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MOTIVATION

Analysing the lattice QCD data m,; # 139MeV: m, = 236MeV,
[Dudek, et al.,, PRD86,034031]; Mg — 391 MeV[Briceno,PRLl18,022002]
@ PKU + crossing using BNR relation: x. L. Gao,z.H.Guo,2X,22, PRD

105 (2022)9,094002]
at m; = 236MeV:m, = 610 £ 11MeV,I', = 327 &= 8MeV;
at m; = 391MeV: mpoung = 774 £ 6MeV, myitna = 716 = 28MeV
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(*] Roy equation:[X.H. Cao, et al.,PRD108(2023)3,034009]

at m,; = 236MeV: ¢\/s, = 543—i250 MeV
at m; = 391MeV:  Mmpoung = 759IMeV, /S = (269—:211) MeV
Propose the pole trajectory:

A ® 1 st-RS Bound State
2 nd-RS Virtual State
® 2 nd-RS Resonance

Im [s/m?2]

Left-hand cutg¢



The proposed explanation:

o

s/m? ‘ s/m?
The reason for the appearence of the subthreshold resonance poles:

@ When the VS move through the threshold and becomes a bound
state, the branch point of the I.h.c. move right.

@ From the positivity of the residue of the bound state pole, it can be
proved that near the branch point S(s) tends to negative infinty.

@ The picture is like above. For small m,, there are two zero point of
S(s) below threshold. For larger m,, S(s) become smaller, no zero
points — two resonance pole.



INTRODUCTION: O(N) SIGMA MODEL

@ lLagrangian: a=1,..., N

1 1 A
_ w2 _ 20 2
L = 50400060~ 130uba — 5 (Gab0)® + a0,

@ Classical level: when oo = 0, No explicit breaking
u? >0, no SSB;
u? <0, SSB. ¢ = —2u2N/\ = (¢)%,(¢) > 0

@ Classical level: when a # 0, vacuum solution

A
(~1F = S2l6P)6a=0= 6a =0, fora=1,...,N-1
A
_y2_ 201402 _
(=5 4N|¢’ Yo +a =0

(pn # 0) ~ O(NY2), o ~ O(NV/2).



@ To count the N order: Introduce an auxiliary field x,

L=l + 2 <X - ﬂ\fﬁaﬁba - H0>

Nﬂo

1 N
:i M¢aau¢a +adn+ X¢a¢a 70 )

20 X -
Integrate out x, come back to the previous path integral.
@ Count the order: x propagator:idg/N ~ O(1/N); closed ¢
loop: O(N); ¢ ~ O(1)
<ol
(b)

(a)(b)(c)(d) O(1/N), (o)
(e) O(1/N?) not the same

topological structure as (b Q
pologi ructur (b) >C}<

Leading order, only ¢ propa-
gator in loop, 1Pl one loop,

)
No x loop. j—"[

(e)

yood

(d)



Effective action:

/d4 < H@baaﬂﬁba +agn + N X2 X¢a¢a - % )

20
+ 5NTrlog(a2 +x — i), (1)

Effective potential: (¢, x constants)

_ N Nusg i d*v 2 .
Vig,x) = *OZQSN*KX + be ba + o X2N/(27T)410g(€ + X — i
(2)
Renormalization condition:
2 2o d 1
(M) :@Jrj/ii., 3)
AM) XN 2/ (2m)r 2+ e
I i B 1/ d*e 1 (4)
A(M) X 2 (2m)4 (02 + ie) (02 — M2 + ie)

After renormalization:

N2 N L[ M 1
f\L(JEJ)MX_GzWX <logx+2>’ (5)

1
V(g,x) = —agn + §X¢2 +



oV _ oV __
2~ =0 and 8%—0

ov 2N 2Nu? N X
a =0= ¢a¢a - A - 167T2X10g M2 ) (6)
ov

5o =0= X0a=0(a<N), xoy-a=0. (7)

@ For a # 0, With explicit broken, one solution: x # 0, ¢, =0
N—-1,x= % £ 0.

fora=1,...
2N« 2Nu Na
3
= — ——lo
ON= 3 1672 gM2¢N

(on) ~ O(N'2), (x) ~ O(1), a ~ O(N'/?).



@ minimum condition is x > 0 and 10?;2(71:/.122% +x>0

@ 7 mass m2 = x.

@ For N = 4, compared with PCAC: 9" A, = m2 fom®, and with
explicit SSB, 8“/12 = an® From y = % = mzr we see

(on) = fr ~ O(N'/?).
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E: O(N) model leading order 7w amplitude [Coleman,et.al.,PRD10,2491]

7 amplitude to the leading 1/N order: (o, 7 have mixing)

‘7:1Ta7rb—>7rcﬂd :Z'DTT(S)(S(LbéCd + Z'D7"r(t)5(1,c($bd + Z’DTT(u)(SCLd(SbC , (8)
2 2
—1/,2\ _ (P — Mg _f7r
b= = ’( —fr N/A0+NBo(p2,mn)> ’ ©)
—1 d*e 1
=y ( Bo(p%, my :J/ .
T Bhme) = | i@ g v - T )



After renormalization:

;O+Bo<p2,mﬂ> - A(1M)+B<p2,mﬁ,m, (10)
S) — m2
B e, 1) = g (1 (108 205 1 ~tow 7 )
(11)

After projection to IJ = 00 channel, ©O(N) amplitude J5© ( define
M such that 1/\(M) = 0),

_iND.,(s) N

LO AV
2 _
ﬂ(s) _ m; S

(5_ mgr)B(& mﬂ?M _f72r/N’

@ Adler zero: s4 = m?2.

@ o pole : solve

(s— m?r)BH(s,mﬂ,M) —£/N=0.



m; DEPENDENCE OF o AT LEADING 1/N
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@ Adjust the M ~ 550MeV, at mz = 139MeV, /s = 356 — i148MeV.

@ As my increases, \/s; moves — real axis — two virtual state poles — one
virtual move left, the other move right — (m. ~ 337 MeV) one virtual, one
bound

@ No crossing symmetry: o — bound state, |.h.c brach point — s = 4m2 — m2

o

Direct adding ¢t and u channel contribution: violate unitarity.

@ Unitarization method: IAM or K matrix, No control of the spurious poles, we
resort to N/D.



N/D: UNITARITY WITH PARTIAL RECOVERY OF

CROSSING

N/D Method: Basic ideas

@ T matrix: T(s) = ggz; N(s) only has left-hand cut, D only

has right-hand cut.

@ Since Imp T ~! = —p, we have
tmp D(s) = —p(s)N(s) (12)
Imy, N(s) = D(s)Imp T (s). (13)
@ Write down the dispersion relation of N(s) and D(s) ( twice
subtracted)
_ s—sa s—so  (s—s0)(s—sa) p(s)N(s') y
Dis) = S0 — 54 +gDSA—80 ™ /B’. (5’—3)(8’—50)(5’—5A)d '
(14)
., 85— 5y s — S0 (s—50)(s—s4) D()ImpT(s) o
N(S)iboso—sA +gNsA—so + ™ /L(s’—s)(s’—so)(s’—sA)d ’

(15)



@ Using the O(N) result Imz7 (s).
@ Subtraction, sy = 4m2, s4 = m2, D(sp) = 1: require T to
recover O(N) result at the leading 1/N order
N-1
bo = Too(s0) = —5—A"(50) + Iu(50) . (16)
327Tf72.rb() gN
D= N =5 o R tu(54) (17)
@ When m, > m,, we require D(m?2) = 0, for the sigma pole to
be consistent with the branch point of the left hand cut.

@ Solve the integral equation numerically.
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@ As m; increases:
o approaches the real axis— two virtual states, —

one moving right — first sheet bound state
one moving left .
) hit — resonant poles
l.h.c. — another virtual state

@ The VSIIl is generated when the Adler zero hit the left-hand
cut



0 POLE TRAJECTORY WITH VARYING

Physical-sheet S-matrix below threshold
@ The left graph (m; = 207 MeV) : two virtual states in the
near threshold region and one additional virtual state pole
generated close to the left-hand cut.
@ The middle graph (m, = 283 MeV) : one bound state with
two virtual states.

@ The right graph (m; = 391 MeV): two virtual state poles
have become a pair of resonance poles.



TEMPERATURE DEPENDENCE AT LEADING 1/N

@ It is well known: under high temperature, chiral symmetry
F€COVErS.[R. D. Pisarski and F. Wilczek, PRD 29,338(1984);A. Bazavov et al.,
PRDS5,054503(2012)] lim 700 ¥(T) — 0

@ It is expected that m, — m;, at high temperature.

@ ChPT: intrincically in broken phase, break down at high
temperature, T ~ f;.

@ In O(N) model: v.e.v. v(T) evolves with T)5.0.Anderson, et. al.

PRD70,116007]

m(T)/MeV

] 50 W00 150 2000 250 300 0 50 00 50 200 250 300
T/MeV T/MeV/

o No explicit breaking « = 0:at T < T, ~ 160MeV, m,(T) =0,

o(T)#£0SSB; at T> T., o(T) =0, m.(T) #0.
e With a #0, (T) — 0.



0 POLE TRAJECTORY WITH T

At the leading 1/N order, N = 4:

- 300

"\ 100)

100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
T/MeV T/MeV T/MeV

From left to right, m,(0) = 200, 139 and 80 MeV respectively.
@ Scattering amplitude at 7 in the center of mass frame.

1 s—m?r(T)
321 (s = m2(T)) BT (s, mz(T), M) — v2(T)/N ’

Too(s) = —

BT (s, mx (T), M) = B (s, mn (T), M) + BT7° (s, mr (T)) ,
2
7240 _ /oo dkk T
B ,mu(T)) = 3 s
(5, me (1)) 0 87r2u.)f np(wr) E+ 2wy E — 2wy

@ o resonance on the second sheet, — virtual state, — bound
state — tends to m,.




N/D WITH TEMPERATURE

@ Unitarity with two particle intermediate states for IJ = 00
channel,

T (s) = p"(s) |7 7|7, (18)

@ Lorentz symmetry is broken by the temperature: Center of
mass system in s channel is different from ¢ channel —
crossing is also broken.

@ [J =00 thermal amplitude:

1 s —mZ(T)
327 (s — m2(T)) BT (s, mx(T), M) — v2(T)/N’

BT(SvmW(T)v‘Z\/f) = B(57 mﬂ'(T)vm'i_BT#O (57 mﬂ'(T)) ’
B s,me(1) = [~ it (5~ 5 )

82wy E+2w, E— 2w

Too(s) =

@ N/D can be done: substitute the corresponding temperature
dependent amplitudes.



N/D WITH TEMPERATURE: ¢ TRAJECTORY
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@ T=0, my =139MeV.
4 @ VS1— BS (T=137MeV),
@ T =60MeV, VSIII generated from
e lhe & @ T = 140MeV, VSII meets VSIIl—

subthreshold resonance.
@ o resonance — virtual states (I, II),

2 2
(T=124MeV) @ mg = mz.



VACUUM STRUCTURE: m, DEPENDENCE

Solve x(¢), insert into V(¢, x), to obtain the effective potential

Vef (d))

V6, x) = —adw + 2x +

Nu? (M)

A(M)

0V _oo P =F+

Ox

oV

8d)a:0:> X¢a:0(a<]\f)u

Two solutions branches:
separated at x

Left one: With Chiral SSB in
the Chiral limit, determine f,
fixed, m.

@ Right one : No chiral SSB in
the Chiral limit.

@ V become complex for
|6? > rb%?: the2system not
stable. ¢= < ¢7 ...

N 2] MQ+1
- og 2+ 2,
XX BT T2

N 2 mgr X
1672 (’” log 7w ~Xlog 35 | »

X¢n —a=0.

=== m; = 0MeV
— my; = 139MeV




TWO BRANCHES OF THE VACUUM
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@ m2 < x;p ~ 333MeV, solution I: the local minimum on the first
branch, false vacuum. There is a tachyon.

@ Global minimum: Solution Il on the second branch.
@ As m, increases, solution | moves towards the second branch.

- m?r > Xp, no local minimum on the first branch. Solution | moves
on the second branch — saddle point.

@ my > (32m2f /(Nyo))*/? ~ 680MeV: solution | <+ Solution II.



VACUUM STRUCTURE: FINITE TEMPERATURE

e VTI0,0).T = 150 MeV — VTH(0,6y). T = 250MeV == VTI(0,6).T = 250 MoV
310Mev

= 310MeV
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@ Tincreases: |¢p| and |Ppmin| — smaller.

@ T¥ there is no solution for the gap equations. T ~ 314MeV
@ Ty ¢p =0.

@ The two branches: Effective potential V get closer.

@ T.< Ty< Ty. T> Ty no vacuum, the system is already unstable.
Difference T}, — T¢ ~ keV.
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At high temperature: the Solution | will move to the second
branch, becoming a saddle point.



CHYON: m,; AND T DEPENDENCE

There could be a tachyon for solution I.
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@ Plays a role of another cutoff of the theory:m? L sK s+ mf. (me ~ 1.1GeV
for physical mass, T'=0) [R. S. Chivukula and M. Golden, PLB 267, 233]

@ s= fm? < 0: my decreases with temperature and my.
@ Tachyon has positive residue in the o — o propogator, similar to bound state.

@ Tachyon — bound state transition <> the point of exchanging the two solution.



SUMMARY

@ o pole trojectory in leading O(N) and N/D modified O(N):
with varying m, and temperature.

@ Subthreshold resonance pole generation: After crossing
symmtry partially recovered.

@ Vacuum structure: with varying m, and temperture.
Phenominological favored one is the first branch.
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