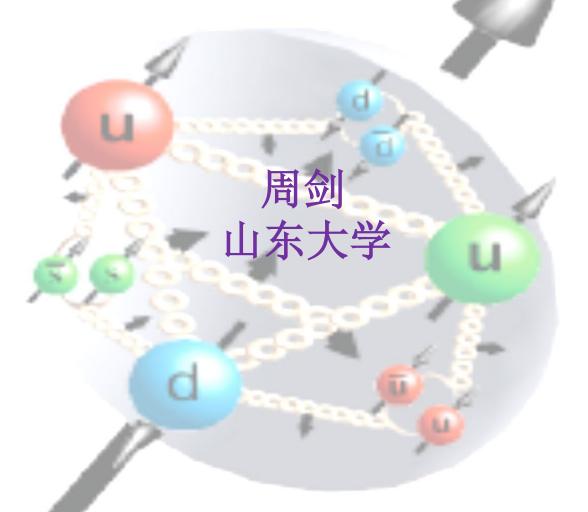
EIC物理唯象研究简介



Outline:

- > Introduction
- > 3D imaging of proton
- > Mass and spin decompositions of proton
- > Small x physics

Many interesting topics not covered: proton radius puzzle, Quasi PDFs...

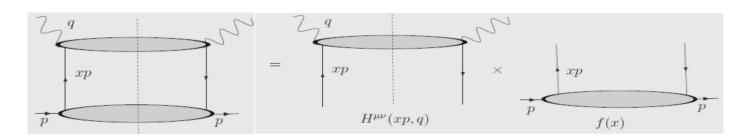
Introduction

Parton model and QCD factorization

DIS:
$$-\frac{\gamma}{q}$$
* $k\sim xp$ p $\langle k_{\perp}\rangle \ll Q$

Asymptotically Free Partons,

$$Q^2$$
, $P_T^2 \gg \Lambda_{QCD}^2 \sim \left[1/\text{fm}\right]^2 \qquad \sigma_{phy}(Q) \approx \sum_f \hat{\sigma}_f(Q) \otimes \left[\varphi_{f/h}(x)\right] + O\left(\frac{1}{Q}\right)$

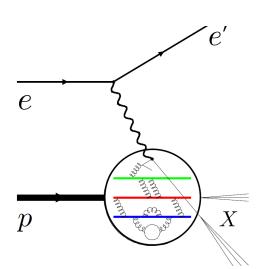


Predicative power:

Universal & Scale dependence perturbativly computable

Deep inelastic scattering(DIS)

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$



$$Q^{2} = -q^{2} = -(k_{\mu} - k'_{\mu})^{2}$$

$$Q^{2} = 4E_{e}E'_{e}\sin^{2}\left(\frac{\theta'_{e}}{2}\right)$$

$$y = \frac{pq}{pk} = 1 - \frac{E'_{e}}{E_{e}}\cos^{2}\left(\frac{\theta'_{e}}{2}\right)$$

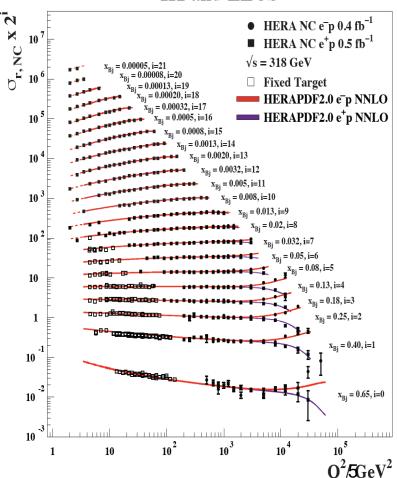
$$x = \frac{Q^{2}}{2pq} = \frac{Q^{2}}{sv}$$

Bjorken scaling

$$F(q^2) \equiv \int e^{\frac{-i\mathbf{q}.\mathbf{R}}{\hbar}} \rho(\mathbf{R}) d\tau$$

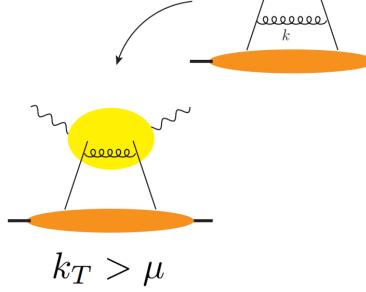
$$F_2(x,Q^2) = x \sum_{q} Q_q^2(q + \overline{q})$$

H1 and ZEUS

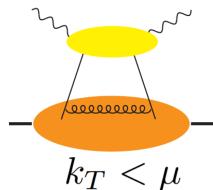


DGLAP evolution

Radiative correction:



Contribute to hard part



Drive the scale evolution of PDF

> DGLAP evolution equation:

$$\frac{d}{d\log\mu^2} f(x,\mu) = \int_x^1 \frac{dx'}{x'} P\left(\frac{x}{x'}\right) f(x',\mu)$$

DIS experiments

1980	1990	2000		2010	
SLAC					Electrons,3 different detectors, H2,D2,heavy target
	FNAL E665				Muons, iron toroid, iron target
CERN BCDMS					Muons, iron toroid, H2,D2,C targets
CERN EMC	NMC				Muons, open spectrometer,H2,D2,heavy targets
CERN CDHSW					Neutrinos, iron toroid, iron target
FNAL CCFRW		NuTeV			Neutrinos, iron toroid, iron target
	A H1 AND ZEUS			Electron-Proton Collider	
	SLAC	C Polarised targets			Polarised electron beam and targets
	CERN SI	MC	COMPASS		-> Polarised muon beam and targets
		HERA HERMES			Polarised electron beam and targets
		JLAF	B HALL A and B		-> Polarised electron beam and targets

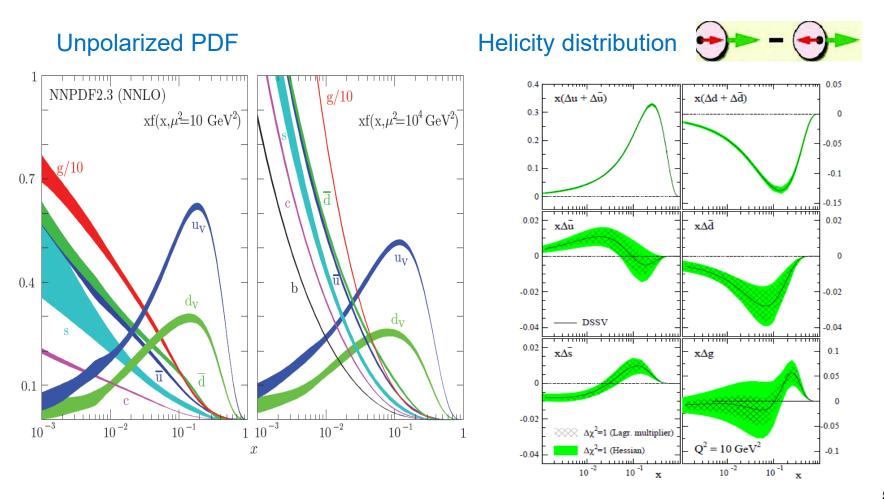
+ input from hadron-hadron collisions: TeVatron

RHIC

LHC

1 dimensional imaging of proton

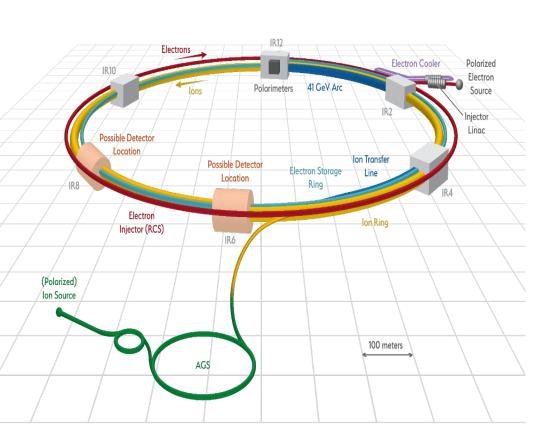
Extracted PDF set, based on QCD collinear factorization



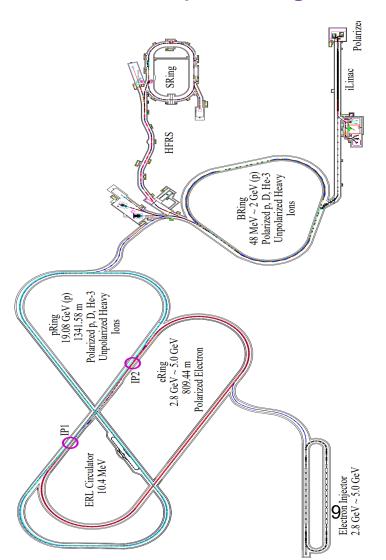
[◆] Quasi-PDF, Ji, 2013

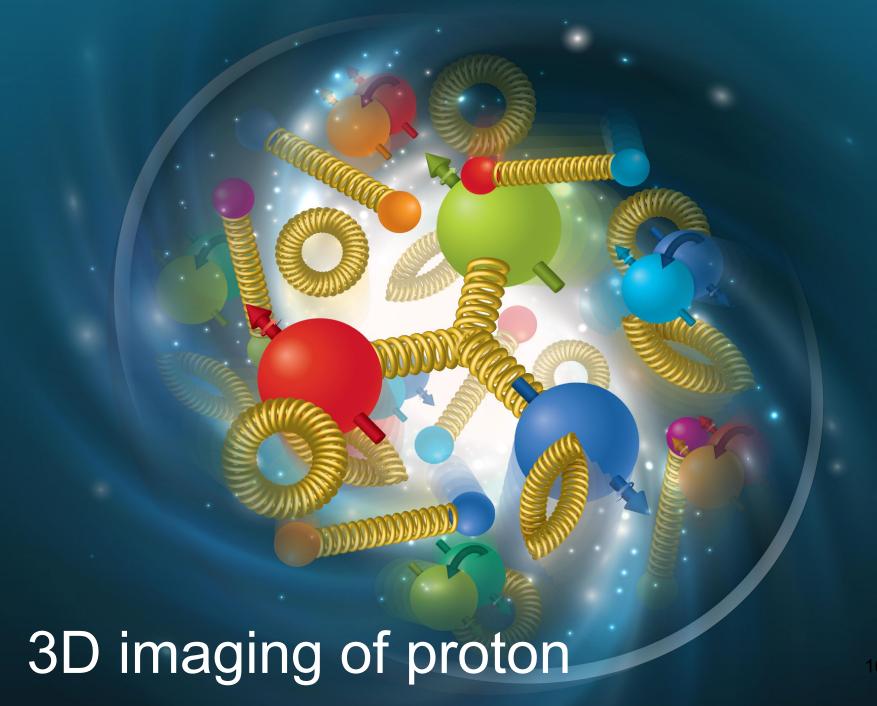
Future experiments

EIC, gluonic matter



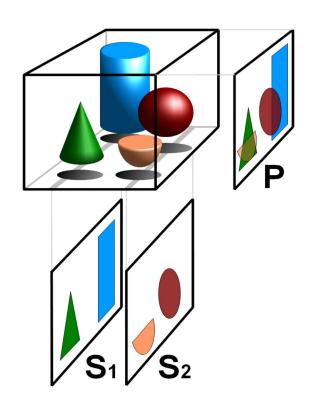
EicC, sea quark region

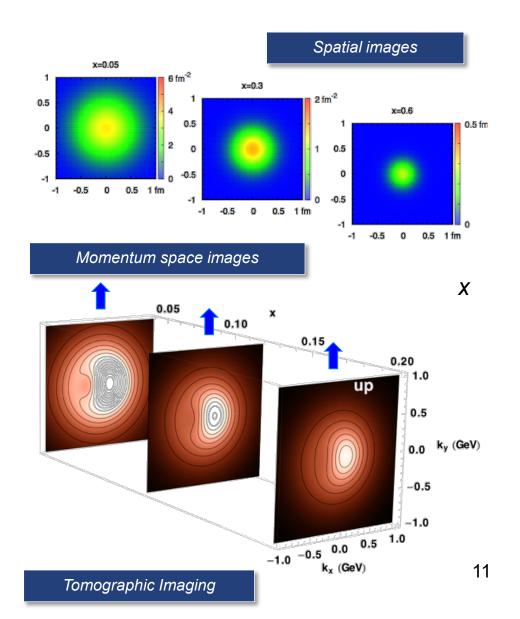




3D tomography of proton

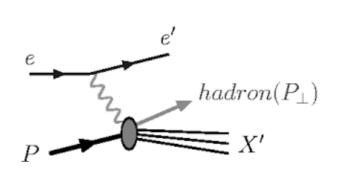
X-ray computed tomography X射线计算机断层成像

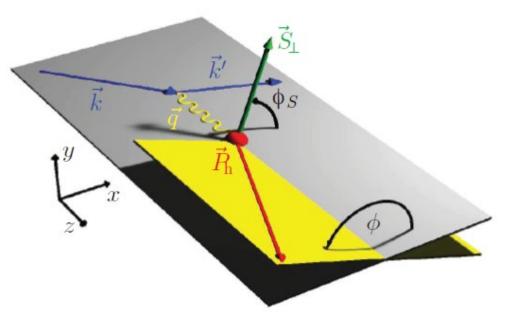




3D momentum space distributions: TMDs

 \blacksquare The "simplest" TMD is the unpolarized function $f_1(x; k_T)$





$$\int \frac{dy^- d^2 y_\perp}{(2\pi)^3} e^{-ixP^+ \cdot y^- + i\vec{k}_\perp \cdot \vec{y}_\perp} \langle PS | \overline{\psi}_\beta(y^-, y_\perp) \mathcal{L}_v^{\dagger}(y^-, y_\perp) \mathcal{L}_v(0) \psi_\alpha(0) | PS \rangle$$

TMD factorization: Collins-Soper 1981, Collins-Soper-Sterman 1985 kt<<0

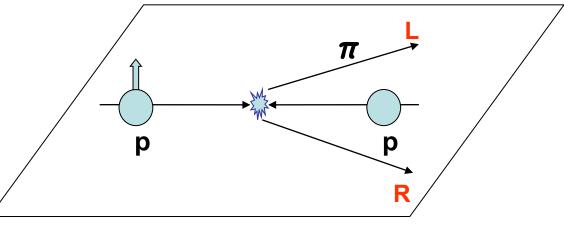
Why TMDs?

- Phenomenogical needs
- Confined motion of partons inside proton
- Access to orbital angular momentum
- Universality issue, QCD factorization

Single spin asymmetry

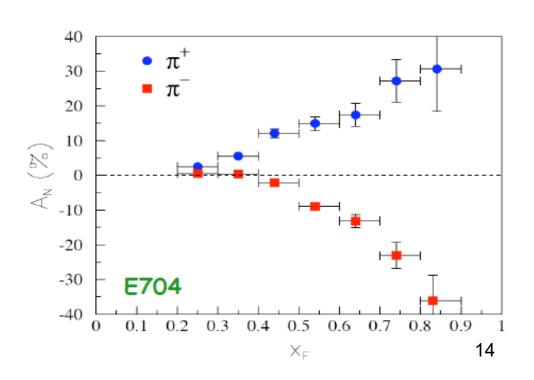
$$p(\uparrow) + p \rightarrow \pi + X$$

$$A_N \equiv (\sigma(S_\perp) - \sigma(-S_\perp))/(\sigma(S_\perp) + \sigma(-S_\perp))$$



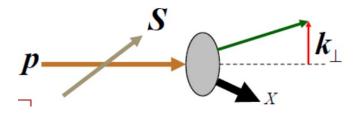
A_N--proportional to quark mass

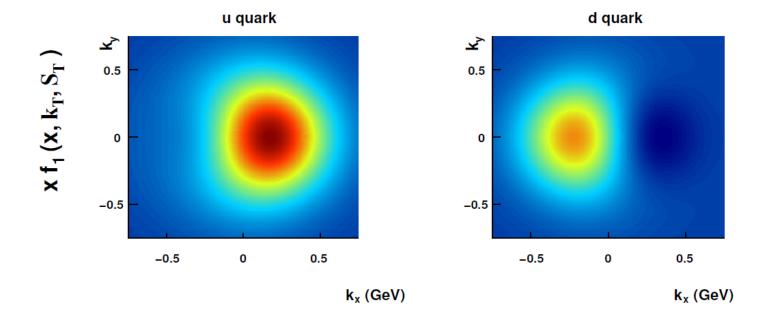
- TMD, Sivers function
- Collinear twist-3, QS function



Sivers function

➤ The most interesting TMD: Sivers function:





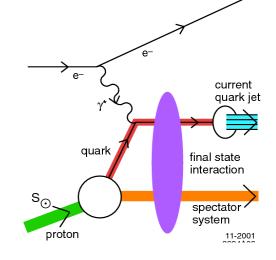
The tale of the Sivers function

The introduction of the Sivers function.

Sivers 1990

Proof it is zero using time&parity invariance of QCD,

Collins 1993



Non-vanishing Sivers function in a model calculation,

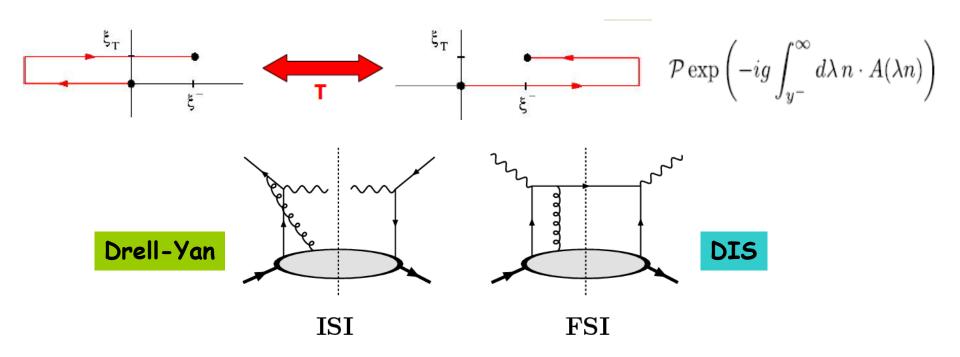
Brodsky-Hwang-Schmidt 2002

➤ Including gauge link contribution, prove $f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{DIS}$

Collins 2002

Gauge link

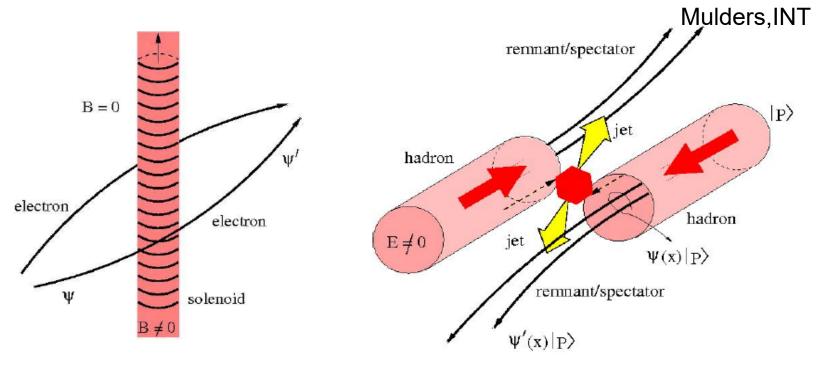
$$\Phi_{ij}(x, \mathbf{k}_{\perp}) = \int \frac{d\xi^{-}}{(2\pi)} \frac{d^{2}\xi_{\perp}}{(2\pi)^{2}} e^{i\mathbf{x}\mathbf{P}^{+}\xi^{-}} e^{-i\mathbf{k}_{\perp}\xi_{\perp}} \langle \mathbf{P}, \mathbf{S}_{\mathbf{P}} | \overline{\psi}_{\mathbf{j}}(\mathbf{0}) \mathcal{U}(\mathbf{0}, \xi) \psi_{\mathbf{i}}(\xi) | \mathbf{P}, \mathbf{S}_{\mathbf{P}} \rangle \Big|_{\xi^{+} = \mathbf{0}}$$



 $|Sivers|_{DY} = -Sivers|_{DIS}$

$$\int_{-\infty}^{+\infty} dk_g^+ \frac{i}{-k_g^+ - i\epsilon} A^+(k_g) = \int_0^{-\infty} d\zeta^- A^+(\zeta^-) \qquad \int_{-\infty}^{+\infty} dk_g^+ \frac{i}{-k_g^+ + i\epsilon} A^+(k_g) = \int_0^{+\infty} d\zeta^- A^+(\zeta^-)$$

Gauge link physics



Gauge link (Wilson line), pure gauge gluon

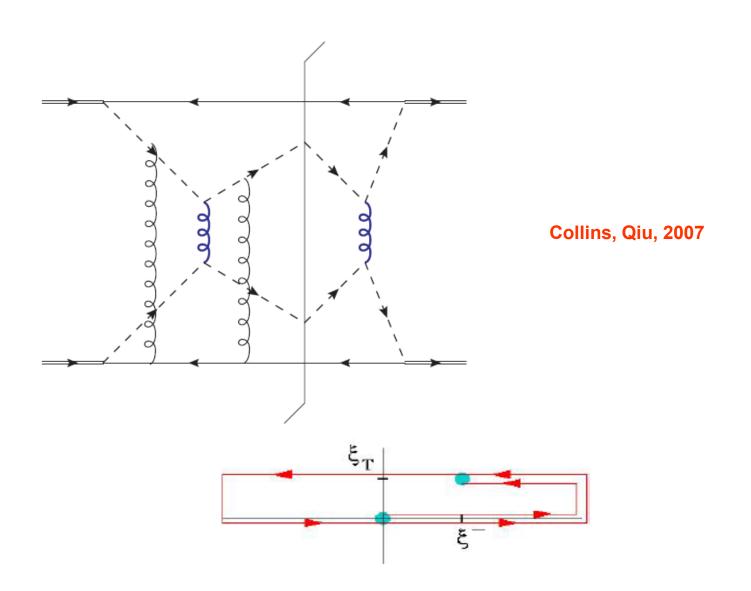
$$\psi' = e^{ie \int ds.A} \psi \qquad \qquad \psi_i(x) |P\rangle = e^{-ig \int_x^{x'} ds_\mu A^\mu} \psi_i(x') |P\rangle$$

◆ S and P wave interference

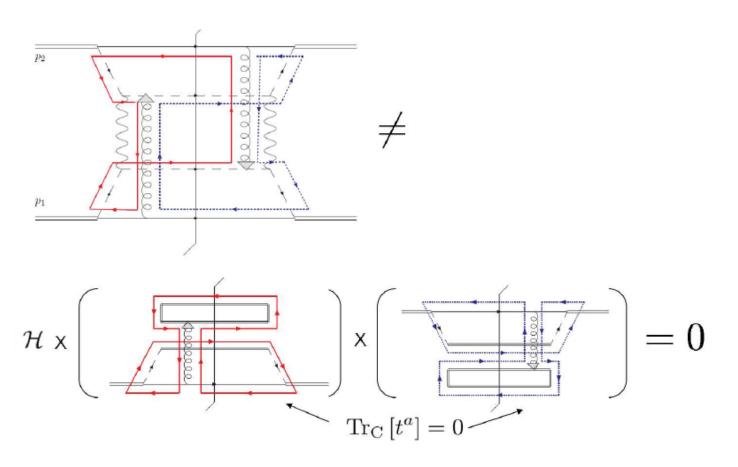
Boris, Liang 1993 Belitsky, Ji, Yuan, 2004

Are parton distributions universal?

TMD factorization breaks down



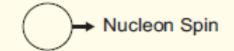
Generalized TMD factorization breaks down



Rogers, Mulders, 2010

Zoo of TMDs

Leading Twist TMDs



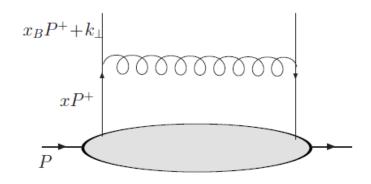
		Quark Polarization					
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)			
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = $			
	L		$g_{1L} = \longrightarrow - \longrightarrow$ Helicity	h _{1L} =			
	т	$f_{1T}^{\perp} = \bullet$ - Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ \bullet \\ \end{array}$	$h_1 = 1$ Transversity $h_{1T}^{\perp} = 1$ $ -$			

Large k_T TMD distributions (K_T -even type)

When intrinsic transverse momentum $k_T >> \Lambda_{QCD}$

TMD distributions can be calculated within perturbative QCD,

 k_T -even TMD distribution, in the light cone gauge $A^+=0$



radiated gluon generate large transverse momentum,

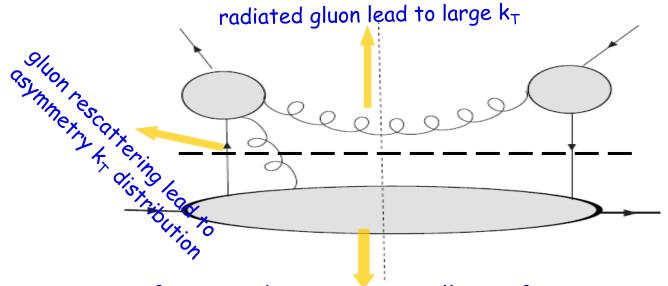
$$f_1(x_B, k_\perp) = \frac{\alpha_s}{2\pi^2} \frac{1}{\vec{k}_\perp^2} C_F \int \frac{dx}{x} f_1(x) \left[\frac{1+\xi^2}{(1-\xi)_+} + \delta(1-\xi) \left(\ln \frac{x_B^2 \zeta^2}{\vec{k}_\perp^2} - 1 \right) \right]$$

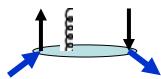
TMD evolution: resum to all orders using the Collins-Soper equation

k_T-odd TMD distributions at large K_T

In the same spirit,

K_T-odd TMD distributions can be calculated by using collinear approach





factorized into twist-3 collinear functions accordingly, $T_F(x,x_1)$, $T_F^{(\sigma)}(x,x_1)$, etc.

$$M_{F\alpha\beta}^{\mu}(x,x_1) \equiv \int \frac{dy^-}{2\pi} \frac{dy_1^-}{2\pi} e^{ixP^+y^-} e^{i(x_1-x)P^+y_1^-} \langle P, S | \bar{\psi}_{\beta}(0) g F_{+\perp}^{\mu}(y_1^-) \psi_{\alpha}(y^-) | P, S \rangle.$$

$$= \frac{M}{2} \left[T_F(x, x_1) \epsilon_{\perp}^{\nu\mu} S_{\perp\nu} \not p + \tilde{T}_F(x, x_1) i S_{\perp}^{\mu} \gamma_5 \not p + \tilde{T}_F^{(\sigma)}(x, x_1) i \lambda \gamma_5 \gamma_{\perp}^{\mu} \not p + T_F^{(\sigma)}(x, x_1) i \gamma_{\perp}^{\mu} \not p \right]$$

and two more twist-3 functions: $\tilde{g}(x) = \tilde{h}(x)$

Sivers and Boer-Mulders

$$\begin{split} f_{1T}^{\perp}|_{\mathrm{DY}}(x_B,k_{\perp}) &= \frac{\alpha_s}{\pi} \frac{M^2}{(\vec{k}_{\perp}^2)^2} \int \frac{dx}{x} \left[A_{f_{1T}^{\perp}} + C_F T_F(x,x) \delta(1-\xi) \left(\ln \frac{x_B^2 \zeta^2}{\vec{k}_{\perp}^2} - 1 \right) \right] \\ h_1^{\perp}|_{\mathrm{DY}}(x_B,k_{\perp}) &= \frac{\alpha_s}{\pi} \frac{M^2}{(\vec{k}_{\perp}^2)^2} \int \frac{dx}{x} \left[A_{h_1^{\perp}} + C_F T_F^{(\sigma)}(x,x) \delta(1-\xi) \left(\ln \frac{x_B^2 \zeta^2}{\vec{k}_{\perp}^2} - 1 \right) \right] \end{split}$$

• g_{1T} and h_{1L}

ZJ, Yuan, Liang,2009

$$g_{1T}(x_B, k_\perp) = \frac{\alpha_s}{\pi^2} \frac{M^2}{(k_\perp^2)^2} \int \frac{dx}{x} \left\{ A_{g_{1T}} + C_F \tilde{g}(x) \delta(\xi - 1) \left(\ln \frac{x_B^2 \zeta^2}{k_\perp^2} - 1 \right) \right\}$$

$$h_{1L}(x_B, k_\perp) = \frac{\alpha_s}{\pi^2} \frac{M^2}{(k_\perp^2)^2} \int \frac{dx}{x} \left\{ A_{h_{1L}} + C_F \tilde{h}(x) \delta(\xi - 1) \left(\ln \frac{x_B^2 \zeta^2}{k_\perp^2} - 1 \right) \right\}$$

ZJ, Yuan, Liang, 2009

where,

$$A_{f_{1T}^{\perp}} = -\frac{1}{2N_c} T_F(x, x) \frac{1+\xi^2}{(1-\xi)_+} + \frac{C_A}{2} T_F(x, x_B) \frac{1+\xi}{(1-\xi)_+} + \frac{C_A}{2} \tilde{T}_F(x_B, x)$$

$$A_{h_1^{\perp}} = -\frac{1}{2N_c} T_F^{(\sigma)}(x, x) \frac{2\xi}{(1-\xi)_+} + \frac{C_A}{2} T_F^{(\sigma)}(x, x_B) \frac{2}{(1-\xi)_+}.$$

$$A_{g_{1T}} = \int dx_1 \left\{ \frac{1}{2N_C} \tilde{g}(x) \frac{1+\xi^2}{(1-\xi)_+} \delta(x_1 - x) + \left[C_F \left(\frac{x_B^2}{x^2} + \frac{x_B}{x_1} - \frac{2x_B^2}{x_1x} - \frac{x_B}{x} - 1 \right) + \frac{C_A}{2} \frac{(x_B^2 + xx_1)(2x_B - x - x_1)}{(x_B - x_1)(x - x_1)x_1} \right] \tilde{G}_D(x, x_1) + \left[C_F \left(\frac{x_B^2}{x^2} + \frac{x_B}{x_1} - \frac{x_B}{x} - 1 \right) + \frac{C_A}{2} \frac{x_B^2 - xx_1}{(x_1 - x_B)x_1} \right] G_D(x, x_1) \right\}$$

$$A_{h_{1L}} = \int dx_1 \left\{ \frac{1}{2N_C} \tilde{h}(x) \frac{2\xi}{(1-\xi)_+} \delta(x_1 - x) + \left[C_F \frac{2(x - x_1 - x_B)}{x_1} + \frac{C_A}{2} \frac{2x_B(x_Bx + x_Bx_1 - x^2 - x_1^2)}{(x_B - x_1)(x - x_1)x_1} \right] H_D(x, x_1) \right\}.$$

TMD evolution

Two scales problem(formulated in bt space):

$$\frac{d \ln \tilde{f}(x,b;\zeta,\mu)}{d \ln \sqrt{\zeta}} = \tilde{K}(b;\mu),$$
 Collins Soper(CS) equation

$$\frac{d\ln \tilde{f}(x,b;\zeta,\mu)}{d\ln \mu} = \gamma_F(g(\mu);\zeta/\mu^2)$$

Renormalization group equation

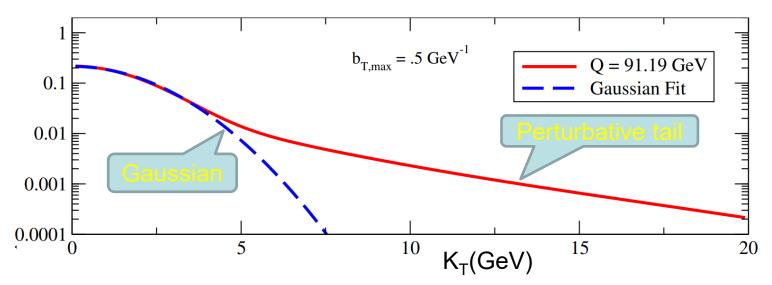
Evolved TMD:
$$\tilde{f}_1^a(x,b^2;\zeta_F,\mu) = e^{-S(b,Q)} \tilde{f}_1^a(x,b^2;\mu_b^2,\mu_b)$$

With
$$S(b,Q) = -\ln\left(\frac{Q^2}{\mu_b^2}\right)\tilde{K}(b,\mu_b) - \int_{\mu_t^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left[\gamma_F(g(\mu);1) - \frac{1}{2}\ln\left(\frac{Q^2}{\mu^2}\right)\gamma_K(g(\mu))\right]$$

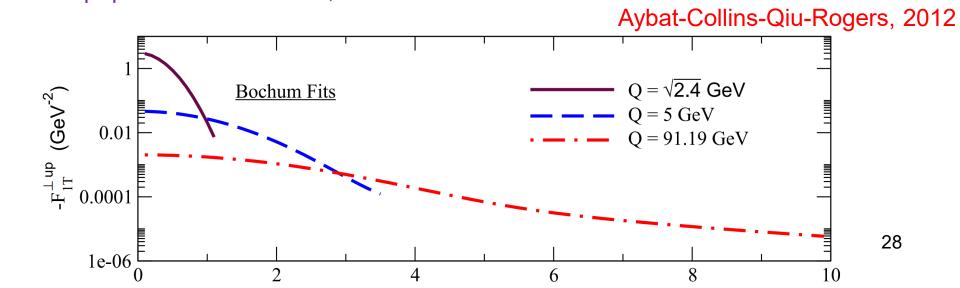
The last step: making Fourier transform back to kt space.

Evolved TMDs

• Up quark TMD, x=0.09:

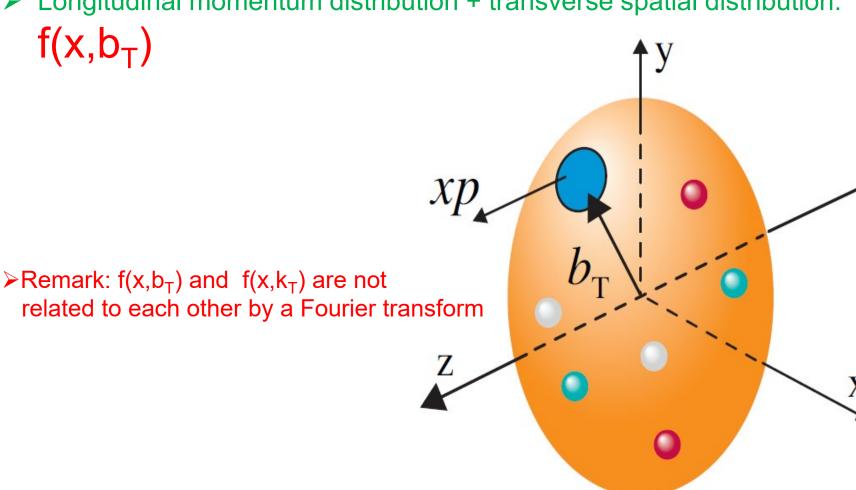


Up quark Sivers function, x=0.1:

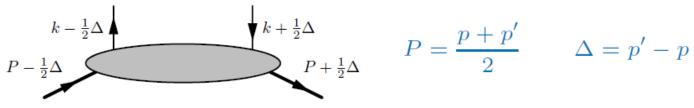


Spatial imaging of Quarks and Gluons

Longitudinal momentum distribution + transverse spatial distribution:



Generalized Parton Distributions (GPDs)



$$P = \frac{p + p'}{2} \qquad \Delta = p' - p$$

$$\int \frac{d\lambda}{2\pi} e^{ix(Pz)} n_{-\alpha} n_{-\beta} \left\langle p' \middle| G^{\alpha\mu} \left(-\frac{z}{2} \right) G^{\beta}_{\mu} \left(\frac{z}{2} \right) \middle| p \right\rangle \Big|_{z=\lambda n_{-}}$$

D. Muller, 94

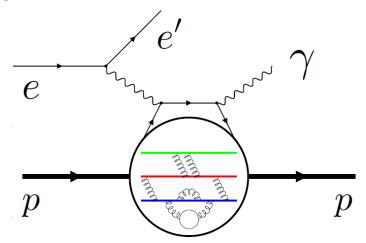
X. D. Ji, 97

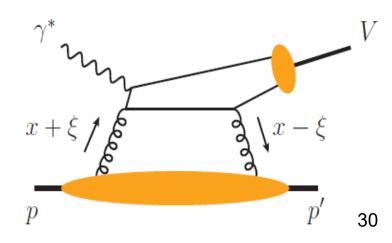
A. V. Radushkin, 97

$$= \frac{1}{2} \left[\mathcal{H}^{g} \bar{u}(p') \not h_{-} u(p) + \mathcal{E}^{g} \bar{u}(p') \frac{i \sigma^{\alpha \beta} n_{-\alpha} \Delta_{\beta}}{2 m_{N}} u(p) \right]$$

$$x, \zeta, t$$

DVCS





Some properties of GPDs

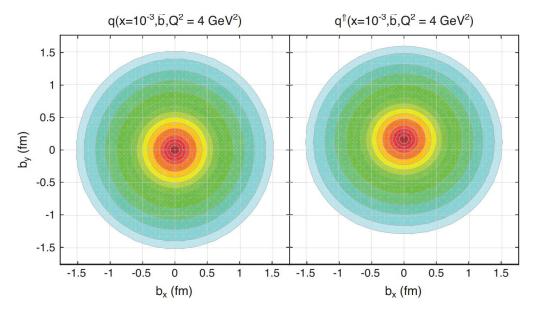
> Form factors

$$\sum_{q} e_{q} \int dx \, H^{q}(x,\xi,t) = F_{1}^{p}(t) \,, \qquad \sum_{q} e_{q} \int dx \, E^{q}(x,\xi,t) = F_{2}^{p}(t)$$

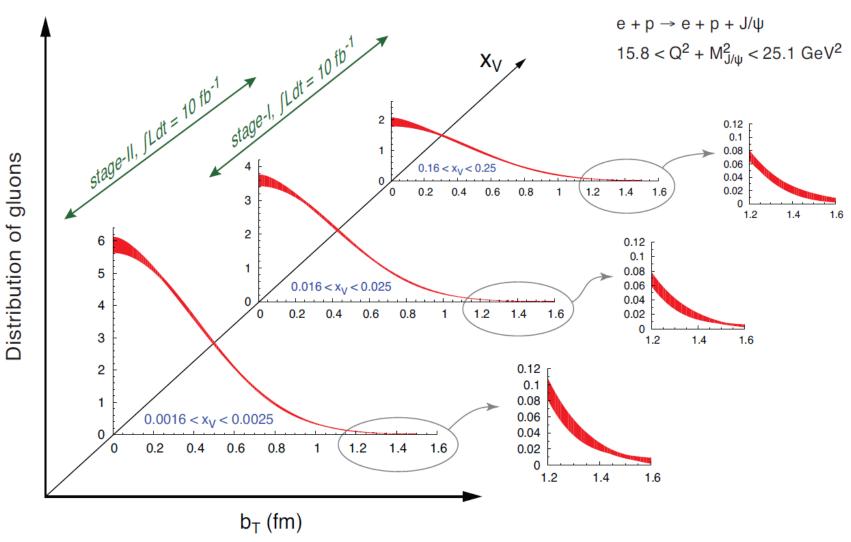
➤ Transverse spatial distribution

Soper 77 & Burkardt 2000

$$\mathcal{H}^{q}(x,\vec{b}_{T}^{2}) = \int \frac{d^{2}\vec{\Delta}_{T}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{T}\cdot\vec{b}_{T}} H^{q}(x,0,-\vec{\Delta}_{T}^{2}) \quad f_{q}(z,b_{\perp,q}) = \mathcal{H}_{q}(z,b_{\perp,q}^{2}) + \frac{1}{M} \epsilon_{\perp}^{ij} b_{\perp,q}^{i} S_{\perp}^{j} \frac{\partial \mathcal{E}_{q}(z,b_{\perp,q}^{2})}{\partial b_{\perp,q}^{2}}$$



Transverse spatial distribution of gluons



Information encoded in parton distributions is incomplete

Wave function
$$c_1 \mid p_T = 0.2 \rangle + c_2 e^{i\phi} \mid p_T = 0.4 \rangle$$

Corresponding Parton distribution function:

$$f(p_T = 0.2) \propto |c_1|^2$$
 $f(p_T = 0.4) \propto |c_2|^2$

Nontrival correlation could exist:

$$b_T \times k_T, b_T \cdot k_T$$

Parton Wigner distributions

In quantum mechanics:

$$\widehat{W}^{[\Gamma]}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) \equiv \frac{1}{2} \int \frac{\mathrm{d}z^{-} \,\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}} \, e^{i(xp^{+}z^{-} - \vec{k}_{\perp} \cdot \vec{z}_{\perp})} \, \overline{\psi}(\vec{b}_{\perp} - \frac{z}{2}) \Gamma \mathcal{W} \, \psi(\vec{b}_{\perp} + \frac{z}{2}) \big|_{z^{+}=0}$$

Operator defination:

$$\rho^{[\Gamma]}(\vec{b}_{\perp}, \vec{k}_{\perp}, x, \vec{S}) \equiv \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} \langle p^+, \frac{\vec{\Delta}_{\perp}}{2}, \vec{S} | \widehat{W}^{[\Gamma]}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) | p^+, -\frac{\vec{\Delta}_{\perp}}{2}, \vec{S} \rangle.$$

A. Belitisky, X. D. Ji and F. Yuan, 2003

Motivations of studying parton Wigner distributions:

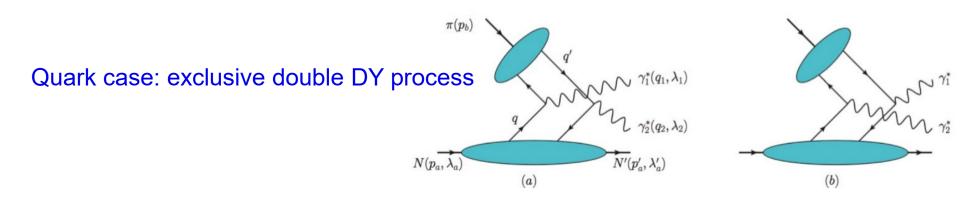
- tomography picture of nucleon
- encode information on parton OAM

Relation to TMDs and GPDs

$$\int \mathrm{d}^2 b_\perp \, \rho^{[\Gamma]}(\vec{b}_\perp, \vec{k}_\perp, x, \vec{S}) = W^{[\Gamma]}(\vec{0}_\perp, \vec{k}_\perp, x, \vec{S}) \text{ TMD correlator}$$

$$\int d^2k_{\perp} \, \rho^{[\Gamma]}(\vec{b}_{\perp}, \vec{k}_{\perp}, x, \vec{S}) = \int \frac{d^2\Delta_{\perp}}{(2\pi)^2} \, e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \, F^{[\Gamma]}(\vec{\Delta}_{\perp}, x, \vec{S}) \quad \text{GPD correlator}$$

How to measure parton Wigner distribution



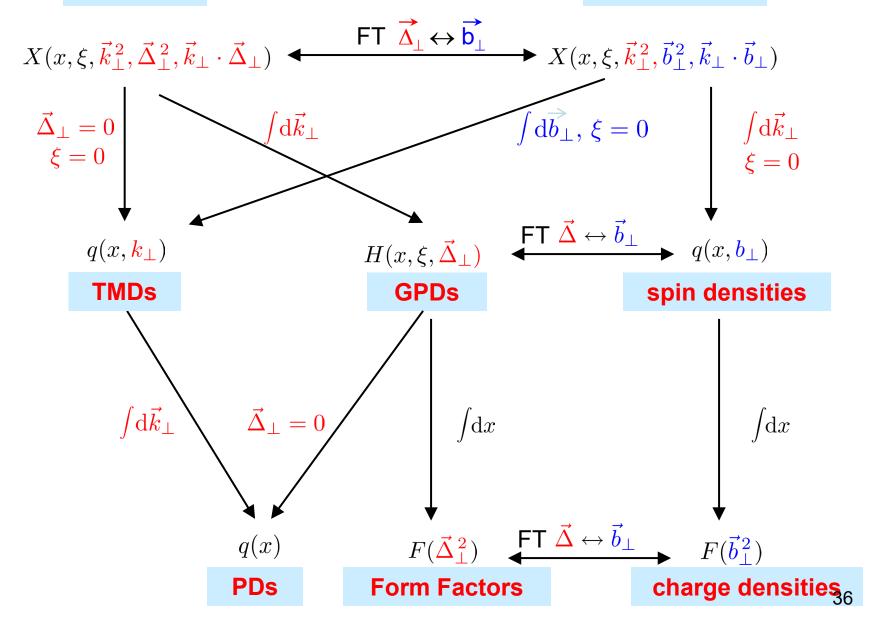
Gluon case: exclusive double quarknioum production.

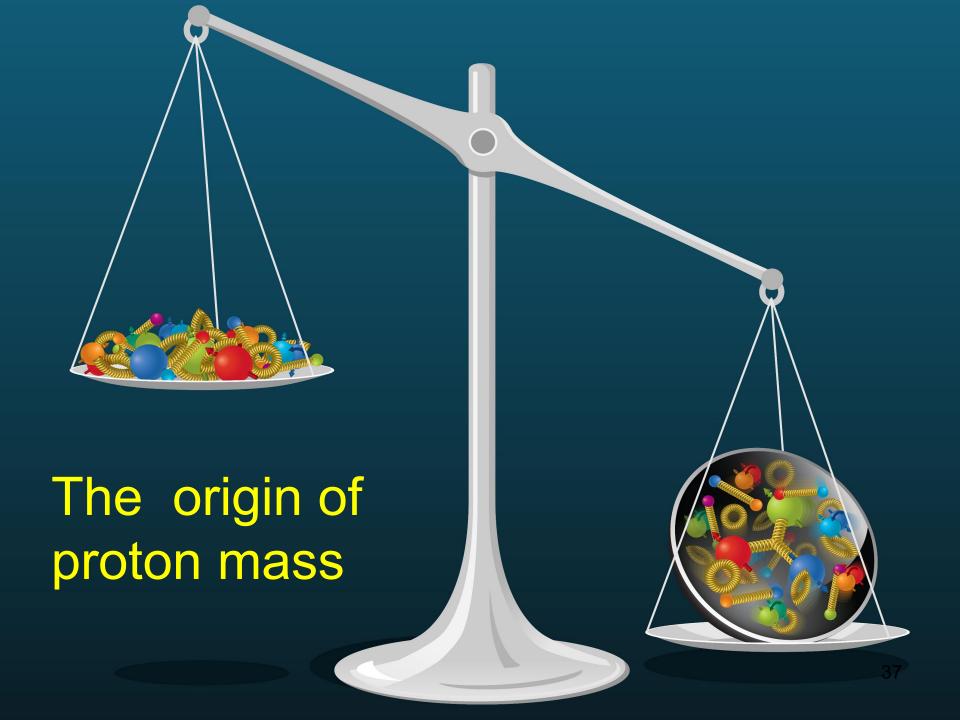
Bhattacharya, Metz, ZJ 2017

$$\frac{1}{2} \left(\tau_{UL} + \tau_{LU} \right)
\approx 2 \operatorname{Im} \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right.
+ \left. \frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} G_{1,1}(x_a, \vec{k}_{a\perp}) G_{1,4}(x_b, \vec{k}_{b\perp}) \right] C \left[G_{1,4}^*(x_a, \vec{p}_{a\perp}) G_{1,4}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

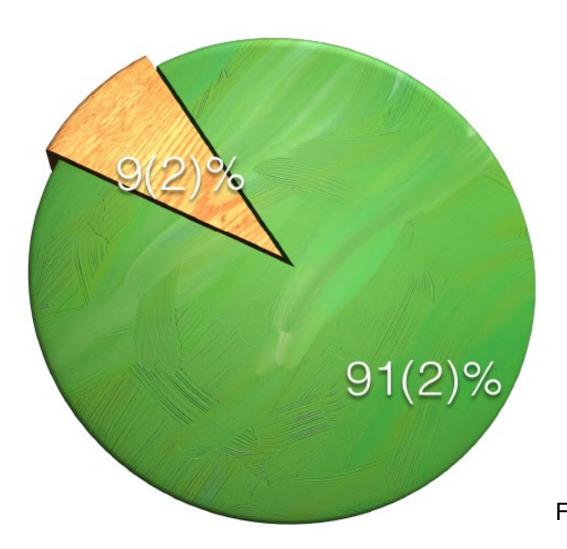
$$\approx 2 \operatorname{Im} \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

Wigner-Ds





Proton mass budget



From Yibo's talk

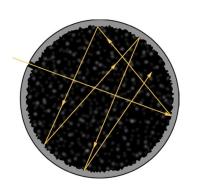
Massless limit

➤ The mass of blackbody radiation

von Laue's theorem, 1911

$$dV\varepsilon + dVp$$
 $p = \varepsilon/3$

 $\frac{4}{3}dV\varepsilon$



Mass from Quark and gluon kinetic energy accessible via PDF

$$\int_0^1 dx \ x d(x) \qquad \int_0^1 dx \ x g(x)$$

♦ But only makes up ³⁄₄ proton mass!

Trace anomaly

Energy momentum tensor:

$$T^{\mu\nu} = \frac{1}{2} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi + \frac{1}{4} g^{\mu\nu} F^2 - F^{\mu\alpha} F^{\nu}_{\alpha}$$

➤ Proton EMT

$$\langle P|T^{\mu\nu}|P\rangle = 2P^{\mu}P^{\nu} \qquad \langle P|T^{\alpha}_{\alpha}|P\rangle = 2M^2$$

ightharpoonup The trace of EME in 4-2 ϵ : $T_{\mu}^{\mu}=-2\epsilon\frac{F^{2}}{4}+m\bar{q}q$

Collins, Duncan, Joglekar, 1977 Nielsen, 1977

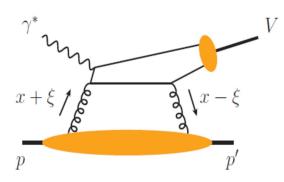
$$(T_g)^{\mu}_{\mu} = \frac{\beta}{2q} (F^2)_R + \gamma_m (m\bar{q}q)_m$$

How to measure trace anomaly

> Twist-4 operator: $\langle P'|F^{\mu\nu}F_{\mu\nu}|P\rangle$

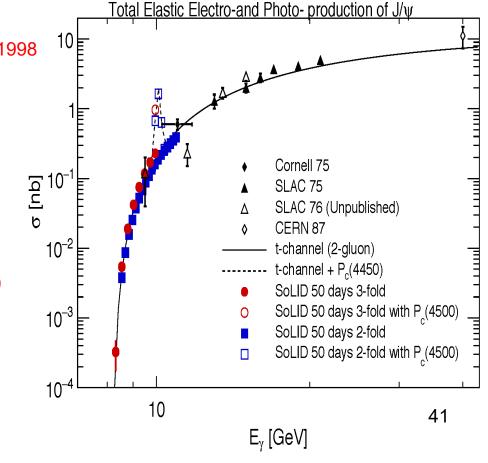
Threshold J/psi production

Kharzeev, Satz, Syamtomov, 1998

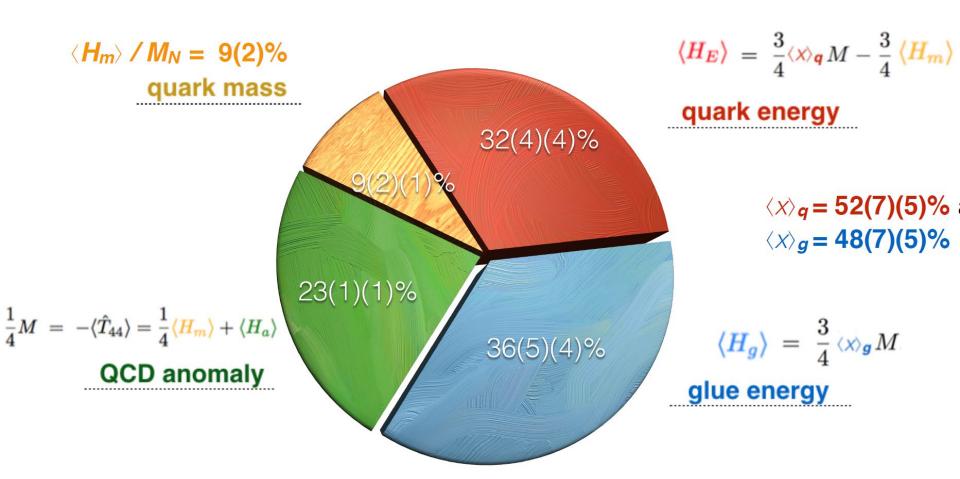


Extractions: Xu-Xie-Wang-Chen, 2020
 Wang-Bu-Zeng, 2022

Intense debates: Hatta, Ji, Ma, Sun, Tong, Yuan.....

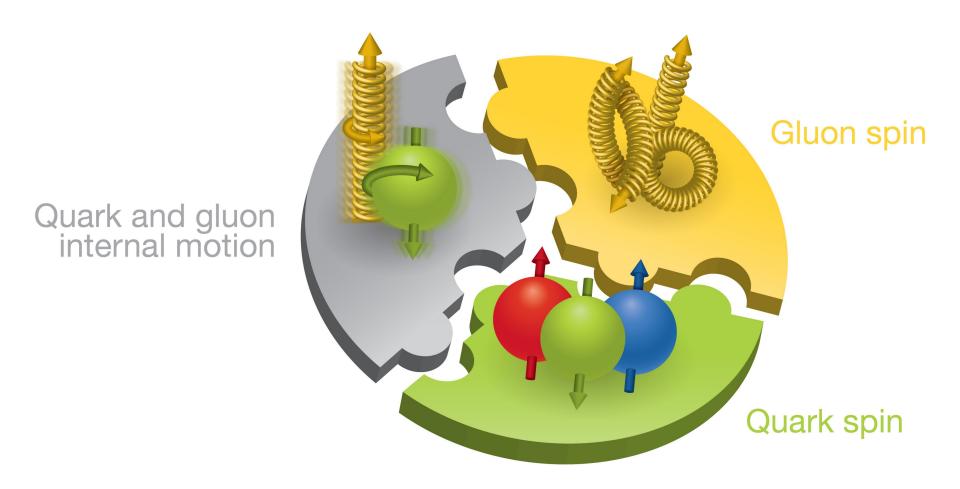


Ji's decomposition



Other decompositions exist: Hatta-Rajan-Tanaka, 2018
 Metz-Pasquini-Rodini, 2020

Proton spin decomposition



Proton spin crises

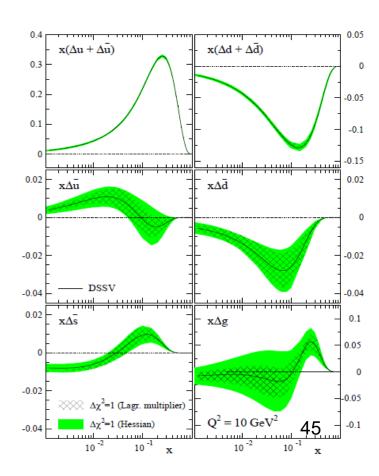
- Naïve quark model: proton spin from valance quark
- Vanishing quark spin contribution-----EMC measurement@CERN, 1988

$$\Delta f(x, Q^2) \equiv f^+(x, Q^2) - f^-(x, Q^2)$$

Double spin asymmetry:

$$\frac{1}{2} \left[\frac{\mathrm{d}^2 \sigma^{\rightleftarrows}}{\mathrm{d}x \, \mathrm{d}Q^2} - \frac{\mathrm{d}^2 \sigma^{\rightrightarrows}}{\mathrm{d}x \, \mathrm{d}Q^2} \right] \simeq \frac{4\pi \, \alpha^2}{Q^4} y \left(2 - y \right) g_1(x, Q^2)$$

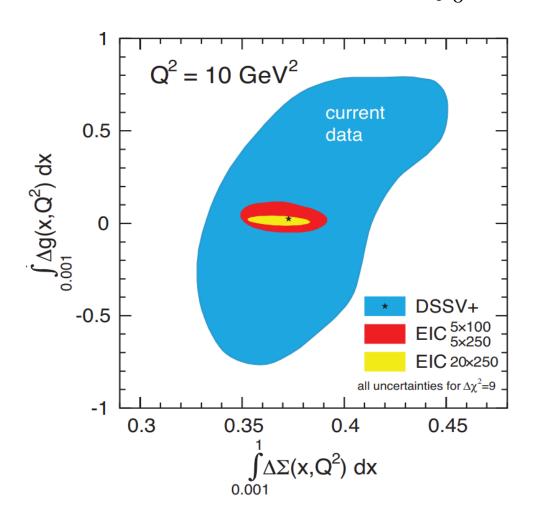
$$g_1(x, Q^2) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2) \right]$$



Modern experimental constraint

➤ Quark and gluon spin contribution

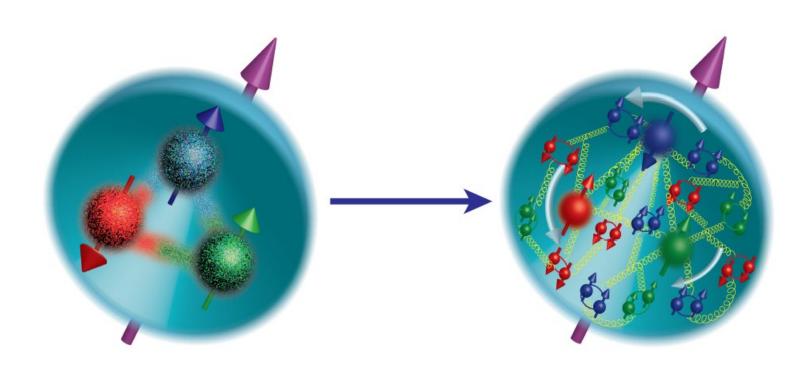
$$\int_0^1 dx \, \Delta q(x)$$



Other sources of angular momentum?

Proton spin sum rule:

$$J = \frac{1}{2}\Delta\Sigma(Q^2) + L_q(Q^2) + \Delta G(Q^2) + L_g(Q^2) = \frac{1}{2}$$



Spin in asymptotic limit(Q²)

Scale evolution equation

$$\frac{d}{d \ln \mu^2} \begin{pmatrix} J_q(\mu^2) \\ J_g(\mu^2) \end{pmatrix} = \frac{\alpha_s}{2\pi \cdot 9} \begin{pmatrix} -16.3n_f \\ 16.-3n_f \end{pmatrix} \begin{pmatrix} J_q(\mu^2) \\ J_g(\mu^2) \end{pmatrix}$$

Asymptotic solution

$$J_q(\infty) = \frac{1}{2} \frac{3n_f}{16 + 3n_f}, J_g(\infty) = \frac{1}{2} \frac{16}{16 + 3n_f}$$

Roughly half of the angular momentum is carried by gluons!

Lattice results

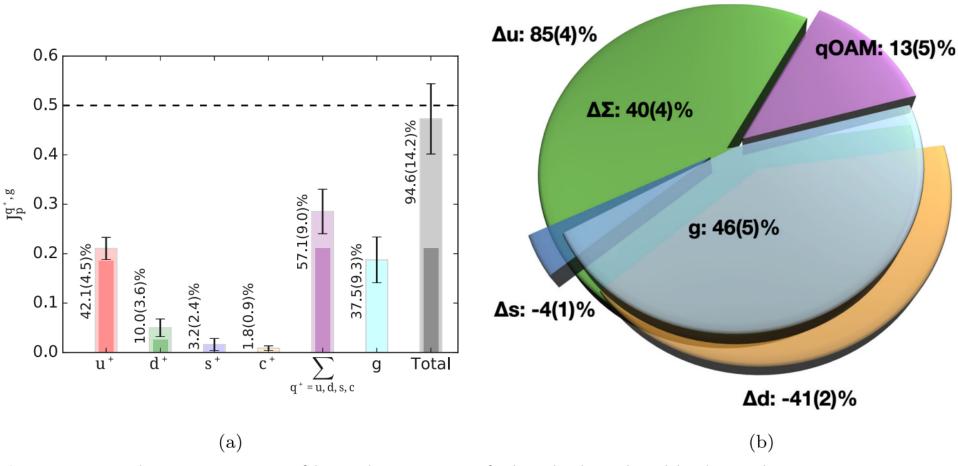


Fig. 3 a Proton spin decomposition in terms of the angular momentum J_q for the u,d and s quarks and the glue angular momentum J_g in Ji's decomposition in the $n_f=2+1+1$ calculation [74]. **b** Spin decomposition in terms of the quark spin $\Delta\Sigma$ and its flavor contributions $\Delta u, \Delta d$ and Δs , the glue J_g , and the quark OAM for the $n_f=2+1$ case [80]

How to measure orbital angular momentum?

Ji's sum rule

> The total angular momentum is related to the GPD:

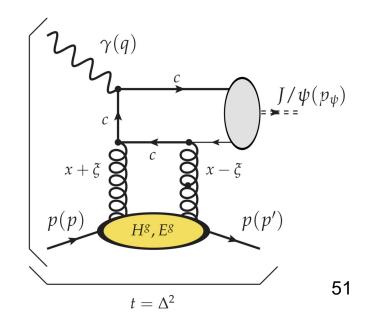
$$J_{q} = \lim_{t \to 0} \frac{1}{2} \int dx x [H_{q}(x, t, \xi) + E_{q}(x, t, \xi)]$$

an analogous relation holds for gluon. Ji, 1997

◆ SSA in exclusive process

$$A_N^{\gamma} = \frac{\frac{1}{2m_N}(1+\xi)|\Delta_T|\sin(\phi_{\overrightarrow{\Delta}})\,\mathfrak{I}(\mathcal{H}^g\mathcal{E}^{g\,\star})}{(1-\xi^2)|\mathcal{H}^g|^2 + \frac{\xi^4}{1-\xi^2}|\mathcal{E}^g|^2 - 2\xi^2\mathfrak{R}(\mathcal{H}^g\mathcal{E}^{g\,\star})}$$

Koempel, Kroll, Metz, ZJ, 2012



Small x asymptotic behavior

Never can reach x=0 at any experiment, how to extrapolate down to x=0

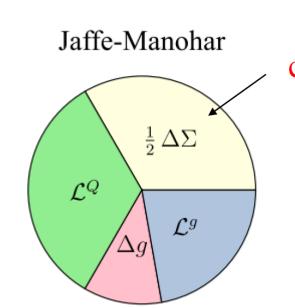
 \blacksquare Small x evolution equation for Eg(x)

$$\partial_Y \mathcal{E}(k_\perp) = \frac{\bar{\alpha}_s}{\pi} \int \frac{d^2 k'_\perp}{(k_\perp - k'_\perp)^2} \left[\mathcal{E}(k'_\perp) - \frac{k_\perp^2}{2k'_\perp^2} \mathcal{E}(k_\perp) \right] - 4\pi^2 \alpha_s^2 \overline{\mathcal{F}}_{1,1}(k_\perp) \mathcal{E}(k_\perp)$$

Hatta, ZJ, 2022

Conclusion: Eg(x) rises as rapidly as the normal unpolarized gluon distribution!

Two different spin decompositions

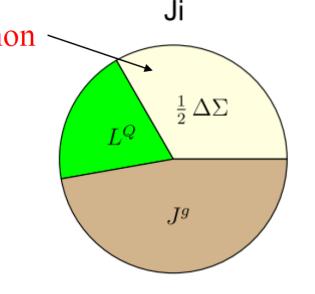


$$J_{QCD} = \int \psi^{\dagger} \frac{1}{2} \Sigma \psi d^{3}x$$

$$+ \int \psi^{\dagger} \mathbf{x} \times \frac{1}{i} \nabla \psi d^{3}x$$

$$+ \int \mathbf{E}^{a} \times \mathbf{A}^{a} d^{3}x$$

$$+ \int E^{ai} \mathbf{x} \times \nabla A^{ai} d^{3}x$$



$$J_{QCD} = \int \psi^{\dagger} \frac{1}{2} \Sigma \psi d^{3}x$$

$$+ \int \psi^{\dagger} x \times \frac{1}{i} \mathbf{D} \psi d^{3}x$$

$$+ \int x \times (\mathbf{E}^{a} \times \mathbf{B}^{a}) d^{3}x$$
₅₃

Gauge invariant extensions

• EM gauge potential is separated into the physical one and the pure gauge:

$$A^{\mu} = A^{\mu}_{phys} + A^{\mu}_{pure}$$
 Not unique! Chen, et.al. 2009

Re-orgainze contributions:

$$J_{QCD} = \int \psi^{\dagger} \frac{1}{2} \Sigma \psi d^{3}x + \int \psi^{\dagger} x \times (p - g \mathbf{A}_{pure}) \psi d^{3}x$$

$$+ \int \mathbf{E}^{a} \times \mathbf{A}_{phys}^{a} d^{3}x + \int E^{aj} (\mathbf{x} \times \nabla) \mathbf{A}_{phys}^{aj} d^{3}x$$

$$= \mathbf{S}^{\prime q} + \mathbf{L}^{\prime q} + \mathbf{S}^{\prime g} + \mathbf{L}^{\prime g}$$

$$\boldsymbol{L}_Q(\mathsf{JM}) \sim \psi^\dagger \, \boldsymbol{x} \times \boldsymbol{p} \, \psi \qquad \qquad \boldsymbol{L}_Q(\mathsf{Ji}) \sim \psi^\dagger \, \boldsymbol{x} \times (\boldsymbol{p} - g \, \boldsymbol{A}) \, \psi$$

canonical OAM

and commented on their advantages and disadvantages. There have been many very interesting theoretical developments, but we have concluded that they contain no new important physical implications, and for that reason we have concentrated on experimental tests and measurements only with regard to the canonical and Belinfante versions of the angular momentum.

From a review article by Leader and Lorce, 2013

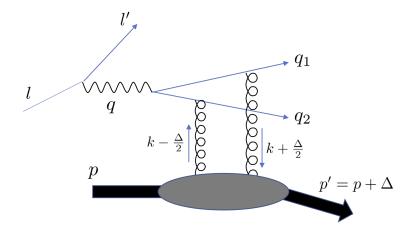
How to probe canonical OAM

Canonical OAM is related the kt moment of a special parton Wigner distribution

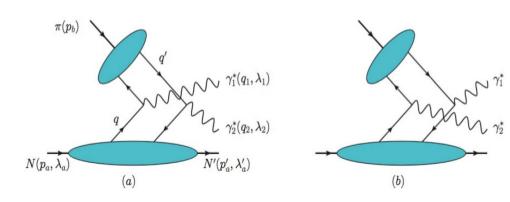
$$L_{can} = - \int dx d^2q_T \frac{q_T^2}{M^2} \left[F_{1,4}^q(x,0,q_T^2,0,0) \right]$$

Hatta, 2012 Lorce-Pasquini, 2011

Diffractive di-jet production

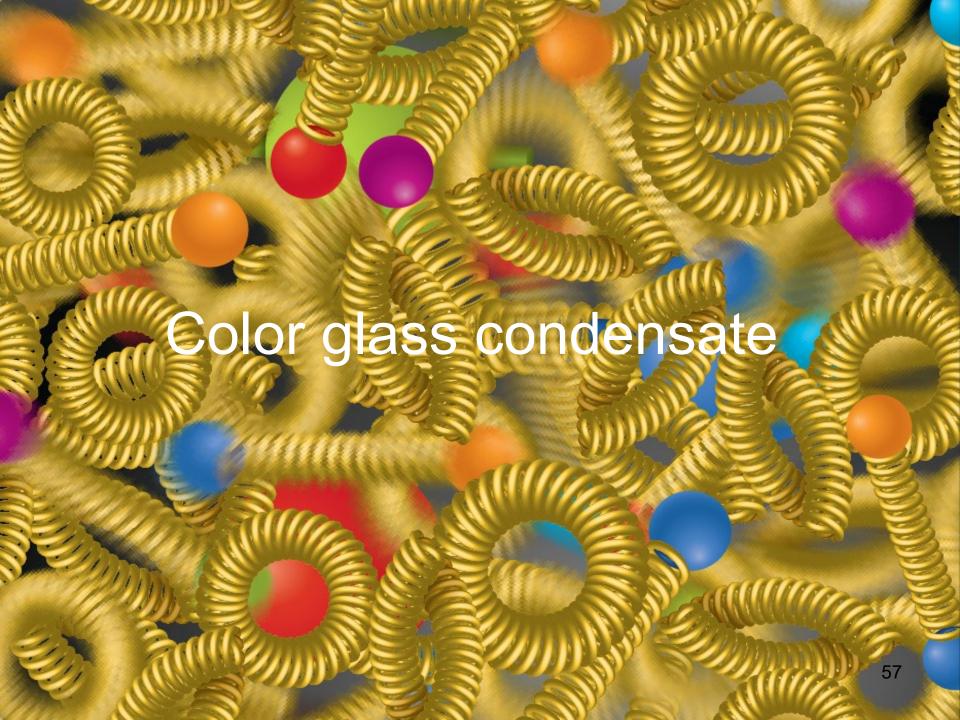


Exclusive double DY process



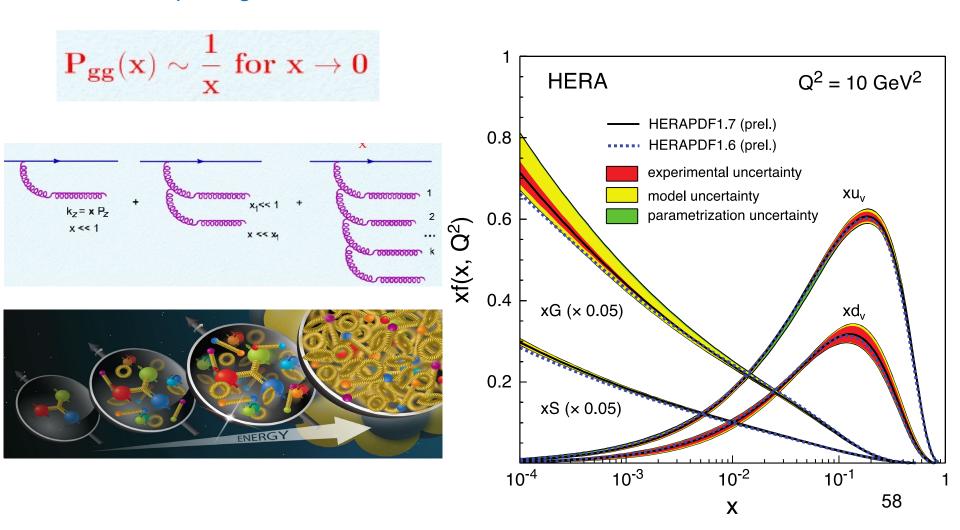
Hatta-Nakagawa-Yuan-Zhao-Xiao, 2017

Bhattacharya, Metz, ZJ, 2017



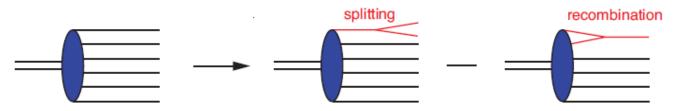
Glouns at small x

DGLAP splitting function

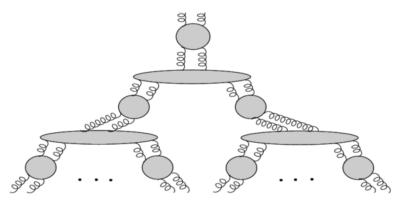


Small x evolution equations

- > DGLAP equation $\ln \frac{Q^2}{\mu^2}$
- > BFKL(CCFM) equations $ln\frac{1}{x}$



➢ GLR-MQ equation



$$\frac{\partial N(\eta, k_{\perp})}{\partial \eta} = \frac{\bar{\alpha}_s}{\pi} \left[\int \frac{\mathrm{d}^2 l_{\perp}}{l_{\perp}^2} N(\eta, k_{\perp} + l_{\perp}) - \int_0^{k_{\perp}} \frac{\mathrm{d}^2 l_{\perp}}{l_{\perp}^2} N(\eta, k_{\perp}) \right] - \bar{\alpha}_s N^2(\eta, k_{\perp})_{59}$$

Small x evolution equations II

Balitsky-Kovchegov(BK) equation:

Balitsky, 1996 Kovchegov, 1997

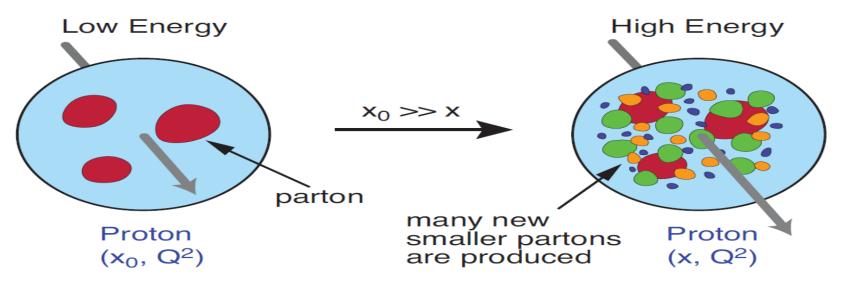
$$\partial_Y \mathcal{N}(\mathbf{x}, \mathbf{y}) = \frac{\bar{\alpha}}{2\pi} \int d^2z \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} \left[\mathcal{N}(\mathbf{x}, \mathbf{z}) + \mathcal{N}(\mathbf{z}, \mathbf{y}) - \mathcal{N}(\mathbf{x}, \mathbf{y}) - \mathcal{N}(\mathbf{x}, \mathbf{z}) \mathcal{N}(\mathbf{z}, \mathbf{y}) \right]$$

- Dipole amplitude: $\frac{1}{N_c} {\rm Tr} U(b_\perp + r_\perp/2) U^\dagger (b_\perp r_\perp/2)$
- Resuming gluon merge to all orders
- Meanfield approximation and large Nc approximation

- The complete small x evolution equation:
 - Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner(JIMWLK) equation
 - Not a close equation, involve multiple point correlation functions

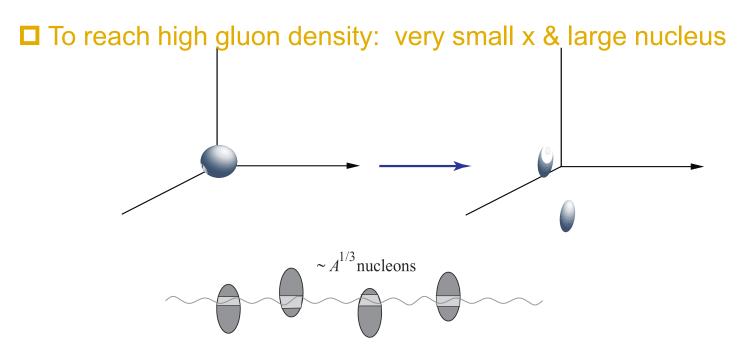
Saturation scale I

- Transverse size of gluon is reversely proportional to its kt
- First partons are produced with relatively large size(small kt).
- ➤ When some critical density is reached no more partons of given size can fit in the wave function. Smaller gluon(larger kt) is produced to fit the rest space.
- ➤ Average kt increase with increasing number density.



Saturation scale II

igap A semi-hard scale Qs emerge when gluon density is very high $Q_s^2 \propto gluons$ per unit transverse area



Small x gluons(with long wave length) from different nucleons overlap with each other!

$$Q_s^2(x) \sim \left(\frac{A}{x}\right)^{1/3}$$

Classical gluon fields

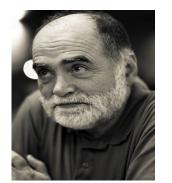
> For Q $>> \Lambda_{\rm QCD}$, $\alpha_s(Q_s^2) \ll 1$

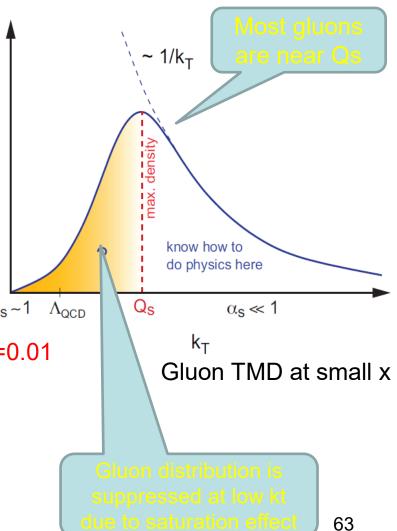
Perturbative treatment is justified!

For a large nucleus, high occupation number

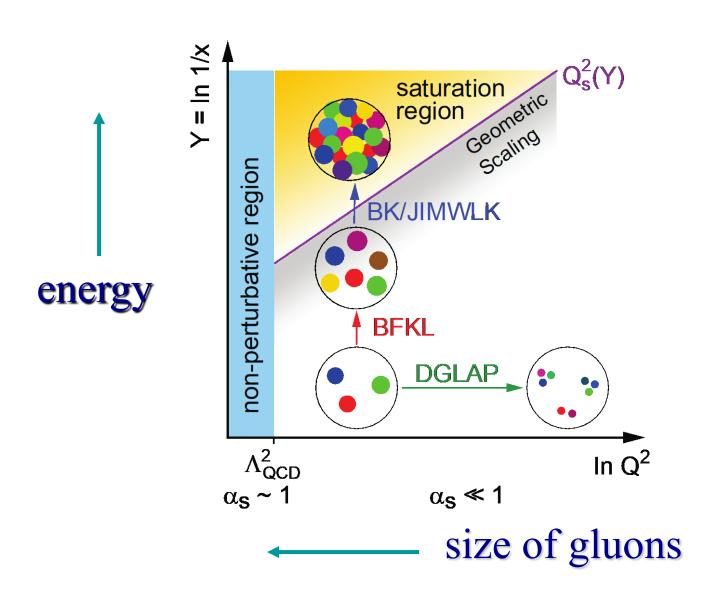
A semi-classical treatment is justified

MV model & Glauble-Mueller model applied at x=0.01

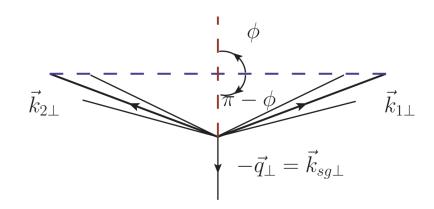




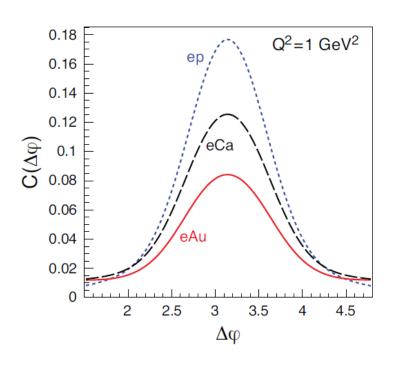
Map of High Energy QCD

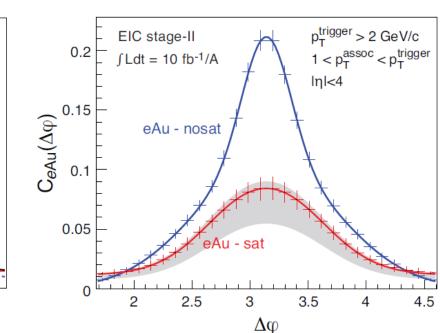


Di-hadron de-correlation



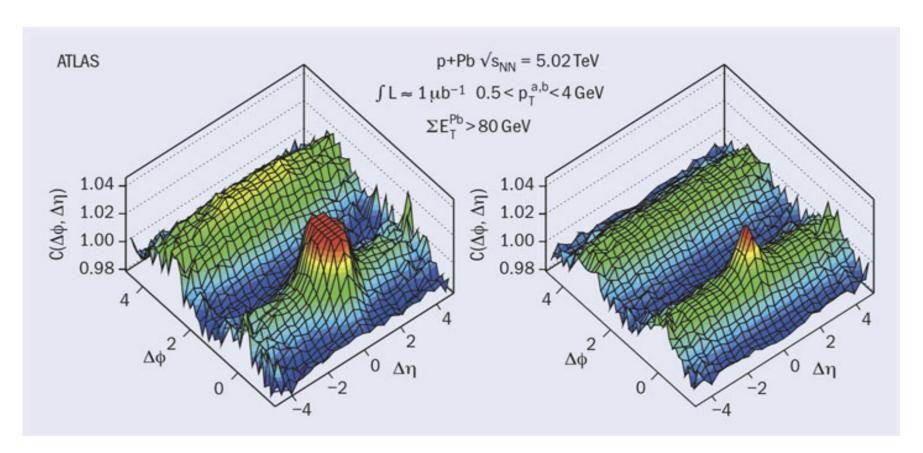
Back to back correlation



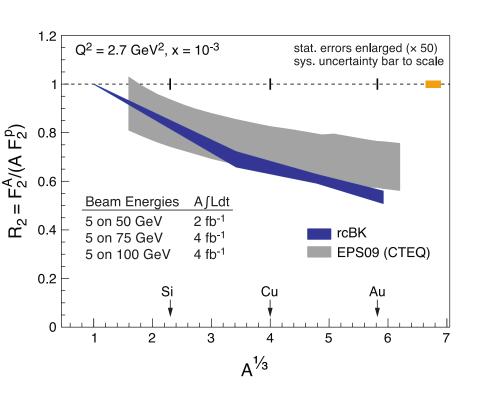


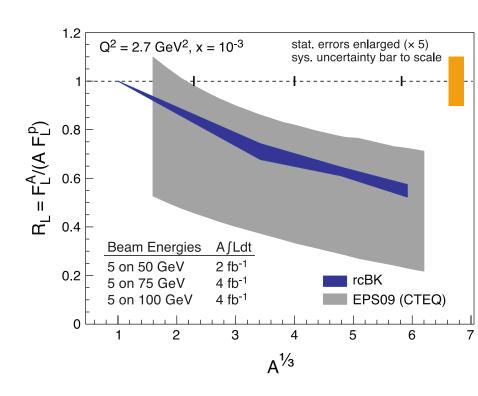
Ridge in heavy ion collisions

Two particles emission are aligned!



Nuclear suppression





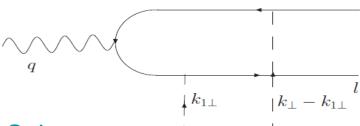
Can be tested at EIC!

Derive the TMD factorization formula I

Starting from the full CGC result,

Balitsky 1996 Gelis, Jalilian-Marian 2003

$$\mathcal{M} = \int d^2 x_{\perp} d^2 x_{1\perp} \int \frac{d^2 k_{1\perp}}{(2\pi)^2} e^{ik_{1\perp} \cdot x_{1\perp}} e^{i(k_{\perp} - k_{1\perp}) \cdot x_{\perp}} H(k, k_{1\perp}) \left[U(x_{1\perp}) U^{\dagger}(x_{\perp}) - 1 \right]$$



Taylor expanding the impact factor $(P_T >> Q_S)$,

$$H(k, k_{1\perp}) = H(k = 0, k_{1\perp} = 0) + \frac{H(k_{\perp}, k_{1\perp})}{\partial k_{\perp}^{i}} \Big|_{k_{\perp} = k_{1\perp} = 0} k_{\perp}^{i} + \frac{H(k_{\perp}, k_{1\perp})}{\partial k_{1\perp}^{i}} \Big|_{k_{\perp} = k_{1\perp} = 0} k_{1\perp}^{i} + \dots$$

Integrating out k_{1T},

$$\mathcal{M} \approx \int d^2 x_{\perp} e^{ik_{\perp} \cdot x_{\perp}} \frac{H(k_{\perp}, k_{1\perp})}{\partial k_{1\perp}^i} \Big|_{k_{\perp} = 0, k_{1\perp} = 0} (-i) \left[\left(\partial^i U(x_{\perp}) \right) U^{\dagger}(x_{\perp}) - 1 \right]$$

F. Dominguez, B-W. Xiao, F. Yuan 2011

F. Dominguez, C. Marquet, B-W. Xiao, F. Yuan 2011

Derive the TMD factorization formula II

The cross section then reads,

$$d\sigma \propto \frac{H(k_{\perp}, k_{1\perp})}{\partial k_{1\perp}^{i}} \Big|_{k_{\perp}=0, k_{1\perp}=0} \frac{H^{*}(k_{\perp}, k_{1\perp}')}{\partial k_{1\perp}'^{j}} \Big|_{k_{\perp}=0, k_{1\perp}'=0} \times (-1) \int d^{2}x_{\perp} d^{2}x_{\perp}' e^{ik_{\perp} \cdot (x_{\perp} - x_{\perp}')} \langle \text{Tr}[\partial^{i}U(x_{\perp})] U^{\dagger}(x_{\perp}') [\partial^{j}U(x_{\perp}')] U^{\dagger}(x_{\perp}) \rangle$$

One can identify,

$$\begin{split} M_{WW}^{ij} &= -\frac{2}{\alpha_s} \int \frac{d^2x_\perp}{(2\pi)^2} \frac{d^2x_\perp'}{(2\pi)^2} e^{i\vec{k}_\perp \cdot (\vec{x}_\perp - \vec{x}_\perp')} \langle \mathrm{Tr}[\partial^i U(x_\perp)] U^\dagger(x_\perp') [\partial^j U(x_\perp')] U^\dagger(x_\perp) \rangle_x \\ &= \frac{\delta_\perp^{ij}}{2} x f_{1,WW}^g(x,k_\perp) + \left(\frac{1}{2} \hat{k}_\perp^i \hat{k}_\perp^j - \frac{1}{4} \delta_\perp^{ij} \right) x h_{1,WW}^{\perp g}(x,k_\perp) \,. \\ &= \frac{\delta_\perp^{ij}}{2} x f_{1,WW}^g(x,k_\perp) + \left(\frac{1}{2} \hat{k}_\perp^i \hat{k}_\perp^j - \frac{1}{4} \delta_\perp^{ij} \right) x h_{1,WW}^{\perp g}(x,k_\perp) \,. \end{split} \qquad \begin{array}{l} \mathrm{Mulders,\,Rodrigues,\,2001;} \\ \mathrm{F.\,\,Dominguez,\,C.\,\,Marquet,\,B-W.\,\,Xiao,\,F.\,\,Yuan\,\,2011} \end{array}$$

CGC	TMD
Derivative of impact factor in k _T	Hard part
Derivative of Wilson lines in x _T	Gluon TMDs

TMD & CGC

Low jet $P_T \le K_T$ (only CGC applicable)

High jet $P_T >> K_T$ (both CGC and TMD applicable)

Gluons can not resolve the internal structure of the color dipole system.

Collapse to two semi-finite Wilson lines

Gluon TMDs in the MV model

The unpolarized gluon TMDs have been evaluated in the MV model.

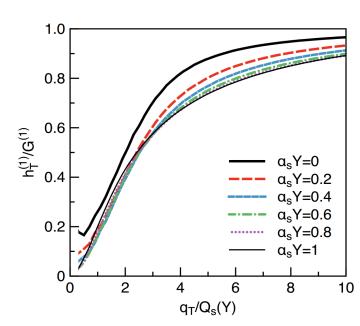
The linearly polarized gluon TMDs in the MV model, Metz & ZJ, 2011

Weizsäcker-Williams(WW) distribution:

$$xh_{1,WW}^{\perp g}(x,k_{\perp}) = \frac{N_c^2 - 1}{8\pi^3} S_{\perp} \int d\xi_{\perp} \frac{K_2(k_{\perp}\xi_{\perp})}{\frac{1}{4\mu_A}\xi_{\perp}Q_s^2} \left(1 - e^{-\frac{\xi_{\perp}^2 Q_s^2}{4}}\right)$$

$$xh_{1,DP}^{\perp g}(x,k_{\perp}) = xG_{DP}^g(x,k_{\perp})$$

WW type linearly polarized gluon TMD is suppressed in the dense medium region.

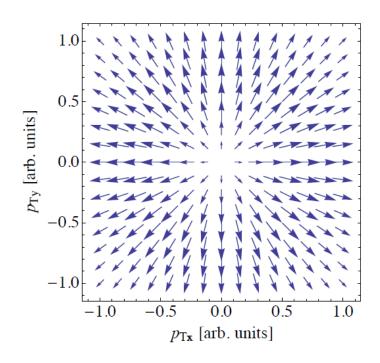


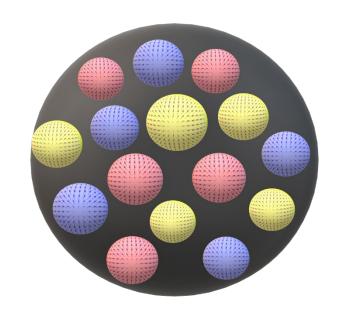
Dumitru, Lappi. Skokov; 2015

Gluon polarization inside a nucleon/nuclei

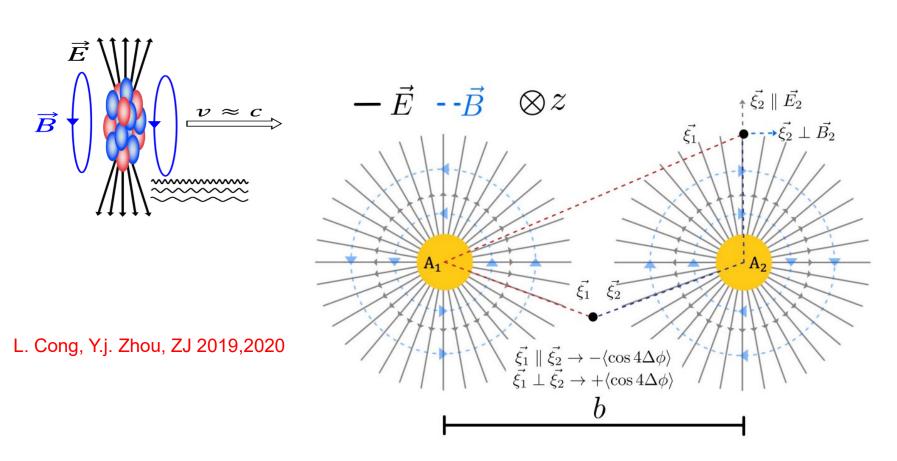
Transverse momentum space

Transverse coordinate space





Why study QED in UPC



J.D. Brandenburg, CFNS workshop 2021.04

Cos 4¢ asymmetry in EM dilepton production

$$\gamma(x_1P + k_{1\perp}) + \gamma(x_2\bar{P} + k_{2\perp}) \rightarrow l^+(p_1) + l^-(p_2)$$

$$\langle \cos(4\phi) \rangle$$

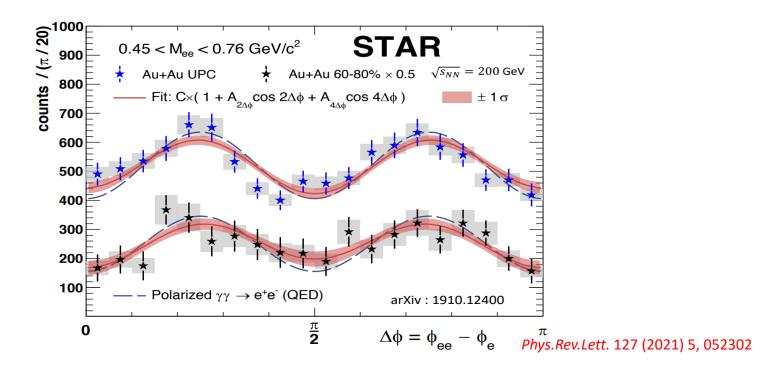
$$\phi = P_{\perp} \wedge q_{\perp}$$

$$p_{\perp} \equiv (p_{1\perp} - p_{2\perp})/2$$

$$q_{\perp} \equiv p_{1\perp} + p_{2\perp}$$

correlation limit: $P_{\perp} \gg q_{\perp}$

\tilde{b}_{\perp} dependent $\langle \cos(4\phi) \rangle$ J.S. STAR experiment



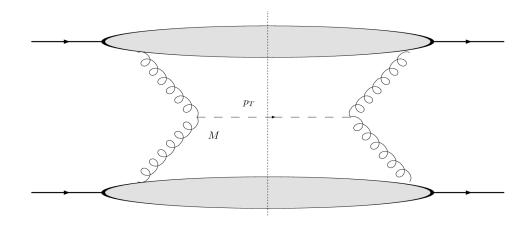
0.45GeV²<Q²<0.76GeV² P_t>200MeV, |y|<1,q_t<100MeV

C. Li, JZ and Y. Zhou, 2020

	Measured	QED calculation
Tagged UPC	$16.8\% \pm 2.5\%$	16.5%
60%-80%	$27\% \pm 6\%$	34.5%

Joint kt & small x resummation

Gluon initiated Drell-Yan process



- > M^2 >> p_T^2 , TMD factorization, $\ln \frac{M^2}{p_T^2}$ resummed by Collins-Soper equation > S>> M^2 , Kt factorization, $\ln \frac{S}{M^2}$ resummed by BFKL equation

1991, Catani, Ciafaloni and Hautmann 1991, Collins and R. K. Ellis

The overlap region $S >> M^2 >> p_T^2$

An explicit NLO cross section calculation shows that both the large logarithm appear.

2013, Mueller, Xiao, Yuan

Such joint resummation has been also disscussed in other literatures.

In collinear calculation $\ln \frac{M^2}{\mu^2}$ absorbed into PDF.

One natural question:

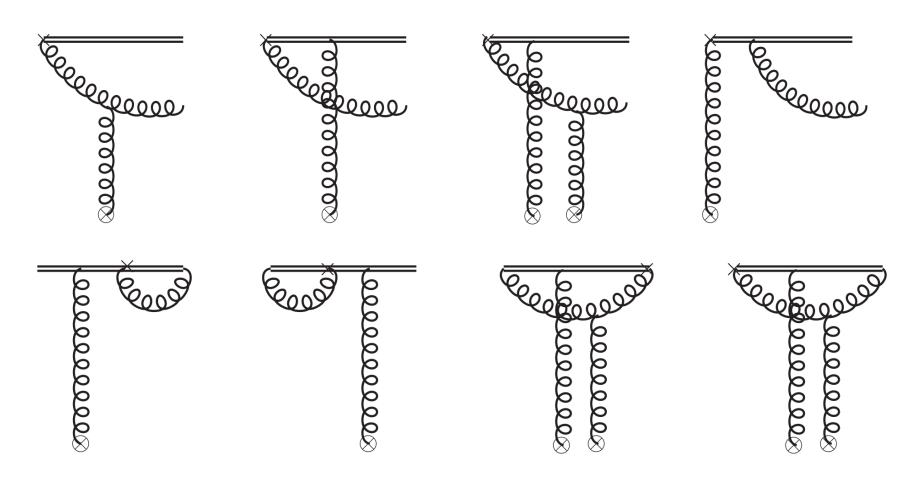
$$\int \frac{d\xi^- d^2 \xi_\perp}{(2\pi)^3 P^+} e^{ixP^+\xi^- - ik_\perp \cdot \xi_\perp} \langle P|F^{+i}(\xi^-, \xi_\perp) \mathcal{L}_\xi^\dagger \mathcal{L}_0 F^{+i}(0)|P\rangle$$

Does it accommodate both type large logarithms?

$$\ln \frac{S}{M^2} \qquad \ln \frac{M^2}{p_T^2}$$

Small x TMDs in CGC at NLO

Sample diagrams



Collinear approach vs CGC I

- TMDs in collinear approach collinear divergenceDGLAP
- TMDs in CGC,rapidity divergenceBK or JIMWLK

Collins-Soper light cone divergence appears in both collinear approach and CGC calculation

Match small x TMDs onto two point functions instead of PDFs.

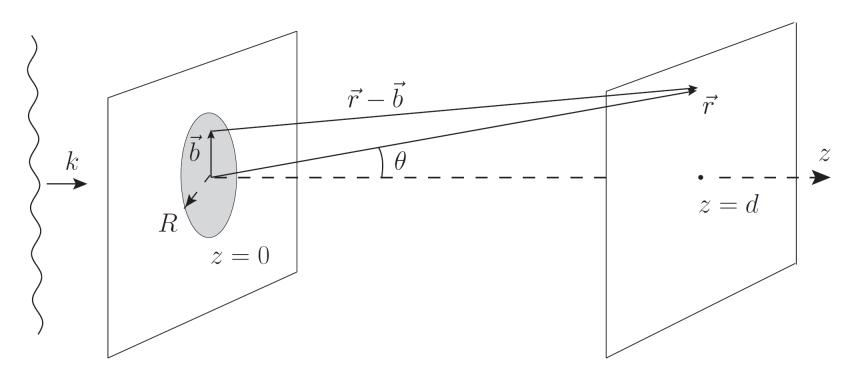
Collinear approach vs CGC II

$$\tilde{f}_g^{(sub.)}(x,r_\perp,\zeta_{c'}) \ = \ e^{-S_{pert}^g(Q,r_\perp)} \ \sum_i C_{g/i}(\mu_r/\mu) \otimes f_i(x,\mu)$$
 Sudakov factor Hard coefficient Colliner PDF

$$xG^{(1)}(x,k_{\perp},\zeta_{c}) = -\frac{2}{\alpha_{S}} \int \frac{d^{2}x_{\perp}d^{2}y_{\perp}}{(2\pi)^{4}} e^{ik_{\perp}\cdot r_{\perp}} \mathcal{H}^{WW}(\alpha_{s}(Q)) e^{-\mathcal{S}_{sud}(Q^{2},r_{\perp}^{2})} \mathcal{F}^{WW}_{Y=\ln 1/x}(x_{\perp},y_{\perp}) \mathcal{F}^{WW}_{Y=\ln 1/$$

Two step evolution: $S \longrightarrow M^2 \longrightarrow k_T^2$

Diffraction in optics

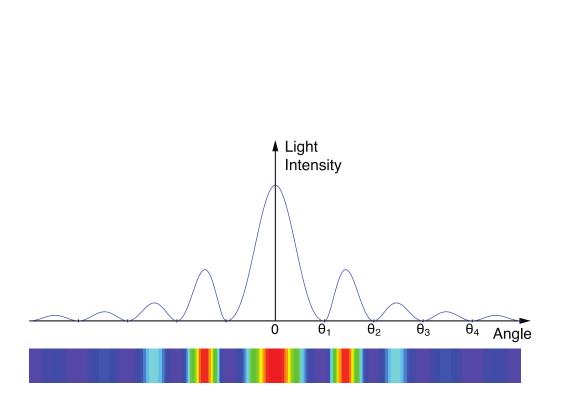


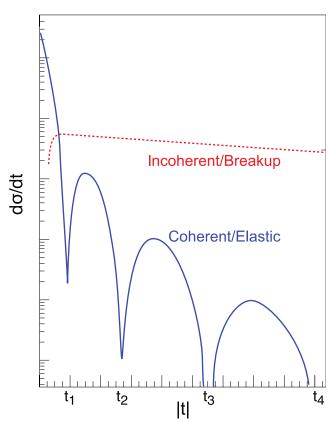
Taken from Yuri's book

➤ Reconstruct the size R of the obstacle and the optical "blackness" of the obstacle from the diffractive pattern.

Optical Analogy

Diffraction in high energy scattering is not very different from diffraction in optics: both have diffractive maxima and minima:



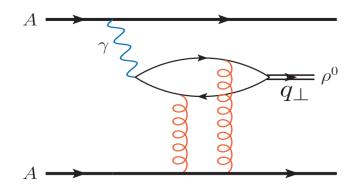


Coherent: target stays intact;

Incoherent: target nucleus breaks up, but nucleons are intact.

Exclusive VM Production off a large nucleus

- Study nuclear geometry
- Test saturation



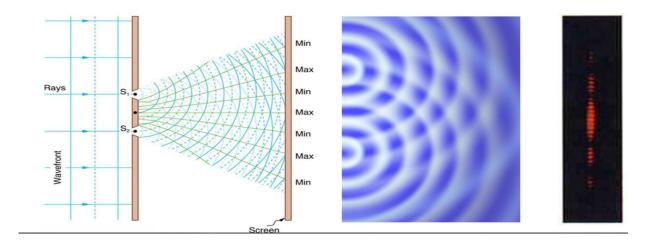
◆ In the black disk limit(very large nucleus & high energy limit), diffraction (elastic scattering) becomes a half of the total cross section

$$\frac{\sigma_{el}^{q\bar{q}A}}{\sigma_{tot}^{q\bar{q}A}} = \frac{\int d^2b \, N^2}{2 \int d^2b \, N} \, \longrightarrow \, \frac{1}{2}$$

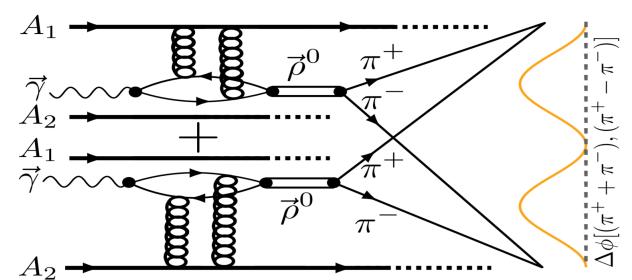
Inelastic scattering cross section=elastic scattering cross section= πR^2

At EIC energy, in eA collisions, makes up roughly 15% total CS

Young's double-slit experiment



double-slit experiment in UPCs



Joint b_{\perp} & q_{\perp} dependent cross section III

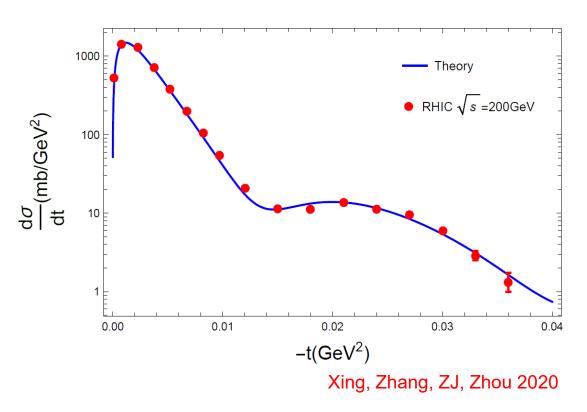
Full cross section: $k_{\perp} + \Delta_{\perp} = k'_{\perp} + \Delta'_{\perp}$ $\frac{d\sigma}{d^2q_\perp dY d^2\tilde{b}_\perp} = \frac{1}{(2\pi)^4} \int d^2\Delta_\perp d^2k_\perp d^2k_\perp d^2k_\perp \delta^2(k_\perp + \Delta_\perp - q_\perp) (\epsilon_\perp^{V*} \cdot \hat{k}_\perp) (\epsilon_\perp^{V} \cdot \hat{k}_\perp') \bigg\{ \int d^2b_\perp d^2k_\perp d^2k_\perp d^2k_\perp d^2k_\perp d^2k_\perp d^2k_\perp \delta^2(k_\perp + \Delta_\perp - q_\perp) (\epsilon_\perp^{V*} \cdot \hat{k}_\perp) (\epsilon_\perp^{V*} \cdot \hat{k}_\perp') \bigg\} \bigg\}$ $\times e^{i\tilde{b}_{\perp}\cdot(k'_{\perp}-k_{\perp})} \left[T_A(b_{\perp})\mathcal{A}_{in}(Y,\Delta_{\perp})\mathcal{A}^*_{in}(Y,\Delta'_{\perp})\mathcal{F}(Y,k_{\perp})\mathcal{F}(Y,k'_{\perp}) + (A \leftrightarrow B) \right]$ + $\left[e^{i\tilde{b}_{\perp}\cdot(k'_{\perp}-k_{\perp})}\mathcal{A}_{co}(Y,\Delta_{\perp})\mathcal{A}^*_{co}(Y,\Delta'_{\perp})\mathcal{F}(Y,k_{\perp})\mathcal{F}(Y,k'_{\perp})\right]$ $+ \left[e^{i\tilde{b}_{\perp} \cdot (\Delta'_{\perp} - \Delta_{\perp})} \mathcal{A}_{co}(-Y, \Delta_{\perp}) \mathcal{A}^*_{co}(-Y, \Delta'_{\perp}) \mathcal{F}(-Y, k_{\perp}) \mathcal{F}(-Y, k'_{\perp}) \right]$ $+ \left[e^{i\tilde{b}_{\perp} \cdot (\Delta'_{\perp} - k_{\perp})} \mathcal{A}_{co}(Y, \Delta_{\perp}) \mathcal{A}^*_{co}(-Y, \Delta'_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(-Y, k'_{\perp}) \right]$ $+ \left[e^{i\tilde{b}_{\perp} \cdot (k'_{\perp} - \Delta_{\perp})} \mathcal{A}_{co}(-Y, \Delta_{\perp}) \mathcal{A}^*_{co}(Y, \Delta'_{\perp}) \mathcal{F}(-Y, k_{\perp}) \mathcal{F}(Y, k'_{\perp}) \right] \right\},$ (2.14)

H.X. Xing, Z. Zhang, ZJ, Y.J. Zhou, 2020

$$ightharpoonup$$
 EM potential: $\mathcal{F}(Y,k_\perp)=rac{Z\sqrt{lpha_e}}{\pi}|k_\perp|rac{F(k_\perp^2+x^2M_p^2)}{(k_\perp^2+x^2M_p^2)}$ 8

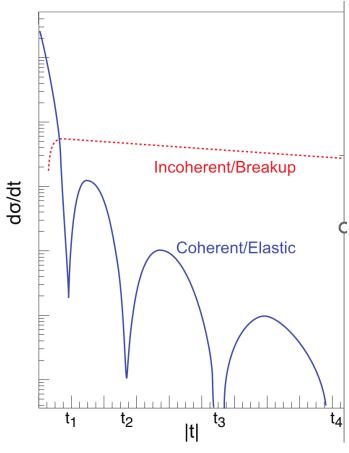
VM diffractive pattern

Diffractive VM production in UPC



- Double slit interference effect
- Smearing caused by finite photon kt

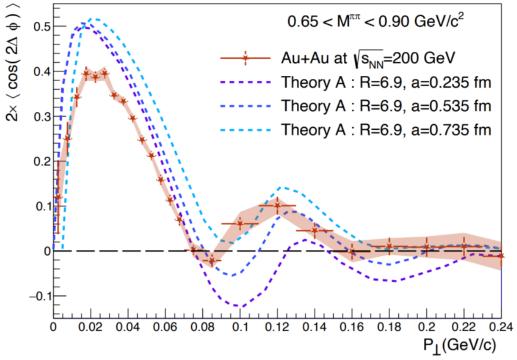
Diffractive VM production in eA



One slit interference

ho^0 production in UPCs

Cos2¢ azimuthal asymmetry



Xing, Zhang, ZJ, Zhou 2020, Zha, Brandenburg, Ruan, Tang, 2021

Gold target	Skin depth	Strong interaction radius
Standard value	0.54fm	6.38fm
Fitted to STAR data	0.64fm	6.9fm

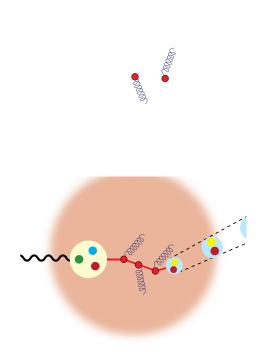
Exploring nucleon structure is great fun!

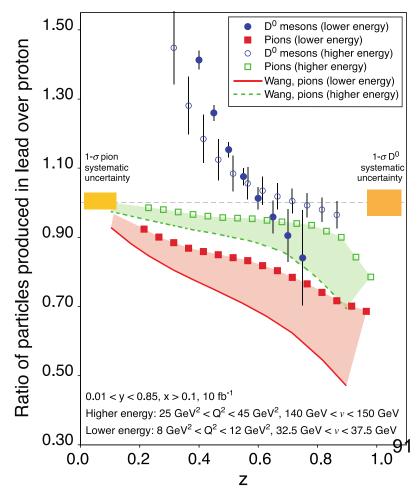
Look forward to you joining the adventure!

Energy Loss in Cold Nuclear Matter

 By studying quark propagation in cold nuclear matter we can learn important information about hadronization and may even measure

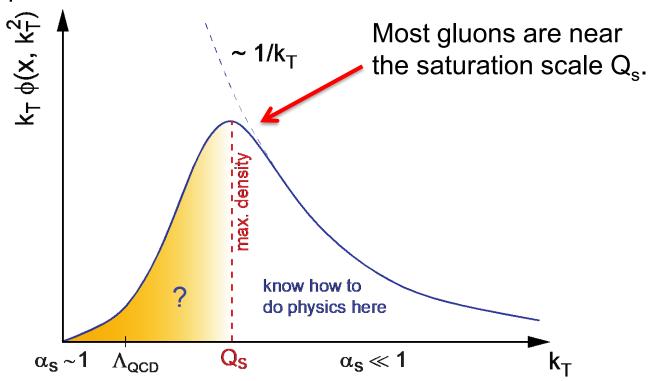
qhat in the cold nuclear medium:





Typical gluon "size"

Number of gluons (gluon TMD) times the phase space



Gluon "size" = 1/transverse momentum momentum transverse to the beam

= 1/Q