hand cut, D only has right-hand cut.
- Since $\operatorname{Im}_R \mathcal{T}^{-1} = -\rho$, we have

$$Im_R D(s) = -\rho(s)N(s), \qquad (12)$$

$$Im_L N(s) = D(s)Im_L \mathcal{T}(s). \qquad (13)$$

• Write down the dispersion relation of N(s) and D(s) (twice subtracted)

$$\begin{split} D(s) &= \frac{s - s_A}{s_0 - s_A} + g_D \frac{s - s_0}{s_A - s_0} - \frac{(s - s_0)(s - s_A)}{\pi} \int_R \frac{\rho(s')N(s')}{(s' - s)(s' - s_0)(s' - s_A)} \mathrm{d}s' \,, \\ (14) \\ N(s) &= b_0 \frac{s - s_A}{s_0 - s_A} + g_N \frac{s - s_0}{s_A - s_0} + \frac{(s - s_0)(s - s_A)}{\pi} \int_L \frac{D(s')\mathrm{Im}_L \mathcal{T}(s')}{(s' - s)(s' - s_0)(s' - s_A)} \mathrm{d}s' \,, \\ (15) \end{split}$$

- Using the O(N) result $\text{Im}_L \mathcal{T}(s)$.
- Subtraction, $s_0 = 4m_{\pi}^2$, $s_A = m_{\pi}^2$, $D(s_0) = 1$: require \mathcal{T} to recover O(N) result at the leading 1/N order

$$b_0 = \mathcal{T}_{00}(s_0) = \frac{N-1}{32\pi} \mathcal{A}^{LO}(s_0) + I_{tu}(s_0), \qquad (16)$$
$$32\pi f_\pi^2 b_0 \qquad g_N \qquad \mathbf{D} \quad I_{tu}(s_0) = 0$$

$$g_D = \frac{g_{D} - g_{\pi} + g_{\pi}}{N(s_0 - s_A)}, \quad \frac{g_N}{g_D} = \text{Re} I_{tu}(s_A).$$
 (17)

- When $m_{\pi} > m_c$, we require $D(m_{\sigma}^2) = 0$, for the sigma pole to be consistent with the branch point of the left hand cut.
- Solve the integral equation numerically.

 As m_π increases:
 σ approaches the real axis→ two virtual states, →
 {
 one moving right → first sheet bound state
 one moving left
 l.h.c. → another virtual state
 }
 hit → resonant poles

 The VSIII is generated when the Adler zero hit the left-hand
 cut

σ pole trajectory with varying m_π

Physical-sheet S-matrix below threshold

- The left graph ($m_{\pi} = 207 \text{ MeV}$) : two virtual states in the near threshold region and one additional virtual state pole generated close to the left-hand cut.
- The middle graph ($m_{\pi} = 283 \text{ MeV}$) : one bound state with two virtual states.
- The right graph (m_π = 391 MeV): two virtual state poles have become a pair of resonance poles.

Temperature dependence at leading 1/N

- It is well known: under high temperature, chiral symmetry recovers.[R. D. Pisarski and F. Wilczek, PRD 29,338(1984);A. Bazavov et al., PRD85,054503(2012)] $\lim_{T\to\infty} v(T) \to 0$
- It is expected that $m_{\sigma} \rightarrow m_{\pi}$ at high temperature.
- ChPT: intrincically in broken phase, break down at high temperature, $T \sim f_{\pi}$.
- In O(N) model: v.e.v. v(T) evolves with $T_{,[J.O.Anderson, et. al. PRD70,116007]}$

- No explicit breaking $\alpha = 0$:at $T < T_c \sim 160$ MeV, $m_{\pi}(T) = 0$, $v(T) \neq 0$ SSB; at $T > T_c$, v(T) = 0, $m_{\pi}(T) \neq 0$.
- With $\alpha \neq 0$, $v(T) \rightarrow 0$.

σ pole trajectory with T

At the leading 1/N order, N = 4:

From left to right, $m_{\pi}(0)=200$, 139 and 80 MeV respectively.

• Scattering amplitude at T in the center of mass frame.

$$\begin{split} \mathcal{T}_{00}^{T}(s) &= -\frac{1}{32\pi} \frac{s - m_{\pi}^{2}(T)}{\left(s - m_{\pi}^{2}(T)\right) \; B^{T}\left(s, m_{\pi}(T), M\right) - v^{2}(T)/N} \\ B^{T}\left(s, m_{\pi}(T), M\right) &= B\left(s, m_{\pi}(T), M\right) + B^{T\neq 0}\left(s, m_{\pi}(T)\right) \; , \\ B^{T\neq 0}\left(s, m_{\pi}(T)\right) &= \int_{0}^{\infty} \frac{\mathrm{d}k \, k^{2}}{8\pi^{2} \omega_{k}^{2}} n_{B}(\omega_{k}) \left(\frac{1}{E + 2\omega_{k}} - \frac{1}{E - 2\omega_{k}}\right) \; , \end{split}$$

• σ resonance on the second sheet, \rightarrow virtual state, \rightarrow bound state \rightarrow tends to m_{π} .

N/D WITH TEMPERATURE

• Unitarity with two particle intermediate states for IJ = 00 channel,

$$\operatorname{Im} \mathcal{T}^{T}(s) = \rho^{T}(s) \left| \mathcal{T}^{T} \right|^{2}, \qquad (18)$$

- Lorentz symmetry is broken by the temperature: Center of mass system in *s* channel is different from *t* channel crossing is also broken.
- IJ = 00 thermal amplitude:

$$\begin{aligned} \mathcal{F}_{00}^{T}(s) &= -\frac{1}{32\pi} \frac{s - m_{\pi}^{2}(T)}{(s - m_{\pi}^{2}(T)) \ B^{T}(s, m_{\pi}(T), M) - v^{2}(T)/N}, \\ B^{T}(s, m_{\pi}(T), M) &= B(s, m_{\pi}(T), M) + B^{T\neq 0}(s, m_{\pi}(T)), \\ B^{T\neq 0}(s, m_{\pi}(T)) &= \int_{0}^{\infty} \frac{\mathrm{d}k \ k^{2}}{8\pi^{2} \omega_{k}^{2}} n_{B}(\omega_{k}) \left(\frac{1}{E + 2\omega_{k}} - \frac{1}{E - 2\omega_{k}}\right), \end{aligned}$$

N/D can be done: substitute the corresponding temperature dependent amplitudes.

N/D with temperature: σ trajectory

• $T = 0, m_{\pi} = 139 \text{MeV}.$

- T = 60 MeV, VSIII generated from the l.h.c.
- σ resonance \rightarrow virtual states (I, II), (T=124MeV)
- VS1 \rightarrow BS (T=137MeV),
- T = 140 MeV, VSII meets VSIII \rightarrow subthreshold resonance.

•
$$m_{\sigma}^2 \to m_{\pi}^2$$

Vacuum structure: m_{π} dependence

Solve $\chi(\phi)$, insert into $V(\phi,\chi)$, to obtain the effective potential $V_{e\!f\!f}(\phi)$.

$$\begin{split} V(\phi,\chi) &= -\alpha \phi_N + \frac{1}{2}\chi \phi^2 + \frac{N\mu^2(M)}{\lambda(M)}\chi - \frac{N}{64\pi^2}\chi^2 \left(\log\frac{M^2}{\chi} + \frac{1}{2}\right)\,,\\ \frac{\partial V}{\partial \chi} &= 0 \Rightarrow \quad \phi^2 = f_\pi^2 + \frac{N}{16\pi^2} \left(m_\pi^2\log\frac{m_\pi^2}{M^2} - \chi\log\frac{\chi}{M^2}\right)\,,\\ \frac{\partial V}{\partial \phi_a} &= 0 \Rightarrow \quad \chi \phi_a = 0 \ (a < N), \quad \chi \phi_N - \alpha = 0\,. \end{split}$$

- Two solutions branches: separated at χ_b
- Left one: With Chiral SSB in the Chiral limit, determine f_{π} fixed, m_{π} .
- Right one : No chiral SSB in the Chiral limit.
- V become complex for $|\phi|^2 > \phi_b^2$: the system not stable. $\phi^2 < \phi_{min}^2$.

Two branches of the vacuum

- $m_{\pi}^2 < \chi_b \sim 333$ MeV, solution I: the local minimum on the first branch, false vacuum. There is a tachyon.
- Global minimum: Solution II on the second branch.
- As m_{π} increases, solution I moves towards the second branch.
- $m_{\pi}^2 > \chi_b$, no local minimum on the first branch. Solution I moves on the second branch \rightarrow saddle point.
- $m_{\pi} > (32\pi^2 f_{\pi}^2/(Ny_0))^{1/2} \sim 680$ MeV: solution I \leftrightarrow Solution II.

VACUUM STRUCTURE: FINITE TEMPERATURE

- T increases: $|\phi_b|$ and $|\phi_{min}| \rightarrow$ smaller.
- T_f : there is no solution for the gap equations. $T_f \sim 314 \text{MeV}$
- T_b : $\phi_b = 0$.
- The two branches: Effective potential V get closer.
- $T_c < T_f < T_b$. $T > T_f$, no vacuum, the system is already unstable. Difference $T_b - T_f \sim \text{keV}$.

At high temperature: the Solution I will move to the second branch, becoming a saddle point.

TACHYON: m_{π} and T dependence

There could be a tachyon for solution I.

- Plays a role of another cutoff of the theory: $m_t^2 \ll s \ll s + m_t^2$. $(m_t \sim 1.1 \text{GeV} \text{ for physical mass, } T = 0)$ [R. S. Chivukula and M. Golden, PLB 267, 233]
- $s = -m_t^2 < 0$: m_t decreases with temperature and m_{π} .
- Tachyon has positive residue in the $\sigma \sigma$ propogator, similar to bound state.
- Tachyon \rightarrow bound state transition \leftrightarrow the point of exchanging the two solution.

- σ pole trojectory in leading O(N) and N/D modified O(N): with varying m_{π} and temperature.
- Subthreshold resonance pole generation: After crossing symmtry partially recovered.
- Vacuum structure: with varying m_{π} and temperture. Phenominological favored one is the first branch.