Visita por el mundo de los hadrones exóticos: el comienzo de una nueva tabla periódica hadrónica.

Exotic hadrons, paving the path to a new hadron periodic Table

E. Oset, IFIC CSIC-Universidad de Valencia

Constituents of matter, quarks, leptons, gauge bosons

Mesons and baryons

Quarks models, effective theories

Chiral Lagrangians, dynamically generated states

Exotic mesons and baryons

Compact tetraquarks or pentaquarks and molecular states

X₀(2866), T_{cc}(3875), P_c states

Multimeson molecules. The beginning of new periodic Table

Components of matter

Quarks

Generation \$	Name 🖨	Symbol 🗢	Antiparticle 🗢	Spin \$	Charge (e) ◆	Mass (MeV/c ²) ^[5] ♦
1	up	u	ū	1/2	+2/3	2.2 ^{+0.6} -0.4
L	down	d	d	1/2	-1/3	4.6 ^{+0.5} _{-0.4}
2	charm	С	c	1/2	+2/3	1280 ± 30
2	strange	S	s	1/2	-1⁄3	96 ⁺⁸ -4
3	top	t	ī	1/2	+2/3	$173\ 100\ \pm\ 600$
	bottom	b	b	1/2	-1/3	4180 ⁺⁴⁰ -30

Leptons

Generation \Rightarrow	Name 🗢	Symbol 🗢	Antiparticle 🗢	Spin \$	Charge (e) \$	Mass (MeV/c²) ^[5] ♦
1	electron	e	e ⁺	$\frac{1}{2}$	-1	0.511 ^[note 1]
1	electron neutrino	v _e	v _e	$\frac{1}{2}$	0	< 0.0000022
2	muon	μ	μ ⁺	$\frac{1}{2}$	-1	105.7 ^[note 2]
	muon neutrino	ν _μ	$\overline{\nu}_{\mu}$	$\frac{1}{2}$	0	< 0.170
3	tau	τ_	τ ⁺	$\frac{1}{2}$	-1	1776.86 ± 0.12
	tau neutrino	ν _τ	\overline{v}_{τ}	$\frac{1}{2}$	0	< 15.5

Gauge bosons

Name 🗢	Symbol \$	Antiparticle +	Spin \$	Charge (e) 🗢	Mass (GeV/c ²) ^[5] ♦	Interaction mediated \$	Observed \$
photon	γ	self	1	0	0	electromagnetism	Yes
W boson	w	W ⁺	1	±1	80.385 ±0.015	weak interaction	Yes
Z boson	Z	self	1	0	91.1875 ±0.0021	weak interaction	Yes
gluon	g	self	1	0	0	strong interaction	Yes
Higgs boson	H ⁰	self	0	0	125.09 ±0.24	mass	Yes

The interaction of quarks, or matter, is supposed to proceed via the exchange of a gauge boson

There is violation of energy in the vertex : $\Delta E \Delta t = h/2\pi \rightarrow \Delta I = c \Delta t \rightarrow$ the weak interaction is of very short range \rightarrow the electromagnetic Interaction is of very long range The gluon is the mediator of the strong interaction and should be of long range. But it is very special. The gluons also interact with themselves

$$\begin{aligned} \mathscr{L}_{classic} &= \sum_{f=1}^{N_f} \bar{\psi}_f (i\gamma^\mu D_\mu - m_f) \psi_f - \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_{\ a} \\ &= \partial_\mu + ig T_a A^a_\mu, \end{aligned}$$

 $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f^a_{\ bc} A^b_\mu A^c_\nu$

 D_{μ}

$$[T_a, T_b] = i f_{abc} T^c$$

T_a generators of the SU(3) group of color

As a consequence, the QCD interaction becomes of short range. Very difficult to solve at low energies, But this is where most of the current world stands.

Color of Hadrons **BARYONS** RED + BLUE + GREEN = "WHITE" or "COLORLESS" **MESONS GREEN + ANTIGREEN = "COLORLESS"** RED + ANTIRED = "COLORLESS" BLUE + ANTIBLUE = "COLORLESS" \overline{q}

A meson can be any one of these combinations !

Hadrons observed in nature are colorless (but there constituents are not)

Obtained using effective interaction between quarks

FIG. 5. The isoscalar mesons (mainly $u\bar{u}$, $d\bar{d}$, $s\bar{s}$). The legend is as for Fig. 3. Significant spectroscopic mixings in this sector are given in Table III. The comparison of the 0^{-+} isoscalars with experiment requires special consideration: see Sec. VA. For the *E* meson see Ref. 9.

GeV

FIG. 1. Comparison of the predicted and observed spectrum of negative-parity baryons. The shaded regions correspond to the likely mass values of resonances; the solid bars are the predictions of the text, corresponding to the parameters $m_0=1610 \text{ MeV}, \omega=520 \text{ MeV}, x=0.6, \Delta m=280 \text{ MeV}$, and $\delta=300 \text{ MeV}$.

Effective field theories. Example $\gamma\gamma \rightarrow \gamma\gamma$

N 2 pm standard mechanism in QED 8 de et s After integrating over the electron loop, the amplitude is of the type $\begin{aligned} \mathcal{A}_{elf} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{\alpha}{m_e^4} \left(F^{\mu\nu} F_{\mu\nu} \right)^2 + \frac{b}{m_e^4} F^{\mu\nu} F_{\nu\sigma} F^{\sigma\rho} F_{\rho\mu} \\ &+ O(F^{\rho}/m_e^8) \end{aligned}$ $a = -\frac{\alpha^2}{36}$; $b = \frac{7\alpha^2}{90}$. We can make an effective theory at low energies where only the photon field appears, and the electron field has disappeared (integrated out).

Effective theories for the interaction of hadrons.

Weinberg had the wisdom to propose an effective theory to describe the interaction at low energies between hadrons, eliminating the quarks and considering only the hadrons as elementary fields: Chiral Lagrangians

$$\mathcal{L}_{2} = \frac{1}{12f^{2}} \langle (\partial_{\mu} \Phi \Phi - \Phi \partial_{\mu} \Phi)^{2} + M \Phi^{4} \rangle$$

Meson-Meson

$$\boldsymbol{\Phi} \equiv \frac{\boldsymbol{\lambda}}{\sqrt{2}} \boldsymbol{\phi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta_8 & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta_8 \end{pmatrix}$$

$$M = \begin{pmatrix} m_{\pi}^2 & 0 & 0 \\ 0 & m_{\pi}^2 & 0 \\ 0 & 0 & 2m_K^2 - m_{\pi}^2 \end{pmatrix},$$

Meson baryon Lagrangian

$$L_1^{(B)} = \langle \bar{B}i\gamma^{\mu}\nabla_{\mu}B\rangle - M_B\langle \bar{B}B\rangle$$

$$\nabla_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B], \qquad U = u^{2} = \exp(i\sqrt{2}\Phi/f)$$

$$\Gamma_{\mu} = \frac{1}{2}(u^{+}\partial_{\mu}u + u\partial_{\mu}u^{+}) \qquad u_{\mu} = iu^{+}\partial_{\mu}Uu^{+}.$$

$$L_1^{(B)} = \langle \bar{B}i\gamma^{\mu}\frac{1}{4f^2} [(\Phi\partial_{\mu}\Phi - \partial_{\mu}\Phi\Phi)B - B(\Phi\partial_{\mu}\Phi - \partial_{\mu}\Phi\Phi)] \rangle$$

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix} B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \bar{Z}^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

With these Lagrangians one can do perturbation theory \rightarrow chiral perturbation theory

However, one can use the amplitudes obtained and consider them as the potential to be used I in the Shroedinger equations (Lippmann Schwinger equation, Bethe Salpeter equation) \rightarrow Chiral unitary theory

$$H\Psi = (H_0 + V)\Psi = E\Psi \Rightarrow (E - H_0)\Psi = V\Psi$$

$$(E - H_0)\Phi = 0$$

$$\Psi = \Phi + \frac{1}{E - H_0}V\Psi \Rightarrow \Psi = \Phi + \frac{1}{E - H_0}T\Phi$$

$$T\Phi \equiv V\Psi.$$

$$T = V + VGT$$

$$T = V + V\frac{1}{E - H}V.$$
In coupled channels
$$T = (1 - VG)^{-1}V$$
T has a pole for eigenstates of H

We are familiar with nuclei: The smallest one, the deuteron. n p proton bound state.

In principle, there are 6 quarks, but in the deuteron the n p keep their identity \rightarrow molecule of two baryons, not a 6 quark bag.

What happens with mesons? Something similar:

One can look for poles of the T matrix \rightarrow bound states or resonances

Chiral unitary approach with meson-meson: $\pi\pi$, K Kbar, $\eta\eta \rightarrow f_0(500), f_0(980)$ $\pi\eta$, K Kbar $\rightarrow a_0(980)$ $\pi K, \eta K \rightarrow K_0^*(700)$ With pseudoscalar-vector \rightarrow axial vector mesons: $a_1(1260), b_1(1235), h_1(1270), h_1(1380), f_1(1285), f_1(1420), K_1(1270)$

With vector vector \rightarrow f₂(1270), f₀(1370), f₀(1710)a₀(1780)

The a₀(1780) was predicted in L.S. Geng and E. O. Phys.Rev.D 79 (2009) 074009

Has been found in BESIII, Phys Rev Lett 129,182001 (2022)

Meson baryon interaction: if one takes the coupled channels

 $K^{-}p \quad \bar{K}^{0}n \quad \pi^{0}\Lambda \quad \pi^{0}\Sigma^{0} \quad \eta\Lambda \quad \eta\Sigma^{0} \quad \pi^{+}\Sigma^{-} \quad \pi^{-}\Sigma^{+} \quad K^{+}\Xi^{-} \quad K^{0}\Xi^{0}$

Then one finds two poles, corresponding to two states of the $\Lambda(1405)$

VP INTERACTION IN THE LOCAL HIDDEN GAUGE APPROACH Bando et al Phys Rep. 164

$$\begin{array}{cccc} \underbrace{V} & \underbrace{V} & \underbrace{\mathcal{L}_{VVV} = ig\langle (V_{\mu}\partial_{\nu}V^{\mu} - \partial_{\nu}V_{\mu}V^{\mu})V^{\nu} \rangle}_{V'} & \text{Neglecting the k/M}_{V} \\ \underbrace{V'} & g = M_{V}/2f \ (M_{V} \approx 800 \text{ MeV}, \ f = 93 \text{ MeV}) & \underbrace{\varepsilon_{1}(\mathbf{k}) = (0, 1, 0, 0)}_{\varepsilon_{2}(\mathbf{k}) = (0, 0, 1, 0)} \\ \underbrace{\mathcal{L}_{VPP} = -ig\langle V^{\mu}[P, \partial_{\mu}P] \rangle}_{-it = -g(V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})_{ij}V^{\nu}_{ji}\frac{i}{q^{2} - M_{V}^{2}}V^{\nu'}_{lm}[P, \partial_{\nu'}P]_{ml}} \\ \sum_{pol} \epsilon^{\nu}_{ji}\epsilon^{\nu'}_{lm} = \left(-g^{\nu\nu'} + \frac{q^{\nu}q^{\nu'}}{M_{V}^{2}}\right)\delta_{jl}\delta_{im} \\ -it = -i\frac{g^{2}}{M_{V}^{2}}\langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})[P, \partial^{\nu}P] \rangle \end{array}$$

 $\mathcal{L} = -\frac{1}{4f^2} \langle [V^{\mu}, \partial_{\nu} V^{\mu}] [P, \partial^{\nu} P] \rangle$ Chiral Lagrangian of M. C. Birse, Z. Phys. A 355, 231 (1996) For PP interaction general prove in De Rafael et al. Phys Lett B 223, 425 (1989) Y.-R. Liu, H.-X. Chen, W. Chen et al. / Progress in Particle and Nuclear Physics 107 (2019) 237-320

Exotic Hadrons

The double charmonium production process

$$X(3872) \quad \text{seen in } \forall I \notin \pi\pi , \forall I \notin \pi\pi7 \dots$$

$$I^{C}(\mathcal{J}^{PO}) = O^{+}(\mathcal{I}^{++})$$

$$= \text{Evotic: Could be } q\bar{q} \rightarrow \text{But } \text{then } \text{decay width } \text{very large}$$

$$= \underbrace{\mathsf{u}}_{u} = \underbrace{\mathsf{u}}_{1,u} \cdot \mathsf{s}_{1,v} \Rightarrow \pi\pi, \eta q, \pi q, \mu \pi : \text{Much emergy available}_{u} \text{for the decay } \mathcal{J}^{T} \mathcal{I}^{T}$$

$$= \text{Evotic: } CC u \overline{u} \dots$$

$$= \underbrace{\mathsf{cotic}}_{u} = \underbrace{\mathsf{u}}_{1,u} \cdot \mathsf{s}_{1,v} \Rightarrow u \eta pressed \cdot \text{The decay is suppressed}_{u} \text{because one must convert } cc \text{ into hight quarks.}$$

LHCb : PHYS. REV. D 102, 112003 (2020)

$$B^+ \rightarrow D^+ D^- K^+$$
 decay.

X₀(2866) in the D- K+ invariant mass distribution

Quark content:

cbar sbar qq

It is necessarilly exotic since it has two open quarks . Cannot be q qbar

LHCb, PHYSICAL REVIEW D 102, 112003 (2020)

New interpretation for the Ds2*(2573) and the prediction of novel exotic charmed mesons R. Molina, T. Branz, E. Oset, PHYSICAL REVIEW D 82, 014010 (2010)

State predicted of D* K*bar nature. This contains c s quarks and is exotic

The local hidden gauge for VV interaction has an extra contact term

$$\mathcal{L}_{\text{VVVV}} = \frac{1}{2}g^2 \langle [V_{\mu}, V_{\nu}] V^{\mu} V^{\nu} \rangle$$
Spin projection operators

$$V_{\mu} = \begin{pmatrix} \frac{\omega + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & \frac{\omega - \rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}_{\mu} \qquad \mathcal{P}^{(0)} = \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \\ \mathcal{P}^{(1)} = \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} - \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) \\ \mathcal{P}^{(2)} = \{ \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} + \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) - \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\nu} \epsilon^{\nu} \right)$$

3

TABLE XI. Amplitudes for C = 1, S = -1 and I = 0.

J	Amplitude	Contact	V exchange	~Total
0	$D^*\bar{K}^* \to D^*\bar{K}^*$	$4g^{2}$	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_*^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	$-9.9g^{2}$
1	$D^*\bar{K}^* \to D^*\bar{K}^*$	0	$\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_s^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	$-10.2g^{2}$
2	$D^*\bar{K}^* \to D^*\bar{K}^*$	$-2g^{2}$	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_s^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1 + p_3).(p_2 + p_4)$	$-15.9g^{2}$

TABLE XII. Amplitudes for C = 1, S = -1 and I = 1.

J	Amplitude	Contact	V exchange	~Total
0	$D^*\bar{K}^* \to D^*\bar{K}^*$	$-4g^{2}$	$\frac{\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_{*}^*}^2} + \frac{g^2}{2}(\frac{1}{m_{\omega}^2} + \frac{1}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)}{(p_1+p_3).(p_2+p_4)}$	$9.7g^2$
1	$D^*\bar{K}^* \longrightarrow D^*\bar{K}^*$	0	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D^*}^2} + \frac{g^2}{2}(\frac{1}{m_{\omega}^2} + \frac{1}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	$9.9g^2$
2	$D^*\bar{K}^* \to D^*\bar{K}^*$	$2g^{2}$	$\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_s^*}^2} + \frac{g^2}{2}\left(\frac{1}{m_{\omega}^2} + \frac{1}{m_{\rho}^2}\right)(p_1+p_3).(p_2+p_4)$	$15.7g^2$

$$T = (\hat{1} - VG)^{-1}V. \qquad G_i = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - M_1^2 + i\epsilon} \frac{1}{(P - q)^2 - M_2^2 + i\epsilon}$$

Λ

G is regularized either with a cutoff in the three momentum or dimensional regularization, with qmax, or a subtraction constant α .

Decay terms, added to V and iterated in the Bethe Salpeter equation. Through its imaginary part they provide the decay to DKbar

$I[J^P]$	$\sqrt{s_{\text{pole}}}$ (MeV)	Model	Γ (MeV)
0[0+]	2848	A, $\Lambda = 1400 \text{ MeV}$	23
		A, $\Lambda = 1500 \text{ MeV}$	30
		B, $\Lambda = 1000 \text{ MeV}$	25
		B, $\Lambda = 1200 \text{ MeV}$	59
0[1+]	2839	Convolution	3
0[2+]	2733	A, $\Lambda = 1400 \text{ MeV}$	11
		A, $\Lambda = 1500 \text{ MeV}$	14
		B, $\Lambda = 1000 \text{ MeV}$	22
		B, $\Lambda = 1200 \text{ MeV}$	36

TABLE VI. C = 1; S = -1; I = 0. Mass and width for the states with J = 0 and 2.

R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 125, 242001 (2020)

R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 102, 112003 (2020)

 $X_{0}(2866): M = 2866 \pm 7 \text{ and } \Gamma = 57.2 \pm 12.9 \text{ MeV},$ $X_{1}(2900): M = 2904 \pm 5 \text{ and } \Gamma = 110.3 \pm 11.5 \text{ MeV}$ 6Decaying to DKbar The state predicted corresponds to the X_{0}(2866) Revision to the light of experimental results R. Molina, E. O. Phys.Lett.B 811 (2020) 135870

	state	Coupled channels	Γ[MeV]	M[MeV]	$I(J^P)$
	?	$D^*\bar{K}^*$	38	2775	0(2+)
No D Kbar decay	?	$D^*\bar{K}^*$	20	2861	0(1+)
No D* Khar decay	$X_0(2866)$	$D^*\bar{K}^*$	57	2866	0(0 ⁺)

7

The Tcc discovery by the LHCb collaboration

Spectra corrected by resolution and analyzed with a unitary amplitude

10 $\delta m_{\rm exp} = -360 \pm 40^{+4}_{-0} \text{ keV}, \qquad \Gamma = 48 \pm 2^{+0}_{-14} \text{ keV}.$

Spectra without correction by experimental resolution
$$m_{
m exp} = 3875.09 \ {
m MeV} + \delta m_{
m exp},$$

$$\delta m_{\rm exp} = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}. \ \Gamma = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$$

A. Feijoo, W.H. Liang, Eulogio Oset, Phys.Rev.D 104 (2021) 11, 114015

$$\begin{aligned} \mathcal{L}_{VPP} &= -ig \, \langle [P, \partial_{\mu} P] V^{\mu} \rangle, \\ \mathcal{L}_{VVV} &= ig \, \langle (V^{\nu} \partial_{\mu} V_{\nu} - \partial_{\mu} V^{\nu} V_{\nu}) V^{\mu} \rangle, \\ g &= \frac{M_V}{2 \, f}, \ (M_V = 800 \text{ MeV}, \ f = 93 \text{ MeV}). \end{aligned}$$

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' & D^{-}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & \eta_{c} \end{pmatrix} \qquad V_{\mu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}_{\mu}$$

$D^{\ast +}D^0, D^{\ast 0}D^+$ the 1, 2 channels, the interaction that we obtain is

12

to different masses there is a bit of isospin breaking

Convolution of the G function: Origin of the width. Spectral function Mass distribution

bution
$$\operatorname{Im}[D(s_V)] = \operatorname{Im}\left(\frac{1}{s_V - M_V^2 + iM_V\Gamma}\right)$$

$$G(\sqrt{s}, M_k, m_k) = \frac{\int \int ds_V G(\sqrt{s}, \sqrt{s_V}, m_k) \times \operatorname{Im}[D(s_V)]}{\int \int (M_V - 2\Gamma_V)^2} ds_V \operatorname{Im}[D(s_V)]}$$

$$G_{l} = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{l}}{E_{l}(\mathbf{q})} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(\mathbf{q}) + i\epsilon}$$

$$\Gamma_{D^{*+}}(M_{\rm inv}) = \Gamma(D^{*+}) \left(\frac{m_{D^{*+}}}{M_{\rm inv}}\right)^2 \cdot \left[\frac{2}{3} \left(\frac{p_{\pi}}{p_{\pi,\rm on}}\right)^3 + \frac{1}{3} \left(\frac{p'_{\pi}}{p'_{\pi,\rm on}}\right)^3\right]$$

where p_{π} is the π^+ momentum in $D^{*+} \to D^0 \pi^+$ decay $p'_{\pi}, p'_{\pi,\text{on}}$ are the same magnitudes for $D^{*+} \to D^+ \pi^0$.

$$\Gamma_{D^{*0}}(M_{\rm inv}) = \Gamma(D^{*0}) \left(\frac{m_{D^{*0}}}{M_{\rm inv}}\right)^2 \cdot \left[0.647 \left(\frac{p_{\pi}}{p_{\pi,\rm on}}\right)^3 + 0.353\right]$$
$$\dot{D}^{*0} \rightarrow D^0 \pi^0 \qquad D^{*0} \rightarrow D^0 \gamma$$

Alternative method including vector selfenergy

$$G(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_B^2 + i\epsilon} \frac{1}{(P - q)^2 - m_{B^*}^2 + i\sqrt{(P - q)^2}\Gamma_{B^*}((P - q)^2)}$$

$$\Gamma_{B^*}(s') = \Gamma_{B^*}(m_{B^*}^2) \frac{m_{B^*}^2}{s'} \left(\frac{p_{\gamma}(s')}{p_{\gamma}(m_{B^*}^2)}\right)^3 \Theta(\sqrt{s'} - m_B)$$

$$\begin{split} G(s) &\simeq \int_{0}^{q_{\max}} dq \frac{q^{2}}{4\pi^{2}} \frac{\omega_{B} + \omega_{B^{*}}}{\omega_{B} \omega_{B^{*}}} \frac{1}{\sqrt{s} + \omega_{B} + \omega_{B^{*}}} \\ &\times \frac{1}{\sqrt{s} - \omega_{B} - \omega_{B^{*}} + i \frac{\sqrt{s'}}{2\omega_{B^{*}}} \Gamma_{B^{*}}(s')}, \qquad \omega_{B(B^{*})} = \sqrt{\vec{q}^{2} + m_{B(B^{*})}^{2}} \text{ and } s' = (\sqrt{s} - \omega_{B})^{2} - \vec{q}^{2} + \vec{q}^{2} + \vec{q}^{2} + m_{B(B^{*})}^{2} + m_{B(B^{*}$$

With mass from unitary reanalysis of LHCb data, Mikhasenko

LHCb Phys.Rev.Lett. 115 (2015) 072001 Phys.Rev.Lett

Phys.Rev.Lett. 122 (2019) 22, 222001

J.~J.~Wu, R.~Molina, E.~Oset and B.~S.~Zou, %``Prediction of narrow \$N^*\$ and \$\Lambda^*\$ resonances with hidden charm above 4 GeV," Phys. Rev. Lett. 105, 232001 (2010)

States of three or more mesons

A.~Martinez Torres, K.~P.~Khemchandani, L.~Roca and E.~Oset "Few-body systems consisting of mesons," Few Body Syst. 61 35 (2020)

Table 1 Few-body systems studied in the literature involving one, two or more mesons

Components	States generated	Method u			
<i>Ē</i>NN	\bar{K} bound states	F V FCA	$NDK, ND\overline{K}, ND\overline{K}, ND\overline{D}$	bound states of 3050, 3150, 4400 MeV	FC
2 <i>PN</i>	$1/2^+ \Sigma$, Λ excited $1/2^+ N^*$ states	χF χF	$DDK, DD_s\eta, DD_s\pi$	I = 1/2 state around 4140 MeV	χF
ππΝ	$(N^{*}(1920))$ $N^{*}(1710)$	χF	DDK DDDK	Bound state, $B \simeq 70$ MeV Bound state $B \sim 90 - 110$ MeV	GE
$K\bar{K}N$	<i>N</i> *(1920)	V, FCA	$J/\psi K \bar{K}$	Y(4260)	χF
KKĀ	<i>K</i> (1460)	χF CS F	K D D̄* D K K̄	K* Bound states D-like state at 2900 MeV	FCA QSR, χF FC
$\pi K \bar{K}, \pi \pi \eta$	$\pi(1300), f_0(1790)$	χF	oDD	I = 0.1 states 4200–4300 MeV	FCA
$\phi K \bar{K}, \phi \pi \pi$	$\phi(2170)$	χF	$\rho B^* \overline{B}^*$	J = 3 state at 10950 MeV	FCA
$\pi \rho \Delta$ $\pi \bar{K} K^*$	$\Delta_{5/2}$ + (2000) π_1 (1600)	FCA	$D^{(*)}B^{(*)}ar{B}^{(*)}$	Several bound states	FCA
$n\bar{K}K^*$	$0(1^{-})$ state around	FCA	$BD\bar{D}, BDD$	$BD\bar{D}$ bound state ~ 8950 MeV	FCA
$\rho K \bar{K}$	$\rho(1700)$ MeV $\rho(1700)$	FCA	BB^*B^* , $B^*B^*B^*$	Bound $C = 3$ meson	F
Multi- $ ho$	$f_2(1270), \rho_3(1690), f_4(2050), \rho_5(2350), f_6(2510)$	FCA	$DD^*K, BB^*\bar{K}$	Bound states 4318 MeV, 11014 MeV	BO
K^* multi- ρ	$K_{2}^{*}(1430), K_{3}^{*}(1780)$ $K^{*}(2045), K^{*}(2380), K^{*}$	FCA	$ar{K}^*Bar{B},ar{K}^*B^*ar{B}^*$	Several bound states	FCA
PVV	$\pi_4(2010), \pi_5(2000), \pi_6(\pi_2(1670)), \pi_2(1645), K_2^*(1770)$	FC	BBB^*	Probable bound state	BO
K multi- ρ	several K^* states	FCA	D multi- $ ho$	Seven D^* states	FCA
DNN	D bound state	FCA V			

P Pseudoscalar, *F* Faddeev, *FCA* Fixed center approximation, χF Chiral Faddeev, *V* Variational, *GE* Gaussian expansion, *QSR* QCD sum rules, *BO* Born–Oppenheimer, *CS* Complex scaling

States of three or more mesons

The fixed center approximation to Faddeev equations

$$T_{1} = t_{1} + t_{1}G_{0}T_{2},$$

$$T_{2} = t_{2} + t_{2}G_{0}T_{1},$$

$$T = T_{1} + T_{2},$$

$$T = T_{1} + T_{2},$$

 \backslash

FIG. 1. Diagrammatic representation of the FCA to Faddeev equations.

/

Multimeson states

%``A description of the f2(1270), rho3(1690), f4(2050), rho5(2350) and f6(2510) resonances as multi-rho(770) states," Phys. Rev. D 82, 054013 (2010)

TABLE I. Results for the masses of the dynamically generated states.

$n_{ ho}$		Mass, PDG [25]	Mass, only single scatt.	Mass, full model	$E(n_{\rho})$
2	$f_2(1270)$	1275 ± 1	1275	1285	133
3	$\rho_3(1690)$	1689 ± 2	1753	1698	209
4	$f_4(2050)$	2018 ± 11	2224	2051	263
5	$\rho_5(2350)$	2330 ± 35	2690	2330-2366	302-309
6	$f_6(2510)$	2465 ± 50	3155	2607–2633	337–341

J.~Yamagata-Sekihara, L.~Roca and E.~Oset,

L.~Roca and E.~Oset.

%``On the nature of the \$K^*_2(1430)\$, \$K^*_3(1780)\$, \$K^*_4(2045)\$, \$K^*_5(2380)\$ and \$K^*6\$ as \$K^*\$ - multi-\$\rho\$ states," Phys. Rev. D 82, 094017 (2010)

TABLE II. Results for the masses of the dynamically generated states. (All units are MeV.)

Generated resonance	Amplitude	Mass, PDG [26]	Mass only single scatt.	Mass full model
$K_2^*(1430)$	$ ho K^*$	1429 ± 1.4		1430
$\bar{K_3^*}(1780)$	K^*f_2	1776 ± 7	1930	1790
$K_4^*(2045)$	$f_2 K_2^*$	2045 ± 9	2466	2114
$K_5^*(2380)$	K^*f_4	$2382 \pm 14 \pm 19$	2736	2310
K_6^*	$K_2^* f_4 - f_2 K_4^*$		3073-3310	2661-2698

Main difference between nuclei and meson aggregates → Baryonic number conservation

There is no meson number conservation.

But in strong interaction there is FLAVOR CONSERVATION

This means we can construct meson aggregates with different flavors that cannot decay to a system with smaller number of mesons

Example : c c s s q bar q bar q bar q bar (q = u, d q uarks) has 4 mesons and cannot decay to a system with less than 4 mesons

This makes these systems similar to ordinary nuclei : One can create many new system classified by NUMBER OF OPEN FLAVOR (quarks that their corresponding antiquark is not present in the system). T.~W.~Wu, Y.~W.~Pan, M.~Z.~Liu and L.~S.~Geng,

%``Multi-hadron molecules: status and prospect," Sci. Bull. \textbf{67}, 1735-1738 (2022)

"P. W. Anderson once said, "more is different", which could also be true in hadron physics. Studies of multi-hadron molecules have just started and are in an infant stage, compared with the studies of multi-nucleon states (nuclei) and of two-body hadronic molecules." Much progress is expected in the coming years. Correlation functions for the $D_{s0}(2317)$ and $N^*(1535)$: the inverse problem

E. Oset, Natsumi Ikeno, Genaro Toledo, Raquel Molina, Chu Wen Xiao and Wei Hong Liang

IFIC, Departamento de Fisica Teorica, Universidad de Valencia

Construction of correlation functions

The channels in $D_{s0}(2317)$ production

The channels in the N*(1535) production

The inverse problem of getting information from the correlation functions

Discussion on experimental extraction of scattering parameters

The D_{s0}(2317) state

$$D^{0}K^{+}$$
, $D^{+}K^{0}$, and $D_{s}^{+}\eta$
 $V_{ij} = C_{ij} g^{2}(p_{1} + p_{3}) \cdot (p_{2} + p_{4});$
 $g = \frac{M_{V}}{2f}, M_{V} = 800 \text{ MeV}, f = 93 \text{ MeV}, G_{i}(s) = \int_{|q| < q_{max}} \frac{d^{3}q}{(2\pi)^{3}} \frac{\omega_{1} + \omega_{2}}{2\omega_{1}\omega_{2}} \frac{1}{s - (\omega_{1} + \omega_{2})^{2} + i\epsilon}$
 $C_{ij} = \begin{pmatrix} -\frac{1}{2} \left(\frac{1}{M_{\rho}^{2}} + \frac{1}{M_{\omega}^{2}}\right) & -\frac{1}{M_{\rho}^{2}} & \frac{2}{\sqrt{3}} \frac{1}{M_{K^{*}}^{2}} \\ -\frac{1}{2} \left(\frac{1}{M_{\rho}^{2}} + \frac{1}{M_{\omega}^{2}}\right) & \frac{2}{\sqrt{3}} \frac{1}{M_{K^{*}}^{2}} \\ 0 \end{pmatrix}$ Ikeno, Toledo, E. O. PLB 847, 138281
 $(p_{1} + p_{3}) \cdot (p_{2} + p_{4}) \rightarrow \frac{1}{2} [3s - (M^{2} + m^{2} + M'^{2} + m'^{2}) \\ -\frac{1}{s} (M^{2} - m^{2})(M'^{2} - m'^{2})],$ Projection in s-wave

Correlation functions

$$C(\mathbf{p}) = \int d^3 \mathbf{r} S_{12}(\mathbf{r}) |\psi(\mathbf{r}, \mathbf{p})|^2 \qquad S_{12}(\mathbf{r}) = \frac{1}{(\sqrt{4\pi})^3 R^3} \exp\left(-\frac{r^2}{4R^2}\right)$$

Modified Kookin Pratt formalism

I.~Vidana, A.~Feijoo, M.~Albaladejo, J.~Nieves and E.~Oset Phys.Lett.B 846 (2023) 138201

$$C_{D^{0}K^{+}}(p_{K^{+}}) = 1 + 4\pi \int_{0}^{+\infty} drr^{2}S_{12}(r) \,\theta(q_{\max} - p_{K^{+}}) \qquad C_{D^{+}K^{0}}(p_{K^{0}}) = 1 + 4\pi \int_{0}^{+\infty} drr^{2}S_{12}(r) \,\theta(q_{\max} - p_{K^{0}}) \\ \left\{ \left| j_{0}(p_{K^{+}}r) + T_{11}(\sqrt{s}) \,\widetilde{G}^{(1)}(s,r) \right|^{2} \\ + \omega_{2} \left| T_{21}(\sqrt{s}) \,\widetilde{G}^{(2)}(s,r) \right|^{2} \\ + \omega_{3} \left| T_{21}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{+}}r) \right] \qquad + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{31}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{+}}r) \right] \qquad + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} - j_{0}^{2}(p_{K^{0}}r) \\ + \omega_{3} \left| T_{32}(\sqrt{s}) \,\widetilde{G}^{(3)}(s,r) \right|^{2} + \omega_{3} \left| T_{32}(\sqrt$$

$$H\Psi = (H_0 + V)\Psi = E\Psi \Rightarrow (E - H_0)\Psi = V\Psi$$

$$(E - H_0)\Phi = 0$$

$$\Psi = \Phi + \frac{1}{E - H_0}V\Psi \Rightarrow \Psi = \Phi + \frac{1}{E - H_0}T\Phi$$

$$V(\vec{p}, \vec{p}') = V\theta(q_{\max} - |\vec{p}|)\theta(q_{\max} - |\vec{p}'|)$$

$$T(E; \vec{p}, \vec{p}') = T(E)\theta(q_{\max} - |\vec{p}|)\theta(q_{\max} - |\vec{p}'|)$$

$$\Psi(\vec{r}, \vec{p}) = e^{i\vec{p}\cdot\vec{r}} + \theta(q_{\max} - |\vec{p}|)T(E)$$

$$\times \int_{|\vec{q}| < q_{\max}} \frac{d^3\vec{q} e^{i\vec{q}\cdot\vec{r}}}{E - \omega_1(q) - \omega_2(q) + i\eta}$$

$$e^{i\vec{q}\cdot\vec{r}} = 4\pi \sum_{\ell=0}^{+\infty} i^{\ell} j_{\ell}(qr) \sum_{m=-\ell}^{+\ell} Y_{\ell m}^{*}(\hat{q}) Y_{\ell m}(\hat{r}) \qquad \Psi(\vec{r}, \vec{p}) = e^{i\vec{p}\cdot\vec{r}} + f_{E}(r)$$
$$|\Psi(\vec{r}, \vec{p})|^{2} = 1 + |f_{E}(r)|^{2} + 2\operatorname{Re}\left[e^{i\vec{p}\cdot\vec{r}} f_{E}^{*}(r)\right]$$

$$\int d^{3}\vec{r} S_{12}(r)|\Psi(\vec{r},\vec{p}\,)|^{2} = 1 + 4\pi \int_{0}^{+\infty} drr^{2} S_{12}(r)$$
$$\times \left\{ |j_{0}(pr) + f_{E}(r)|^{2} - j_{0}^{2}(pr) \right\}$$

$$C_{D_{s}\eta}(p_{\eta}) = 1 + 4\pi \int_{0}^{+\infty} drr^{2}S_{12}(r) \theta(q_{\max} - p_{\eta})$$

$$\begin{cases} \left| j_{0}(p_{\eta}r) + T_{33}(\sqrt{s}) \widetilde{G}^{(3)}(s,r) \right|^{2} \\ + \omega_{1} \left| T_{13}(\sqrt{s}) \widetilde{G}^{(1)}(s,r) \right|^{2} \\ + \omega_{2} \left| T_{23}(\sqrt{s}) \widetilde{G}^{(2)}(s,r) \right|^{2} - j_{0}^{2}(p_{\eta}r) \end{cases}$$

$$\begin{bmatrix} 1.2 \\ 0.4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0 \end{bmatrix}$$

C(p) constructed with R=1m

$$\widetilde{G}^{(i)}(s,r) = \int \frac{d^3q}{(2\pi)^3} \frac{\omega_1^{(i)}(q) + \omega_2^{(i)}(q)}{2\omega_1^{(i)}(q)\omega_2^i(q)} \cdot \frac{j_0(qr)}{s - \left[\omega_1^{(i)}(q) + \omega_2^{(i)}(q)\right]^2 + i\epsilon}$$

$$q < q_{\text{max}}$$

1

Inverse problem

$$\begin{split} |DK,I=0\rangle &= \frac{1}{\sqrt{2}}(D^{+}K^{0} + D^{0}K^{+}) \\ V &= \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ & V_{22} & V_{23} \\ & & 0 \end{pmatrix} \\ |DK,I=1,I_{3}=0\rangle &= \frac{1}{\sqrt{2}}(D^{+}K^{0} - D^{0}K^{+}) \end{split}$$

we will assume that the potential has isospin symmetry

we impose that
$$\langle I = 0 | V | I = 1 \rangle = 0$$

$$V_{11} = V_{22}, \quad V_{13} = V_{23}, \qquad V_{11} = 0 |V| DK, I = 0 \rangle = V_{11} + V_{12} \qquad V = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{11} & V_{13} & V_{13} \\ V_{11} & V_{13} & 0 \end{pmatrix} \qquad V_{11} = V_{11}' + \frac{\alpha}{M_V^2}(s - \bar{s}), \qquad V_{12} = V_{12}' + \frac{\beta}{M_V^2}(s - \bar{s}), \qquad V_{13} = V_{13}' + \frac{\gamma}{M_V^2}(s - \bar{s}),$$

Free parameters $V_{11}', V_{12}', V_{13}', \alpha, \beta, \gamma, q_{\text{max}}, \text{ and } R$

~

We do many fits to the data with the resampling technique to evaluate errors in the observables, assuming errors in the correlation functions of the order of 0,02

$$\begin{aligned} q_{\max} &= 689.03 \pm 103.37 \text{ MeV} & \text{We get a pole at} & E &= 2314.2 \pm 21.0 \text{ MeV} \\ R &= 0.984 \pm 0.040 \text{ fm.} \\ T_{ij} &\sim \frac{g_i g_j}{s - s_0} & g_1^2 = \lim_{s \to s_0} (s - s_0) T_{11}; \quad g_j = g_1 \lim_{s \to s_0} \frac{T_{1j}}{T_{11}} & P_i = -g_i^2 \frac{\partial G_i}{\partial s}|_{s = s_0} \\ & T &\equiv -8\pi \sqrt{s} f^{QM} \approx -8\pi \sqrt{s} \frac{1}{-\frac{1}{a} + \frac{1}{2}r_0 k^2 - ik} \\ & -\frac{1}{a} = -8\pi \sqrt{s} T^{-1}|_{s = s_{\text{th}}}, \\ & r_0 &= \frac{\partial}{\partial k^2} 2(-8\pi \sqrt{s} T^{-1} + ik) \\ & = \frac{\sqrt{s}}{\mu} \frac{\partial}{\partial s} 2(-8\pi \sqrt{s} T^{-1} + ik)|_{s = s_{\text{th}}} \end{aligned}$$

Table 1

Values of the couplings, probabilities, scattering lengths, and effective ranges.

channel i	$1 : D^0 K^+$	$2: D^+ K^0$	$3: D_s^+ \eta$
g_i [MeV]	8556.08 ± 2707.16	8571.21 ± 2710.52	-6161.84 ± 6307.93
P_i	0.357 ± 0.133	0.306 ± 0.119	0.083 ± 0.070
<i>a</i> _{<i>i</i>} [fm]	0.720 ± 0.131	$(0.518 \pm 0.051) - i (0.120 \pm 0.030)$	$(0.213 \pm 0.014) - i(0.054 \pm 0.025)$
<i>r</i> _{0,<i>i</i>} [fm]	-2.479 ± 0.824	$(-0.162 \pm 0.778) - i (2.520 \pm 0.329)$	$(-0.165 \pm 1.677) - i(0.171 \pm 0.663)$

The probabilities are similar as in the lattice work, A. Martínez Torres, E. Oset, S. Prelovsek, A. Ramos, J. High Energy Phys. 05 (2015)

Table 2

Same as Table 1 except with the use of the two correlation functions of D^0K^+ and D^0K^0 .

channel i	$1 : D^0 K^+$	$2: D^+ K^0$	$3: D_s^+\eta$
g_i [MeV]	7773.42 ± 3462.55	7789.64 ± 3483.53	-5716.45 ± 5659.24
P_i	0.353 ± 0.198	0.301 ± 0.184	0.080 ± 0.134
<i>a_i</i> [fm]	0.707 ± 0.060	$(0.504 \pm 0.034) - i(0.110 \pm 0.015)$	$(0.259 \pm 0.067) - i(0.055 \pm 0.036)$
<i>r</i> _{0,<i>i</i>} [fm]	-3.139 ± 1.299	$(-0.665 \pm 1.020) - i(2.386 \pm 0.341)$	$(0.336 \pm 0.858) - i(0.081 \pm 0.447)$

The equal couplings for $D^0 K^+$ and D^+K^0 indicate that we have a D K isospin I=0 state

The chiral unitary approach for the $N^*(1535)$ Kaiser, Siegel and Weise $K^0\Sigma^+, K^+\Sigma^0, K^+\Lambda, \pi^+n, \pi^0p, \eta p$ $V_{ij} = -\frac{1}{4f^2}C_{ij}(k^0 + k'^0); \qquad f = 93 \text{ MeV} \qquad T = [1 - VG]^{-1}V$

TABLE I.	C_{ij}	coefficients	of	Eq.	(3).
----------	----------	--------------	----	-----	------

$\overline{C_{ij}}$	$K^0\Sigma^+$	$K^+\Sigma^0$	$K^+\Lambda$	$\pi^+ n$	$\pi^0 p$	ηp
$K^0\Sigma^+$	1	$\sqrt{2}$	0	0	$\frac{1}{\sqrt{2}}$	$-\sqrt{\frac{3}{2}}$
$K^+\Sigma^0$		0	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
$K^+\Lambda$			0	$-\sqrt{\frac{3}{2}}$	$-\frac{\sqrt{3}}{2}$	$-\frac{3}{2}$
$\pi^+ n$				v 2 1	$\sqrt{2}$	0
$\pi^0 p$					0	0
ηp						0

$$\begin{split} & \text{Correlation functions: Molina, Xiao, Liang, E. O. PRD 109, 054002} \\ & C_{K^0\Sigma^+}(p_{K^0}) = 1 + 4\pi\theta(q_{\max} - p_{K^0}) \int drr^2 S_{12}(r) \cdot \{|j_0(p_{K^0}r) + T_{K^0\Sigma^+}(E)\tilde{G}^{(K^0\Sigma^+)}(r;E)|^2 \\ & + |T_{K^+\Sigma^0,K^0\Sigma^+}(E)\tilde{G}^{(K^+\Sigma^0)}(r;E)|^2 + |T_{K^+\Lambda,K^0\Sigma^+}(E)\tilde{G}^{(K^+\Lambda)}(r;E)|^2 \\ & + |T_{\eta p,K^0\Sigma^+}(E)\tilde{G}^{(\eta p)}(r;E)|^2 - j_0^2(p_{K^0}r)\}, \\ & C_{K^+\Sigma^0}(p_{K^+}) = 1 + 4\pi\theta(q_{\max} - p_{K^+}) \int drr^2 S_{12}(r) \cdot \{|j_0(p_{K^+}r) + T_{K^+\Sigma^0,K^+\Sigma^0}(E)\tilde{G}^{(K^+\Sigma^0)}(r;E)|^2 \\ & + |T_{K^0\Sigma^+,K^+\Sigma^0}(E)\tilde{G}^{(K^0\Sigma^+)}(r;E)|^2 + |T_{K^+\Lambda,K^+\Sigma^0}(E)\tilde{G}^{(K^+\Lambda)}(r;E)|^2 \\ & + |T_{\eta p,K^+\Sigma^0}(E)\tilde{G}^{(\eta p)}(r;E)|^2 - j_0^2(p_{K^+}r)\}, \\ & C_{K^+\Lambda}(p_{K^+}) = 1 + 4\pi\theta(q_{\max} - p_{K^+}) \int drr^2 S_{12}(r) \cdot \{|j_0(p_{K^+}r) + T_{K^+\Lambda,K^+\Lambda}(E)\tilde{G}^{(K^+\Lambda)}(r;E)|^2 \\ & + |T_{K^0\Sigma^+,K^+\Lambda}(E)\tilde{G}^{(K^0\Sigma^+)}(r;E)|^2 + |T_{K^+\Sigma^0,K^+\Lambda}(E)\tilde{G}^{(K^+\Sigma^0)}(r;E)|^2 \\ & + |T_{\mu p,K^+\Lambda}(E)\tilde{G}^{(\eta p)}(r;E)|^2 - j_0^2(p_{K^+}r)\}, \\ & C_{\eta p}(p_{\eta}) = 1 + 4\pi\theta(q_{\max} - p_{\eta}) \int drr^2 S_{12}(r) \cdot \{|j_0(p_{\eta}r) + T_{\eta p,\eta p}(E)\tilde{G}^{(\eta p)}(r;E)|^2 \\ & + |T_{\eta p,K^+\Lambda}(E)\tilde{G}^{(\eta p)}(r;E)|^2 - j_0^2(p_{K^+}r)\}, \end{split}$$

 $+ |T_{K^{0}\Sigma^{+},\eta p}(E)\tilde{G}^{(K^{0}\Sigma^{+})}(r;E)|^{2} + |T_{K^{+}\Sigma^{0},\eta p}(E)\tilde{G}^{(K^{+}\Sigma^{0})}(r;E)|^{2} + |T_{K^{+}\Lambda,\eta p}(E)\tilde{G}^{(K^{+}\Lambda)}(r;E)|^{2} - j_{0}^{2}(p_{\eta}r)\}$

Isospin symmetry

$$\begin{vmatrix} K\Sigma, I = \frac{1}{2}, I_3 = \frac{1}{2} \\ = \sqrt{\frac{2}{3}} K^0 \Sigma^+ + \sqrt{\frac{1}{3}} K^+ \Sigma^0, \\ (K^+, K^0), (-\pi^+, \pi^0, \pi^-), (-\Sigma^+, \Sigma^0, \Sigma^-) \\ K\Sigma, I = \frac{3}{2}, I_3 = \frac{1}{2} \\ = -\sqrt{\frac{1}{3}} K^0 \Sigma^+ + \sqrt{\frac{2}{3}} K^+ \Sigma^0. \\ \begin{pmatrix} K\Sigma, I = \frac{3}{2}, I_3 = \frac{1}{2} \\ V \\ K\Sigma, I = \frac{1}{2}, I_3 = \frac{1}{2} \\ V \\ K\Sigma, I = \frac{3}{2}, I_3 = \frac{1}{2} \\ V \\ K\Sigma, I = \frac{3}{2}, I_3 = \frac{1}{2} \\ V \\ K\Sigma, I = \frac{3}{2}, I_3 = \frac{1}{2} \\ V \\ \mu p \\ = 0. \end{aligned}$$

channels
$$K^{0}\Sigma^{+}, K^{+}\Sigma^{0}, K^{+}\Lambda, \eta p$$

 $V_{ij} = -\frac{1}{4f^{2}}\tilde{C}_{ij}(k^{0} + k'^{0})$
 $V_{ij} = \begin{pmatrix} V_{11} & \sqrt{2}(V_{11} - V_{22}) & V_{13} & V_{14} \\ & V_{22} & \frac{1}{\sqrt{2}}V_{13} & \frac{1}{\sqrt{2}}V_{14} \\ & & V_{33} & V_{34} \\ & & & V_{44} \end{pmatrix}$

7 Cij free parameters plus qmax, and R

q_{\max} (MeV)	R (fm)
637 ± 72	1.02 ± 0.02

TABLE III. Scattering lengths for channel *i* (in units of fm).

		$\mathcal{D}_{1} \sim 0.12 - 0.23i$	$\mathcal{D}_{1} \sim 0.06 - 0.12i$
a_1 (0.46±0.04)-(0.64±0.03) <i>i</i>	$a_2 \\ (0.32 \pm 0.01) - (0.35 \pm 0.02)i$	$\mathcal{P}_1 \cong 0.12 = 0.23i,$ $\mathcal{P}_3 \simeq 0.22 - 0.28i,$	$\mathcal{P}_2 \cong 0.00 = 0.12i,$ $\mathcal{P}_4 \simeq -0.34 - 0.24i$
$a_3 \\ (0.30 \pm 0.02) - (0.22 \pm 0.04)i$	$a_4 (-0.780 \pm 0.013) + (0 \pm 0)i$	$ \mathcal{P}_1 =0.26,$	$ \mathcal{P}_2 = 0.13,$
TABLE IV. Effective range parar	neters for channel <i>i</i> (in units of fm).	$ \mathcal{P}_3 = 0.35,$	$ \mathcal{P}_4 = 0.42.$
$\begin{array}{c c} \hline r_1 \\ (-1.1 \pm 0.2) - (2.7 \pm 0.2)i \end{array}$	$ \begin{array}{c} r_2 \\ (-6.2 \pm 1.4) + (8.8 \pm 0.5)i \end{array} $	r_3 (-2.8 ± 0.3) - (0.3 ± 0.6)) <i>i</i> $r_4 -1.48 \pm 0.13$

The couplings g1, g2 indicate I=1/2 state

TABLE V. Pole position and couplings (in units of MeV).

$\sqrt{s_p}$ (1515 ± 6) - (89 ± 9) <i>i</i>	$\begin{array}{c}g_{1}\\(3.7\pm0.3)-(1.04\pm0.13)i\end{array}$	$\begin{array}{c} g_2 \\ (2.6\pm0.2) - (0.74\pm0.10)i \end{array}$	
	$\begin{array}{c} g_{3} \\ (3.6\pm0.2) - (0.28\pm0.05)i \end{array}$	$\begin{array}{c} g_4 \\ (-2.68 \pm 0.13) + (1.4 \pm 0.2)i \end{array}$	

Experimental analysis of a, r, done with single channel MESSAGE: the analysis must be done with coupled channels.

	Pair	Λ – K ⁺
-a ₃	$\Re f_0$ (fm)	$-0.61 \pm 0.03(stat) \pm 0.03(syst)$
	$\Im f_0$ (fm)	$0.23\pm0.06(stat)\pm0.04(syst)$
r _o	d_0 (fm)	$0.80\pm0.19(stat)\pm0.18(syst)$

 a_3 (0.30±0.02)-(0.22±0.04)*i* r_3 (-2.8±0.3)-(0.3±0.6)*i*

Relevance of coupled channel analysis stressed in a recent paper

A.~Feijoo, M.~Korwieser and L.~Fabbietti,

%``Relevance of the coupled channels in the \$\phi\$p and \$\rho^0\$p Correlation Functions," [arXiv:2407.01128 [hep-ph]].

Conclusions

We explore the inverse problem of getting a,r_0 , bound states associated, molecular probabilites

From the correlation functions of D^0K^+ , D^+K^0 , and $D_s^+\eta$ we find the existence of the D_{s0}(2013) state

From the correlation functions of the channels $K^0\Sigma^+$, $K^+\Sigma^0$, $K^+\Lambda$, ηp we find the existence of the N*(1535) state

a, r_0 for all the channels are obtained with high precision.

ONE MUST AVOID USING SINGLE CHANNEL ANALYSIS TO DETERMINE a AND ro