Revisiting O(N) σ model at unphysical pion masses and high temperatures

Yuan-Lin Lyu (吕源林)^{1,*}, Qu-Zhi Li (李衢智)^{2,+}, Zhiguang Xiao (肖志广)^{2,‡} and Han-Qing Zheng (郑汉青)^{2,§}

¹School of Physics, Peking University, Beijing 100871, P. R. China

²Institute for Particle and Nuclear Physics, College of Physics, Sichuan University, Chengdu 610065, P. R. China

Introduction

- \succ Lattice-QCD studies found that $\sigma/f_0(500)$ transforms into a **bound state** at large unphysical m_{π} (~ 391, 330 MeV) [1, 2].
- \succ Roy equation study of $\pi\pi$ scattering lattice data reaveals the pole structure with large pion masses [3, 4]. In addition, there is a pair of **subthreshold** poles generated by crossing symmetry [3].
- \succ This study in Refs. [5, 6] uses the N/D method to partially recover crossing symmetry of the O(N) linear σ model amplitude at leading order of 1/N expansion, and qualitatively reproduce the pole structure and pole trajectories with varying pion masses as revealed by Royequation analyses. The σ pole trajectory with varying temperature is also discussed and found to be similar to its properties when varying m_{π} .

N/D modified O(N) model

- Partially incorporating cross-channel contributions
- > The unitarized scattering amplitude can be obtained through a version of the N/D method. The twicesubtracted dispersion relations are numerically solved with O(N) inputs:

$$\tilde{J}(s) = \frac{N(s)}{D(s)}$$

O(N) model at large N limit

 \succ O(N) model (with explicit symmetry breaking)

 $\frac{s-s_0}{+} + \frac{(s-s_0)(s-s_A)}{+}$ $D(s') \operatorname{Im}_L \mathcal{T}(s')$ $\frac{s-s_A}{m}+g_N$ $\int_{L} \frac{(s'-s)(s'-s_0)(s'-s_A)}{(s'-s_A)} ds'$ $N(s) = b_0$ $s_A - s_0$ $s_0 - s_A$ $S = \frac{s - s_0}{s_A - s_0} - \frac{(s - s_0)(s - s_A)}{\pi} \int_B$ $\frac{s-s_A}{----}+g_D$ ho(s')N(s')D(s) = $\int_{R} \frac{1}{(s'-s)(s'-s_0)(s'-s_A)}$ $s_0 - s_A$

σ pole thermal trajectory

 \succ The pion mass $m_{\pi}(T)$ and condensate v(T) solved from gap equations.

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_a \partial^{\mu} \phi_a - \frac{1}{2} \mu_0^2 \phi_a \phi_a - \frac{\lambda_0}{8N} (\phi_a \phi_a)^2 + \alpha \phi_N$$

In the broken phase $\langle \phi_N \rangle = v = f_{\pi}$. Redefinition of fields is adopted as $\pi_a \equiv \phi_a$ (a < N) and $\sigma = \phi_N - v$.

Large N expansion

$$\bigcirc \sim \mathcal{O}(N) \qquad \qquad \sim \mathcal{O}(1/N)$$

 $O(4) \simeq SU(2)_L \times SU(2)_R \to O(3)$

Large N expansion breaks crossing symmetry! $\mathcal{T}_{I=0}(s,t,u) = NA(s) - A(s) + A(t) + A(u),$ $A(s), A(t), A(u) \sim \mathcal{O}(1/N)$ leading 1/N order contribution

 $\succ \sigma$ pole trajectory with varying m_{π} (at large N limit)

 $\succ \sigma$ pole mass and width with varying temperature obtained by $\pi\pi$ thermal amplitude at leading 1/N order.

 $\succ \sigma$ thermal trajectory with **cross-channel improvements** [N/D modified O(N) model]

The left-hand cut branch point is always at s = 0 and there are **no subthreshold** resonance poles at large m_{π} values.

References

[1] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. Lett. **118**, 022002 (2017).

[2] A. Rodas, J. J. Dudek, and R. G. Edwards (Hadron Spectrum), Phys. Rev. D 108, 034513 (2023).

[3] X.-H. Cao, Q.-Z. Li, Z.-H. Guo, and H.-Q. Zheng, Phys. Rev. D **108**, 034009 (2023). [4] A. Rodas, J. J. Dudek, and R. G. Edwards (Hadron Spectrum), Phys. Rev. D 109, 034513 (2024). [5] Y.-L. Lyu, Q.-Z. Li, Z. Xiao, and H.-Q. Zheng, Phys. Rev. D 109, 094026 (2024). [6] Y.-L. Lyu, Q.-Z. Li, Z. Xiao, and H.-Q. Zheng, arXiv:2405.11313 [hep-ph].

Contact

‡ xiaozg@scu.edu.cn, corresponding author * yllyu@stu.pku.edu.cn † liquzhi@scu.edu.cn, corresponding author § zhenghq@pku.edu.cn

Acknowledgements

This work is supported by China National Natural Science Foundation under contract No. 12335002, 12375078, 11975028. This work is also supported by "the Fundamental Research Funds for the Central Universities".

Conclusion

 \succ Our results provide further evidences that the lowest f_0 state extracted from experiments and lattice data, at the qualitative level, plays the role of σ meson in O(N) model in the spontaneous breaking of chiral symmetry.