

Introduction: The con	cept of the	electron spi	in (1)
GEORGE UHLENBECK DISCOVERY OF LEUCT	AND THE ROOM SPIN	Abraham Pais Rockefeller University, i his presentation at Af 34 PHYSICS TODAY	is Detlev Bronk Professor Emeritus at In New York. He based this article on Sys Uhlenbeck Memorial Symposium, held in Baltimore on 3 May 1989. DECEMBER 1989
假设	问题		解答
电子具有(绕自身转 动的)额外的自由度 s = 1/2	表面速度 远大于光	速?	量子效应 (Bohr)
自旋磁矩 郎德因子g _s = 2	电子磁矩 产生的磁 (Bahr)	与自身运动 场相互作用?	相对运动,外场 (Einstein)
自旋轨道耦合 $V_{ls}(r) = -\frac{1}{2m^2} \frac{dV}{rdr} \hat{\vec{l}} \cdot \hat{\vec{s}}$	因子2的新	差别?	相对论运动学效应 托马斯进动 Thomas precession
复旦大学		2024年8	3月5-6日 7

Introduction: The concept of the electron spin
Orbit angular momentum is non-zero even if the quark is in the ground state.

$$\hat{H}\psi = E\psi \qquad \hat{H} = \vec{\alpha} \cdot \hat{\vec{p}} + \beta m + V(r)$$
The stationary state is taken as the eigenstate of $(\hat{H}, \hat{f}^2, \hat{f}_2, \hat{\pi})$, where $\hat{\pi}$ is parity:

$$\psi_{E_njm\pi}(r, \theta, \phi, S) = \begin{pmatrix} f_{nl}(r)\Omega_{jm}^l(\theta, \phi) \\ (-1)^{(l-l'+1)/2}g_{nl'}(r)\Omega_{jm}^{l'}(\theta, \phi) \end{pmatrix}$$

$$j = l \pm \frac{1}{2}l - l' = \mp 1, \text{ and } \pi = (-1)^l$$

$$\Omega_{jm}^l(\theta, \phi) \text{ is the eigenstate of } (\hat{f}^2, \hat{L}^2, \hat{f}_2):$$

$$\Omega_{jm}^l(\theta, \varphi) = \sqrt{\frac{j+m}{2j}} Y_{lm-\frac{1}{2}}(\theta, \varphi) \xi\left(\frac{1}{2}\right) + \sqrt{\frac{j-m}{2j}} Y_{lm+\frac{1}{2}}(\theta, \varphi) \xi\left(-\frac{1}{2}\right) \qquad j = l + \frac{1}{2}$$

$$\Omega_{jm}^l(\theta, \varphi) = -\sqrt{\frac{j-m+1}{2j+2}} Y_{lm-\frac{1}{2}}(\theta, \varphi) \xi\left(\frac{1}{2}\right) + \sqrt{\frac{j+m+1}{2j+2}} Y_{lm+\frac{1}{2}}(\theta, \varphi) \xi\left(-\frac{1}{2}\right) \qquad j = l - \frac{1}{2}$$
XEX#
$$2024 \# J 5 6 H$$

Introduction: The concept of the electron spin (3) Dirac粒子的spin-orbit coupling 考査中心力场中运动的Dirac粒子 $\hat{H} = \vec{a} \cdot \hat{\vec{p}} + \beta m + V(r)$ $\hat{H}_{eff}\varphi = E\varphi$ $\hat{H}_{eff} = m + \frac{\hat{\vec{p}}^2}{E + m - V} + V + \frac{dV}{rdr}\frac{\vec{\sigma} \cdot \hat{\vec{L}}}{(E + m - V)^2} - i\frac{dV}{rdr}\frac{\vec{r} \cdot \hat{\vec{p}}}{(E + m - V)^2}$ $\approx m + \frac{\hat{\vec{p}}^2}{2m} + V + \frac{1}{4m^2}\frac{dV}{rdr}\vec{\sigma} \cdot \hat{\vec{L}} - i\frac{dV}{rdr}\frac{\vec{r} \cdot \hat{\vec{p}}}{4m^2}$ but this is NOT the non-relativistic equation! ξ is not normalized, \hat{H}_{eff} is not Hermitian The correct form is obtained by using the Foldy-Wouthuysen transformation.

10

Introduction: The concept of the electron spin Ground state: $E = E_{0}, j = \frac{1}{2}, \pi = \pm 1 \ (l = 0), m = \pm \frac{1}{2}$ $\psi_{0} \equiv \psi_{E_{0}\frac{1}{2}m^{+}}(r, \theta, \varphi, S) = \begin{pmatrix} f_{00}(r)\Omega_{2m}^{0}(\theta, \varphi) \\ -g_{01}(r)\Omega_{2m}^{1}(\theta, \varphi) \end{pmatrix}$ $\Omega_{2m}^{0}(\theta, \varphi) = Y_{00}(\theta, \varphi)\xi(m) = \frac{1}{\sqrt{4\pi}}\xi(m)$ $\Omega_{1m}^{1}(\theta, \varphi) = \sqrt{\frac{3+2m}{6}}Y_{1,m+\frac{1}{2}}(\theta, \varphi)\xi\left(-\frac{1}{2}\right) - \sqrt{\frac{3-2m}{6}}Y_{1,m-\frac{1}{2}}(\theta, \varphi)\xi\left(\frac{1}{2}\right)$ The magnetic moment $\langle \psi_{0} | \widehat{M} | \psi_{0} \rangle = \mu\xi^{+}(m)\vec{\sigma}\xi(m)$ $\mu = -\frac{2}{3}e\int dr r^{3}f_{00}(r)g_{01}(r)$ The average value of the orbital angular momentum $\langle \psi_{0} | \widehat{L}^{2} | \psi_{0} \rangle = 2\int dr r^{2}g_{01}^{2}(r)$ $\langle \psi_{0} | \widehat{L}_{x} | \psi_{0} \rangle = \frac{5m}{3}\int dr r^{2}g_{01}^{2}(r)$ ZTL and Meng Ta-chung $(\underline{\Xi} \pm \underline{T} +)$, Z. Phys. A344, 177 (1992). **X** Et \underline{X}

Dirac sp (2) 1	binor的bilinear The bilinear co	[·] covariants(双线性协变量 variants ψΓ _n ψ	Ð	
	ψ ψ $\psi\gamma_5\psi$ $\psi\gamma_\mu\psi$ $\psi\gamma_5\gamma_\mu\psi$ $\psi\sigma_{\mu\nu}\psi$	scalar pseudoscalar vector axial vector (anti-symmetric) tensor	$\begin{aligned} \widehat{P}\psi\psi &= \psi\psi \\ \widehat{P}\psi\gamma_5\psi &= -\psi\gamma_5\psi \\ \widehat{P}\psi\gamma_\mu\psi &= \psi\gamma^\mu\psi \\ \widehat{P}\psi\gamma_5\gamma_\mu\psi &= -\psi\gamma_5\gamma^\mu\psi \\ \widehat{P}\psi\sigma_{\mu\nu}\psi &= \psi\sigma^{\mu\nu}\psi \end{aligned}$	
复旦大学			2024年5月5-6日	2

Description o	f spin states: spin-1/2 particles
Four dimensional po	vlarization vector and spin projection operator of a spin-1/2 particle
In the rest frame	$s = (0, \vec{s})$ $p \cdot s = 0$
In the moving fram	$s = \left(\frac{\vec{p} \cdot \vec{s}}{m}, \vec{s} + \frac{(\vec{p} \cdot \vec{s})\vec{p}}{m(E+m)}\right)$
Longitudinal po	larization $\vec{s} \parallel \vec{p}$: $s_{\parallel} = \lambda \frac{1}{m} \left(\vec{p} , E \frac{\vec{p}}{ \vec{p} } \right) = \lambda v \frac{p}{m} + \lambda \frac{m}{E} \left(0, \frac{\vec{p}}{ \vec{p} } \right) \rightarrow \lambda \frac{p}{m}$
Transverse pola	$rization \vec{s} \perp \vec{p}: \qquad s_{\perp} = (0, \vec{s}_{\perp}, 0)$
	$s = s_{ } + s_{\perp} = \lambda v \frac{p}{m} + \lambda \frac{m}{E} \left(0, \frac{\overrightarrow{p}}{ \overrightarrow{p} } \right) + s_{\perp}$
Space reflection:	$p^{\mu}=(p_0,ec{p}) ightarrow \widetilde{p}^{\mu}=p_{\mu}=(p_0,-ec{p})$
	$s^{\mu} = (s_0, \vec{s}) \rightarrow -\tilde{s}^{\mu} = -s_{\mu} = (-s_0, \vec{s})$
11日午業	

Description of spin states: spin-1 particles		
Spin operator $\widehat{\vec{S}} = \vec{\Sigma}$ $\Sigma_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\Sigma_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ $\Sigma_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$		
The helicity basis $ \lambda = 1\rangle = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$ $ \lambda = -1\rangle = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$ $ \lambda = 0\rangle = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$		
The polarization vector $\vec{\varepsilon}$ The basis: $ \varepsilon_{(x)}\rangle \equiv \frac{1}{\sqrt{2}}(\lambda = -1\rangle - \lambda = 1\rangle)$ $ \varepsilon_{(y)}\rangle \equiv \frac{i}{\sqrt{2}}(\lambda = -1\rangle + \lambda = 1\rangle)$ $ \varepsilon_{(x)}\rangle \equiv \lambda = 0\rangle$		
The general form of a pure state: $ \varepsilon\rangle = \varepsilon_x \varepsilon_{(x)}\rangle + \varepsilon_y \varepsilon_{(y)}\rangle + \varepsilon_z \varepsilon_{(z)}\rangle$ The polarization vector is defined as: $\vec{\varepsilon} = (\varepsilon_x, \varepsilon_y, \varepsilon_z)$		
The spin polarization vector \vec{S} $\vec{S} \equiv \langle \vec{S} \rangle = (\vec{S}_T, \lambda)$ in the rest frame of V		
复旦大学		

•

Description of spin states: spin-1 particles
<u>The pure state:</u> $ \lambda = 1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $ \lambda = -1\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $ \lambda = 0\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
$ arepsilon_{(x)} angle = rac{1}{\sqrt{2}} egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix} arepsilon_{(y)} angle = rac{i}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} arepsilon_{(z)} angle = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$
$ \varepsilon\rangle = \varepsilon_{x} \varepsilon_{(x)}\rangle + \varepsilon_{y} \varepsilon_{(y)}\rangle + \varepsilon_{z} \varepsilon_{(z)}\rangle = \begin{pmatrix} \frac{1}{\sqrt{Z}}(-\varepsilon_{x} + i\varepsilon_{y}) \\ \varepsilon_{z} \\ \frac{1}{\sqrt{Z}}(\varepsilon_{x} + i\varepsilon_{y}) \end{pmatrix}$
$\langle arepsilon = \left(rac{1}{\sqrt{2}} (-arepsilon_x^* - i arepsilon_y^*) - arepsilon_x^* - rac{1}{\sqrt{2}} (arepsilon_x^* - i arepsilon_y^*) ight)$
$\Sigma_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Sigma_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Sigma_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
$\vec{S} = \langle \vec{S} \rangle = (\langle \Sigma_x \rangle, \langle \Sigma_y \rangle, \langle \Sigma_z \rangle) = \frac{1}{2} (i(\varepsilon_x^* \varepsilon_y - \varepsilon_y^* \varepsilon_z), i(\varepsilon_x^* \varepsilon_x - \varepsilon_x^* \varepsilon_z), i(\varepsilon_x^* \varepsilon_y - \varepsilon_y^* \varepsilon_x)) = \operatorname{Im}(\vec{\varepsilon}^* \times \vec{\varepsilon})$
复旦大学 2024年8月5-6日 37

Description of spin states: <mark>sp</mark>	in-1 particles
The spin density matrix: $ \widehat{\rho}(\varepsilon) = \varepsilon\rangle\langle\varepsilon = \begin{pmatrix} \frac{1}{2} \varepsilon_x - i\varepsilon \\ \frac{1}{\sqrt{2}}\varepsilon_x(-\varepsilon_x^*) \\ \frac{1}{\sqrt{2}}(\varepsilon_x + i\varepsilon_y)(-\varepsilon_y) \\ \rho_{00} = 1 \longleftrightarrow \widehat{\rho}(\varepsilon) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longleftrightarrow \varepsilon_x = \varepsilon_x = \varepsilon_y \\ \rho_{00} = 0 \longleftrightarrow \varepsilon_x = 0 \longleftrightarrow \widehat{\rho}(\varepsilon) = \begin{pmatrix} \frac{1}{2} \varepsilon_y + i\varepsilon_y \\ \frac{1}{2}(\varepsilon_x + i\varepsilon_y) \\ \frac{1}{2}(\varepsilon_y + i\varepsilon_y) \\ \frac$	$\begin{aligned} \varepsilon_{y} \Big ^{2} & \frac{1}{\sqrt{2}} \left(-\varepsilon_{x} + i\varepsilon_{y} \right) \varepsilon_{x}^{*} & \frac{1}{2} \left(-\varepsilon_{x} + i\varepsilon_{y} \right) \left(\varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) \\ - i\varepsilon_{y}^{*} \right) & \varepsilon_{z} ^{2} & \frac{1}{\sqrt{2}} \varepsilon_{z} \left(\varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) \\ \varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) & \frac{1}{\sqrt{2}} \left(\varepsilon_{x} + i\varepsilon_{y} \right) \varepsilon_{x}^{*} & \frac{1}{2} \Big \varepsilon_{x} + i\varepsilon_{y} \Big ^{2} \\ \varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) & \frac{1}{\sqrt{2}} \left(\varepsilon_{x} + i\varepsilon_{y} \right) \varepsilon_{x}^{*} & \frac{1}{2} \Big \varepsilon_{x} + i\varepsilon_{y} \Big ^{2} \\ \varepsilon_{x}^{*} - i\varepsilon_{y} \Big ^{2} & 0 & \frac{1}{2} \left(-\varepsilon_{x} + i\varepsilon_{y} \right) \left(\varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) \\ 0 & 0 & 0 \\ i\varepsilon_{y} \left(-\varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) & 0 & \frac{1}{2} \Big \varepsilon_{x} + i\varepsilon_{y} \Big ^{2} \\ \varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \Big ^{2} & 0 & \frac{1}{2} \left(-\varepsilon_{x} + i\varepsilon_{y} \right) \left(-\varepsilon_{x}^{*} - i\varepsilon_{y}^{*} \right) \\ \varepsilon_{x}^{*} = \sin \theta e^{i\varphi} & \overline{\varepsilon}^{*} = \left(\cos \theta \sin \theta e^{i\varphi} \right) \end{aligned}$
$\hat{p}(\varepsilon) = \begin{pmatrix} \frac{1}{2}(1 + \sin 2\theta \sin \varphi) & 0 & \frac{1}{2}(-\cos \theta) \\ \frac{1}{2}(-\cos 2\theta - i\sin 2\theta \cos \varphi) & 0 & \frac{1}{2}(-\cos \theta) \\ \frac{1}{2}(-\cos 2\theta - i\sin 2\theta \cos \varphi) & 0 & \frac{1}{2}(-\cos \theta) \\ \frac{1}{2}(-\cos \theta - i\sin \theta \cos \theta) & 0 & \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta) \\ \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta) & 0 & \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta) \\ \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta - \sin \theta \cos \theta) & 0 & \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta - \sin \theta \cos \theta) \\ \frac{1}{2}(-\cos \theta - \sin \theta \cos \theta - \sin \theta \cos \theta - \sin \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta \cos \theta \cos \theta - \sin \theta \cos \theta$	$ \begin{array}{c} \cos 2\theta + i\sin 2\theta \cos \varphi) \\ 0 \\ (1 - \sin 2\theta \sin \varphi) \end{array} \right) \qquad \vec{S} = \langle \vec{S} \rangle = (0, 0, \sin 2\theta \sin \varphi) $
Au - 1 - 10	

Description of polarization of particles with different spins
<u>Spin 3/2 hadrons:</u> $\widehat{\rho} = \frac{1}{4} \left(1 + \frac{4}{5} S^i \Sigma^i + \frac{2}{3} T^{ij} \Sigma^{ij} + \frac{8}{9} R^{ijk} \Sigma^{ijk} \right)$
$\Sigma^{i} = (\Sigma^{x}, \Sigma^{y}, \Sigma^{z}) \qquad \underset{\Sigma^{i} = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}}{\sum_{i} & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & \sqrt{3} & 0 \end{pmatrix}} \qquad \underset{\Sigma^{y} = \frac{1}{2} \begin{pmatrix} 0 & -i\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -i\sqrt{3} \\ 0 & 0 & -i\sqrt{3} & 0 \end{pmatrix}}{\sum_{i} & \sum_{i} & \sum_{i} & \sum_{j} & \sum_{i} & \sum_{i} & \sum_{j} & \sum_{i} &$
$\Sigma^{ij} = \frac{1}{2} \left(\Sigma^i \Sigma^j + \Sigma^j \Sigma^i \right) - \frac{5}{4} \delta^{ij} 1 \qquad T^{ij} = \begin{pmatrix} -S_{LL} + S_{TT}^{xx} & S_{TT}^{xy} & S_{LT}^{x} \\ S_{TT}^{xy} & -S_{LL} - S_{TT}^{xx} & S_{LT}^{y} \\ S_{LT}^{x} & S_{LT}^{y} & 2S_{LL} \end{pmatrix}$
$\begin{split} \Sigma^{ijk} &= \frac{1}{4} \left(\Sigma^{ij} \Sigma^k + \Sigma^{jk} \Sigma^i + \Sigma^{ki} \Sigma^j \right) \\ &- \frac{4}{15} \left(\delta^{ij} \Sigma^k + \delta^{jk} \Sigma^i + \delta^{ki} \Sigma^j \right) \\ &R^{ijk} &= \frac{1}{4} \end{split} \begin{pmatrix} \begin{pmatrix} -3S_{LT}^{i} + S_{TT}^{iTT} & -S_{LT}^{i} + S_{LT}^{iTT} & -S_{LT}^{i} + S_{LT}^{i} + S_{LT}^{i$
See e.g. Jing Zhao, Zhe Zhang, ZTL, Tianbo Liu, Ya-jin Zhou, PRD106, 094006 (2022)
复旦大学 2024年8月5-6日 40

Description of polarization of particles with different spins
Spin 1/2 hadrons:The spin density matrix is 2x2: Vector polarization: $S^{\mu} = (0, \vec{S}_{T}, \lambda)$ $\hat{\rho} = \begin{pmatrix} \rho_{++} & \rho_{+-} \\ \rho_{-+} & \rho_{} \end{pmatrix} = \frac{1}{2}(1 + \vec{S} \cdot \vec{\sigma})$
Spin 1 hadrons:See e.g. A. Bacchetta, & P.J. Mulders, PRD62, 114004 (2000)The spin density matrix is 3x3: $\rho = \begin{pmatrix} \rho_{i1} & \rho_{im} & \rho_{im} \\ \rho_{in} & \rho_{im} & \rho_{im} \\ \rho_{-1} & \rho_{-m} & \rho_{-m} \end{pmatrix} = \frac{1}{3}(1+\frac{3}{2}\vec{S}\cdot\vec{\Sigma}+3T^{\mu}\vec{\Sigma}^{\mu})$ Vector polarization: $S^{\mu} = (0, \vec{S}_{T}, \lambda)$ Tensor polarization: $S_{LL}^{L}, S_{LT}^{i} = (S_{LT}^{x}, S_{LT}^{y}), S_{TT}^{ij} = \begin{pmatrix} S_{TT}^{xx} & S_{TT}^{xy} & 3 \\ S_{TT}^{yy} & -S_{TT}^{yy} \end{pmatrix} = \frac{1}{3}$
Spin 3/2 hadrons: See e.g. Jing Zhao, Zhe Zhang, ZTL, Tianbo Liu, Ya-jin Zhou, PRD106, 094006 (2022) The spin density matrix is 4x4: $\hat{\rho} = \frac{1}{4} \left(1 + \frac{4}{5} S^i \Sigma^i + \frac{2}{3} T^{ij} \Sigma^{ij} + \frac{8}{9} R^{ijk} \Sigma^{ijk} \right)$ Vector polarization: $S^{\mu} = (0, \vec{S}, A)$
$\begin{bmatrix} \text{Tensor polarization: } S_{LL}, S_{LT}^{i} = (S_{LT}^{x}, S_{LT}^{y}), s_{TT}^{ij} = \begin{pmatrix} S_{TT}^{xT} & S_{TT}^{yy} \\ S_{TT}^{xy} & -s_{TT}^{xT} \end{pmatrix} \begin{bmatrix} 3 \\ 5 \\ 5 \\ \text{Tensor polarization: } S_{LLL}, S_{LLT}^{i} = (S_{LT}^{x}, S_{LLT}^{y}), \\ (rank 3) & s_{LTT}^{ij} = \begin{pmatrix} S_{LT}^{xT} & S_{LTT}^{yy} \\ S_{TT}^{yT} & -S_{TT}^{xT} \end{pmatrix} \\ s_{TT}^{ij} = \begin{pmatrix} S_{TT}^{xy} & S_{TT}^{yy} \\ S_{TT}^{yT} & -S_{TT}^{xT} \end{pmatrix} \end{bmatrix} $ $\begin{bmatrix} 15 \text{ independent} \\ \text{components} \end{bmatrix}$
复旦大学 2024年8月5-6日 41

