ρ^0 production and pion pair production by linearly polarized photons in UPCs and e⁺e⁻ collisions

周雅瑾 (山东大学)

based on: arxiv:2406.09381 (贾宇, 周剑, YZ), JHEP10(2020)064 (邢宏喜, 张成, 周剑, YZ), PRD104, 094021 (2021), PRD103, 074013 (2021) (Yoshikazu Hagiwara, 张成, 周剑, YZ)

Yajin Zhou (ChEFT2024@Changsha)

Azimuthal asymmetries in $\pi\pi$ production

Outline

- 1. EPA, UPC, linearly polarized photon, motivations
- 2. diffractive vector meson (ρ^0) production in UPCs
- 3. Pion pair production in $\mathrm{e^+e^-}$ collisions and UPCs
- 4. Summary

ъ

Linearly polarized photon in UPCs verified by STAR collaboration

Azimuthal asymmetries in $\gamma \gamma \rightarrow e^+e^-$

C. Li, J. Zhou and YZ, 2020

	Measured	QED calculation
Tagged UPC	16.8%±2.5%	16.5%
60%-80%	27%±6%	34.5%

STAR collaboration, PRL127, 052302 (2021)

Equivalent photon approximation(EPA), Ultraperipheral collisions (UPCs)

relativistically moving ions will introduce electromagnetic field.

Equivalent photon approximation(EPA) 1924, Fermi; Weizäscker and Williams, 1930's;

$$x f_1^{\gamma}(x, k_{\perp}^2) = \frac{Z^2 \alpha_e}{\pi^2} k_{\perp}^2 \left[\frac{F(k_{\perp}^2 + x^2 M_p^2)}{(k_{\perp}^2 + x^2 M_p^2)} \right]^2$$

Woods-Saxon form factor,

$$F(\vec{k}^2) = \int d^3 r e^{i\vec{k}\cdot\vec{r}} \frac{\rho^0}{1 + \exp[(r - R_{WS})/d]}$$
$$\gamma - \gamma: d\sigma \propto Z^4, \text{ e.g., } 79^4 \approx 4 \text{ \mp 5}$$
$$\gamma - A: d\sigma \propto Z^2$$

But! strong interaction dominant in center collisions

UPC:

Two nuclei physically miss each other, interact (only) electromagnetically

clean background

Linearly polarized photon

relativistically moving charged particles will introduce electromagnetic field the photons are linearly polarized due to their transverse momentum

gluon/photon TMD (transverse-momentum-dependent) factorization:

$$\int \frac{2 dy^- d^2 y_\perp}{x P^+ (2\pi)^3} e^{i k \cdot y} \langle P | F^{\mu}_+(0) F^{\nu}_+(y) | P \rangle \Big|_{y^+=0} = \delta^{\mu\nu}_\perp f_1(x,k_\perp^2) + \left(\frac{2 k_\perp^{\mu} k_\perp^{\nu}}{k_\perp^2} - \delta^{\mu\nu}_\perp\right) h_1^{\perp}(x,k_\perp^2),$$

Mulders, Rodrigues, PRD63(2001)

 $f_1(x, k_{\perp}^2) = h_1^{\perp}(x, k_{\perp}^2)$, small-x gluons/photons are highly linearly polarized.

A. Metz and J. Zhou, 2011, C. Li, J. Zhou and YZ, 2019

Collinear factorization: $\sigma \sim PDFs(x) \otimes$ hard part TMD factorization: $\sigma \sim TMDs(x,k_T) \otimes$ hard part

Linearly polarized photon

ſ

relativistically moving charged particles will introduce electromagnetic field the photons are linearly polarized due to their transverse momentum

gluon/photon TMD (transverse-momentum-dependent) factorization:

$$\int \frac{2dy^{-}d^{2}y_{\perp}}{xP^{+}(2\pi)^{3}} e^{ik \cdot y} \langle P|F_{+}^{\mu}(0)F_{+}^{\nu}(y)|P\rangle \Big|_{y^{+}=0} = \delta_{\perp}^{\mu\nu} f_{1}(x,k_{\perp}^{2}) + \left(\frac{2k_{\perp}^{\mu}k_{\perp}^{\nu}}{k_{\perp}^{2}} - \delta_{\perp}^{\mu\nu}\right) h_{1}^{\perp}(x,k_{\perp}^{2}),$$
Mulders, Rodrigues, PRD63(2001)
 $f_{1}(x,k_{\perp}^{2}) = h_{1}^{\perp}(x,k_{\perp}^{2}),$ small-x gluons/photons are highly linearly polarized.
A. Metz and J. Zhou, 2011, C. Li, J. Zhou and YZ, 2019
Follinear factorization: $\sigma \sim PDFs(x) \otimes$ hard part

TMD factorization: $\sigma \sim \text{TMDs}(\mathbf{x}, \mathbf{k}_{\mathrm{T}}) \otimes \text{hard part}$

(日) (四) (王) (王) (王)

UPC: an ideal platform to "see" nucleus

- linearly polarized photon
- high luminosity
- clean background
- ...

How? photo-nuclear diffractive production of vector mesons, di-jets...

Wigner Distributions $W(x, k_{\perp}, r_{\perp})$

 d^2k

Parton Distribution Functions

 $\delta z_{\perp} \sim 1/Q$

A ID 10 A ID 10 A ID 10

Form Factors

Direct vector meson pair photoproduction in UPCs, e⁺e⁻ colliders

similar to $\gamma\gamma \rightarrow l^+l^-$, we can also study $\gamma\gamma \rightarrow M\bar{M}$ process either in UPCs or at e⁺e– colliders, more complicated.

I will talk about

- Topic I: diffractive vector meson (ρ^0) production in UPCs
- \bullet Topic II: pion pair production in $\mathrm{e^+e^-}$ collisions and UPCs

э.

vector meson production in UPCs

• dipole amplitude calculation:

$$N(b_{\perp},r_{\perp}) = 1 - e^{-2\pi B_{\rm p} A T_{\rm A}(b_{\perp}) \mathcal{N}(r_{\perp})}$$

 $N(r_{\perp}) = 1 - \exp\left[-r_{\perp}^2 G(x_g, r_{\perp})\right]$: dipole-nucleon scattering amplitude $G(x_g) = \frac{1}{4}Q_s^2(x_g)$: gluon distribution (GBW model),

・ロト ・回ト ・ヨト ・ヨト

cartoon illustrations of the azimuthal asymmetries in vector boson production in UPCs

• $\cos 2\phi$ asymmetry

• $\cos 4\phi$ asymmetry

• $\cos \phi$ and $\cos 3\phi$ asymmetries

for azimuthal asymmetries in ρ^0 production see: H.X. Xing, C. Zhang, J. Zhou and YZ, JHEP10(2020)064, Y. Hagiwara, C. Zhang, J. Zhou and YZ, PRD103, 074013 (2021) and PRD104, 094021 (2021) • $\cos(2\phi)$ azimuthal asymmetry in $\rho^0 \to \pi\pi$ photoproduction,

Model II: H.X. Xing, C. Zhang, J. Zhou and YZ, JHEP10(2020)064 Fermi-scale interference effect, linearly polarized photon

• • • • • • • • •

The prediction for the impact parameter dependence is verified by ALICE

ALICE data

ALICE Collaboration, talk by A. G. Riffero on UPC 2023 (Mexico)

イロト イヨト イヨト イヨト

15/29

æ

• $\cos(4\phi)$ azimuthal asymmetry in $\rho^0 \to \pi\pi$ photoproduction

Daniel Brandenburg, QM 2019

elliptic gluon Wigner distribution is important to describe the STAR data

Y. Hagiwara, C. Zhang, J. Zhou and YZ, PRD104, 094021 (2021)

A ID IN A (ID IN A)

Pion pair production in e^+e^- collisions and UPCs

Motivations:

- $\gamma \gamma \rightarrow M \bar{M}$ is important
- \bullet at $p_{M\bar{M}} \ll p_M,$ transverse momenta non-negligible, TMD factorization
- the first attempt to study the azimuthal asymmetry in heavy composite particles
- $\gamma\gamma \to \pi\pi$ is the cleanest and most important one
- may shed light on Light-by-Light (LbL) scattering process mediated by the pion loop
- interdisciplinary study among TMD physics & Chpt & dispersion relation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ののの

direct pion pair production, e^+e^- collider vs. UPC

UPC : only low invariant mass is possible

Conclusion: to study the polarization effect of poin pair production from $\gamma\gamma$ fusion,

e⁺e⁻ collider is better

 e^+e^- collider, not effected by ρ resonance

Theoretical setup:

19/29

2

・ロト ・四ト ・ヨト ・ヨト

Some ChPT calculations for $\gamma\gamma\to\pi\pi$

Some ChPT calculations for $\gamma\gamma \to \pi\pi$

e.g.,

J.BIJNENS and F. CORNET, NPB296(1988)557-568

J. Gasser et al., NPB745(2006)84-108

イロト イヨト イヨト イヨト

$$\begin{split} \mathbf{A}_{\gamma\gamma \to \pi^{+}\pi^{-}} &= 2\mathrm{i}\mathrm{e}^{2} \left\{ C\varepsilon_{1} \cdot \varepsilon_{2} - \frac{\mathbf{p}_{1} \cdot \varepsilon_{1}\mathbf{p}_{2} \cdot \varepsilon_{2}}{\mathbf{p}_{1} \cdot \mathbf{k}_{1}} - \frac{\mathbf{p}_{1} \cdot \varepsilon_{2}\mathbf{p}_{2} \cdot \varepsilon_{1}}{\mathbf{p}_{1} \cdot \mathbf{k}_{2}} \right\} \\ C &= 1 + \frac{4\mathbf{Q}^{2}}{\mathbf{f}_{\pi}^{2}} (\mathbf{L}_{9}^{\mathrm{r}} + \mathbf{L}_{10}^{\mathrm{r}}) - \frac{1}{16\pi^{2}\mathbf{f}_{\pi}^{2}} \left(\frac{3}{2}\mathbf{Q}^{2} + \frac{1}{2}\mathbf{m}_{\pi}^{2}\ln^{2}\mathbf{g}_{\pi}(\mathbf{Q}^{2}) + \mathbf{m}_{\mathrm{K}}^{2}\ln^{2}\mathbf{g}_{\mathrm{K}}(\mathbf{Q}^{2}) \right) \end{split}$$

ъ

Dipoin production in e⁺e⁻ collider, ChPT Numerical results:

Yajin Zhou (ChEFT2024@Changsha)

э

Dipoin production in e⁺e⁻ collider, data-driven method

Ling-Yun Dai and M.R. Pennington, "Comprehensive Amplitude Analysis of $\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$ and $\overline{K}K$ below 1.5 GeV", PRD90, 036004 (2014)

$$\frac{d\sigma}{d\Omega} = \frac{\rho(s)}{128\pi^2 s} [|M_{+-}|^2 + |M_{++}|^2],$$

isospin decomposition of the amplitudes:

$$\begin{split} \mathcal{F}^{+-}_{\pi}(s) &= -\sqrt{\frac{2}{3}}\mathcal{F}^{l=0}_{\pi}(s) - \sqrt{\frac{1}{3}}\mathcal{F}^{l=2}_{\pi}(s), \\ \mathcal{F}^{00}_{\pi}(s) &= -\sqrt{\frac{1}{3}}\mathcal{F}^{l=0}_{\pi}(s) + \sqrt{\frac{2}{3}}\mathcal{F}^{l=2}_{\pi}(s), \\ \mathcal{F}^{+-}_{K}(s) &= -\sqrt{\frac{1}{2}}\mathcal{F}^{l=0}_{K}(s) - \sqrt{\frac{1}{2}}\mathcal{F}^{l=1}_{K}(s), \\ \mathcal{F}^{00}_{K}(s) &= -\sqrt{\frac{1}{2}}\mathcal{F}^{l=0}_{K}(s) + \sqrt{\frac{1}{2}}\mathcal{F}^{l=1}_{K}(s). \end{split}$$

partial wave expansions of the amplitudes:

(I) < (II) < (II) < (II) < (II) < (III) </p>

Dipoin production in e⁺e⁻ collider, data-driven method

cross section in helicity amplitude form with linealy polarized photon:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}^{2}\mathrm{p}_{1\perp}\mathrm{d}^{2}\mathrm{p}_{2\perp}\mathrm{d}y_{1}\mathrm{d}y_{2}} &= \frac{1}{16\pi^{2}\mathrm{Q}^{4}} \int \mathrm{d}^{2}\mathrm{k}_{1\perp}\mathrm{d}^{2}\mathrm{k}_{2\perp} \\ \times & \delta^{2}(\mathrm{q}_{\perp} - \mathrm{k}_{1\perp} - \mathrm{k}_{2\perp})\mathrm{x}_{1}\mathrm{x}_{2} \\ \times & \left\{ \frac{1}{2} \left(|\mathrm{M}_{+-}|^{2} + |\mathrm{M}_{++}|^{2} \right) \mathrm{f}(\mathrm{x}_{1}, \mathrm{k}_{1\perp}^{2}) \mathrm{f}(\mathrm{x}_{2}, \mathrm{k}_{2\perp}^{2}) \right\} \xrightarrow{} \mathsf{Reduce to collinear factorization after} \\ & \left\{ \frac{1}{2} \left(|\mathrm{M}_{+-}|^{2} + |\mathrm{M}_{++}|^{2} \right) \mathrm{f}(\mathrm{x}_{1}, \mathrm{k}_{1\perp}^{2}) \mathrm{f}(\mathrm{x}_{2}, \mathrm{k}_{2\perp}^{2}) \right\} \xrightarrow{} \mathsf{Reduce to collinear factorization after} \\ & - \cos(2\phi_{1})\mathrm{Re}[\mathrm{M}_{++}\mathrm{M}_{+-}^{*}] \mathrm{f}(\mathrm{x}_{2}, \mathrm{k}_{2\perp}^{2}) \mathrm{h}_{1}^{\perp}(\mathrm{x}_{1}, \mathrm{k}_{1\perp}^{2}) \\ & - \cos(2\phi_{2})\mathrm{Re}[\mathrm{M}_{++}\mathrm{M}_{+-}^{*}] \mathrm{f}(\mathrm{x}_{1}, \mathrm{k}_{1\perp}^{2}) \mathrm{h}_{1}^{\perp}(\mathrm{x}_{2}, \mathrm{k}_{2\perp}^{2}) \xrightarrow{} \mathsf{Contribut} to \cos(2\phi) \text{ azim. Assym.,} \\ & \operatorname{induced by linearly polarized photon,} \\ & \operatorname{Involve the relative phase between} \\ & M_{++} \text{ and } M_{+-} \\ & \times & \mathrm{h}_{1}^{\perp}(\mathrm{x}_{1}, \mathrm{k}_{1\perp}^{2}) \mathrm{h}_{1}^{\perp}(\mathrm{x}_{2}, \mathrm{k}_{2\perp}^{2}) \end{array} \right\}$$

Dipoin production in e⁺e⁻ collider, data-driven method Numerical results: 可以用来直接抽取相因子

ъ

about the light-by-light scattering in UPCs

arXiv: 2410.13781

Azimuthal modulation in light-by-light scattering from ultraperipheral collisions at LHC

UPC物理研究现状及国际动态

▶国内UPC物理研究团队:中国科技大学,复旦大学,华南师范大学,山东大学…

>UPC物理实验研究: STAR, ALICE, ATLAS, CMS

≻综述文章:Snowmass UPC 专题,物理学报编辑推荐

EF07: Ultra-Peripheral Collisions in Heavy-Ion Physics

Jaroslav Adam', Carlos Bertulani¹², James D. Brandenburg', Frank Geurts', Victor P. Goncaives', Yoshitaka Hatta', Yongsun Kim¹³, Spencer R, Kiefmi', Cong Li, We Li Li, Michael Murray', Joakim Nystrand', Mariusz Przybycien'', John P. Ratston', Christophe Royon', Lijuan Ruan', Bjoern Schenke', Janet Seger¹⁰, Peter Steinberg', Daniel Tapia Takaki', Zebo Tang¹¹, Zhoudunming Tu', Raff Ulrich¹¹, Ramona Vogt', Bowen Xiao¹, Jangbu Xu'', Shuai Yang', Wangmie Zha¹¹, Jian Zhou'', and Yajin Zhou'

专题:高能重离子碰撞过程的自旋与手征效应 编辑推荐

高能重离子超边缘碰撞中极化光致反应

浦实,肖博文,周剑,周雅瑾

物理学报, 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074

Coherent photons induced high energy reactions in ultraperipheral heavy ion collisions

イロト イポト イヨト イヨト 三日

Pu Shi, Xiao Bo-Wen, Zhou Jian, Zhou Ya-Jin

Acta Phys. Sin., 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074

第一届中国UPC会议

UPC physics 2023		
	26 May - 28 May 2023 Fudan University	
	indico.ihep.ac.cn/event/18418	
~~~~~		
Local organizers: Xu-Guang Huang Guo-Liang Ma Ding-Yu Shao Jie Zhao	N S F C Bibling e Bar	

#### 第一届国际UPC会议

UPC 2023: International workshop on the physics of Ultra Peripheral Collisions

11–15 Dec 2023 Playa del Carmen

Enter your search term

#### 第二届中国UPC会议



#### 第二届国际UPC会议将在芬兰University of Jyvaskyla举办

- UPC 光子是线性极化的,使之成为探索核子三维结构的优秀平台
- e⁺e⁻ 光子融合直接产生 dipion,由于光子的线性极化,会有非常大的 cos2phi 效应,可以用来直接抽取相因子,对理解 f₂(1270) 这种 C even 共振态可能有用

イロト 不同 とくほと 不同 とう