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Colliding Nuclei and Creating Plasma of Quarks and Gluons (QGP)

Kinematics of a heavy ion collision:

Z

RAu

RAu

�

Detectors

�Beam

The nuclei pass through each other leaving QGP expanding rapidly

12 / 45
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Measuring the hydrodynamics of the plasma
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Amazing Success: the “Standard” Hydro Model

1. V1 . . . V6

2. Momentum dependence Vn(p)

3. Probabilities P (|Vn|2)

4. Covariances between harmonics:
⌦
V2V3V ⇤

5

↵

5. Full covariance matrix:
⌦
V2(p1)V ⇤

2 (p2)
↵

Uses the equation of state from lattice QCD and

@µTµ⌫ = 0

but we want more...
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QCD and Chiral Symmetry

and ditto for right

QCD is (almost) symmetric between, left and right, and up and down:

LQCD =
X

q=u,d

q̄L(i /D)qL + q̄R(i /D)qR � mq (q̄LqR + q̄RqL)
| {z }

small

Then one would expect four approx. conservation laws, uL, dL, uR, dR:

nB : (uL + dL) + (uR + dR) Baryon number

nanom : (uL � uR) + (dL � dR) Anomalous: not consv.
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QCD and Chiral Symmetry

and ditto for right

QCD is (almost) symmetric between, left and right, and up and down:

LQCD =
X

q=u,d

q̄L(i /D)qL + q̄R(i /D)qR � mq (q̄LqR + q̄RqL)
| {z }

small

Then one would expect four approx. conservation laws, uL, dL, uR, dR:

~nV : (uL + uR) � (dL + dR) Isovector charge
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Metailsof Su, (2)xSUp(2)

g
= (a) 9 g) = ei. E,/(4) = u

, g

gr
= (a) gr-Gr = eir ·

Erin(um) =U

with E = 15
,,Tusta) pauli matrices To (04)

The U(1) transformations lead to the conserved currents

= %g + gUgR
= Baryon Number = Left + Right

nu =-
= AXIAL Current = Left- Right
&

Anomalous and not conserved !



The currents that are arising from the SU(2) character are :

= g , voEg) + gUEgp = isovector charge
u - d

So

nu,
= uron- duod = "isospin"

Then there is the isorector-axial charge

= UEg) - gpoEgm = iso-axial vector charge
uy

- d) - (up
- dp)

So

Na,
= 0

°

u
,
- ud

=

- (upWup-Udr)

These are conserved in the heavy ion collision !



Recap: Chiral Symmetry

and ditto for right

QCD is (almost) symmetric between, left and right, and up and down:

LQCD =
X

q=u,d

q̄L(i /D)qL + q̄R(i /D)qR � mq (q̄LqR + q̄RqL)
| {z }

small

One has the approx. conservation laws of uL, dL, uR, dR:

~nV : (uL + uR) � (dL + dR) Isovector charge

~nA : (uL � uR) � (dL � dR) Isoaxial vect. charge

Teaney 10 / 60



Chiral symmetry breaking and heavy ion collisions Pisarski, Wilczek

µ

T

Broken chiral symmetry

QGP with chiral symmetry

quarks
and gluons

hadrons

For two massless quarks the
chiral symmetry group is

This is broken, and the transition
is 2nd order. 

The mass smooths the transition
to a crossover, like a magnetic

field in the Ising model

B

Chiral symmetry plays no role in the “Standard Hydro Model” . . .
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Our cold world:   T< Tcritical

The hot world:   T> Tcritical

We will describe pion propagation during the O(4) phase transition
Transition is strongly analogous to a normal-fluid/superfluid transition
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The Chiral Condensate
& matrix

(9287)a() 2x2 i = u
,
d

Under a taxial phase rotation with
r

= - = i

- :] . Elz
Gr91 Gig = ci .Ei

gr92 2

So the effective field (the chiral condensate) is rotated :

- : J . E &
8 1 - 2 = e = U matrix

Now if the angle Y is constant this describes an ningvalent physical
system. If the angle changes slowly in space and time

,
this effective

field LOS ts very little energy.

#= (
,x)

zeit.

+X . /12



Effective Field Theory

/14
For T = 0

5- JaxTr[Gucut] Weiberg
Lagrangian

=Said.2
describingmassless wave

When the quark mass is non zero

=Sai Sto Kuceut] + I'm in(u + u
+]

T
correction for finite

guark mass

Derek Teaney
n



Our cold world:   T< Tcritical

The hot world:   T> Tcritical

We will describe pion propagation during the O(4) phase transition
Transition is strongly analogous to a normal-fluid/superfluid transition
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QCDIsing O(4) Model

magnetization

magnetic
field

condensate

quark mass



Real World QCD and Progress from Lattice

• There are three flavors of quarks u, d, s which are massive
I This changes structure phase diagram

• We will assume the real world is “close” to the O(4) critical point.
I The u and d quarks should be approximately massless

HotQCD 2019, 2020,
Cuteri, Philipsen, Sciara 2021
Kotov, Lombardo, Trunin, 2021

See review Phillipsen, 2021

Strong evidence for the O(4) phase transition at physical s-quark mass,
And the u, d mass are light enough for the critical-dynamics.
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QCDIsing O(4) Model

magnetization

magnetic
field

condensate

quark mass



Real world lattice QCD and the O(4) critical point: Hot QCD, PRL 2019

Fluctuations of order parameter, � / ūu + d̄d, vs temperature and mq
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N� = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N� = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N� = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M
, with decreasing H is consistent with the expected

behavior, �max

M
� H1/��1 + const., with � ' 4.8 within rather large uncertainty which

restricts a precise determination of �.
In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

O(4) Ising model predicts 
how the fluctuations grow 

for small quark mass

The QCD lattice knows about the O(4) critical point! Hydro should too!



QCDIsing O(4) Model

magnetization

magnetic
field

condensate

quark mass



Math: SUL(2) ⌦ SUR(2) and O(4)

• The field ⌃ = �e�i~'·~⌧ is characterized by four real numbers �a

�a = (�0, ~�) ' (�,~⇡) ( vector under O(4)

since for small angles and ~⇡ ⌘ �~'

⌃ = �e�i~⌧ ·~'
' � � i~⌧ · ~⇡

• In general we define four Cli↵ord algebra matrices ⌧̂a ⌘ (1, �i~⌧):

⌃ ⌘ �a ⌧̂a = �0 1� i~⌧ · ~�

• The chiral transformation is equivalent to a four rotation of �a

⌃0 = UL⌃U †

R means that �0

a = ⇤ab|{z}
rotation matrix

�b
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More Math: O(4) or Chiral Rotation Matrices

• The infinitesimal rotation matrices are parameterized by the angles
~✓V = (~✓L + ~✓R)/2 and ~✓A = (~✓L � ~✓R)/2

⇤|{z}
Rotation Matrix

'1 +

0

BB@

0 ✓1
A ✓2

A ✓3
A

�✓1
A 0 ✓3

V �✓2
V

�✓2
A �✓3

V 0 ✓1
V

�✓3
A ✓2

V �✓1
V 0

1

CCA

=1 + 1
2✓ab Jab

where for example :

✓01 = ✓1
A J01 ⌘

0

BB@

0 1 0 0
�1 0 0 0
0 0 0 0
0 0 0 0

1

CCA

or with schooling, (Jab)cd = �ac�bd � �ad�bc
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�a(x)

3D Ising model with 
O(4) spin on each site



Static Universality and the O(4) Ising Model

• The Landau Ginzburg function for the O(4) order parameter is:
�2

⌘ �a�a

H =

Z
d3x

1

2
r�a · r�a +

1

2
m2

0 �
2 +

�

4
�4

� H|{z}
/ mq

�0|{z}
q̄q

• Sample field configurations according to the statistical weight

P [�] / e��cH[�]

• The model has a critical mass parameter m2
c
(�) < 0 which you must find

m2
0 � m2

c

m2
c

/ tr ⌘
T � Tc

Tc

The critical model makes a universal prediction for the susceptibility:

�M ⌘
⌦
�2

0

↵
� h�0i

2
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Static Universality and the O(4) Ising Model

• The Landau Ginzburg function for the O(4) order parameter is:
�2

⌘ �a�a

H =

Z
d3x

1

2
r�a · r�a +

1

2
m2

0 �
2 +

�

4
�4

� H|{z}
/ mq

�0|{z}
q̄q

• Sample field configurations according to the statistical weight

P [�] / e��cH[�]

• The model has a critical mass parameter m2
c
(�) < 0 which you must find

m2
0 � m2

c

m2
c

/ tr ⌘
T � Tc

Tc

The critical model makes a universal prediction for the susceptibility:

�M ⌘
⌦
�2

0

↵
� h�0i

2
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Scaling predictions and QCD Hot QCD, 2019

�M =
⌦
�2

↵
� h�i

2
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N� = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N� = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N� = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M
, with decreasing H is consistent with the expected

behavior, �max

M
� H1/��1 + const., with � ' 4.8 within rather large uncertainty which

restricts a precise determination of �.
In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

Scaling predictions reasonably describe how the peak rises and shifts.

�M / m1/��1
q f�(z) z = z0

✓
T � TC

TC

◆
m�1/��

q
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Part I: From Thermodynamics to Hydrodynamics

Dissipative Processes
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Mathematical Structure of Dissipative Processes: Brownian Motion

Browninan
Motion

Free Energy 

The stochastic equations of motion with noise h⇠(t)⇠(t0)i = 2T⌘ �tt0 :

@tq + {q, H} =0

@tp + {p, H}

| {z }
Hamiltonian Dynamics

=0

� ⌘

✓
@H

@p

◆

| {z }
velocity p/m

+ ⇠

|{z}
noise

The probability distribution P (t, q, p) evolves to equilibrium: Peq = e��H

@tP + {H, P} = T⌘rp

⇣
�rpH P
| {z }
�rpPeq

+rpP
⌘

A unique mathematical structure which reaches equilibrium
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Browninan
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@tq + {q, H} =0
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Hamiltonian Dynamics
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0

� ⌘

✓
@H
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◆
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velocity p/m

+ ⇠
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noise
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⇣
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Mathematical Structure of Dissipative Processes: Brownian Motion

Browninan
Motion

Free Energy 

The stochastic equations of motion with noise h⇠(t)⇠(t0)i = 2T⌘ �tt0 :

@tq + {q, H} =0

@tp + {p, H}

| {z }
Hamiltonian Dynamics

=

0

� ⌘

✓
@H

@p

◆

| {z }
velocity p/m

+ ⇠

|{z}
noise

The probability distribution P (t, q, p) evolves to equilibrium: Peq = e��H

@tP + {H, P} = T⌘rp

⇣
�rpH P
| {z }
�rpPeq

+rpP
⌘

A unique mathematical structure which reaches equilibrium
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Dissipative Dynamics From Metropolis Updates

@tp = �⌘

✓
@H

@p

◆
+ ⇠

| {z }
drag + noise

with
⌦
⇠(t)⇠(t0)

↵
= 2T⌘ �tt0

• Make a proposal with the right variance

p ! p + �p with
⌦
�p2

↵
= 2T⌘�t

• Compute the change in free energy

�H = H(p + �p) � H(p) '

✓
@H

@p

◆
�p

• If �H < 0 accept proposal. If �H > 0 accept with probability:

Pup = e���H

The accepted proposals reproduce the dissipation and variance

h�pi = �⌘

✓
@H

@p

◆
�t and

⌦
(�p)2

↵
= 2T⌘�t
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Application of dissipative process to the O(4) critical point

1. We generate configurations distributed with the Boltzmann weight

P (p) = e��H(p)
H(p) ⌘

p2

2m

by evolving the Langevin equations with Metropolis steps:

@tp = �⌘

✓
@H

@p

◆
+ ⇠ with

⌦
⇠(t)⇠(t0)

↵
= 2T⌘�tt0

2. Can generate field configurations with Landau-Ginzburg weight

H[�] =

Z
d3x

1

2
r�a · r�a +

1

2
m2

0(T )�2 +
�

4
�4

� H�0

by evolving the Langevin equation with Metropolis Steps

@t�a = ��

✓
�H

��a

◆
+ ⇠ with

⌦
⇠(x)⇠(x0)

↵
= 2T��4xx0
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Comments on the Metropolis Approach

All dissipative processes need to conform to this model!

Other recent examples from Hot QCD:

• Simulation of QCD Critical point: Chattopadhyay, Ott, Schaefer, and Skokov

• Relativistic viscous hydrodynamics: Basar, Bhambure, Singh, Teaney
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Part II: From Thermodynamics to Hydrodynamics

Hydro = Hamiltonian Dynamics + Dissipation
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Hydrodynamics of the O(4) transition:
Rajagopal and Wilczek ’92, Son ’99, Son and Stephanov ’01, and finally us, arxiv:2101.10847.

1. The order parameter
�a = (�,~⇡)

2. The approximately conserved charges quantities:

~nV =  ̄�0~⌧ | {z }
isovect chrg

and ~nA =  ̄�0�5~⌧ | {z }
isoaxial-vect chrg

which are combined into an anti-symmetric O(4) tensor of charges

nab =

0

BB@

0 n1
A n2

A n3
A

�n1
A 0 n3

V �n2
V

�n2
A �n3

V 0 n1
V

�n3
A n2

V �n1
V 0

1

CCA Nab(t) =

Z

x
nab(t, x)

Use these fields to construct the Hydrodynamic e↵ective Hamiltonian
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Poisson Brackets for e↵ective Hydrodynamic Hamiltonians
Dzyaloshinskii & Volovik ’79

• An infinitesimal O(4) rotation is parameterized by

�0

c = ⇤cd �d ' �c + 1
2 ✓ · Jcd �d

• In quantum mechanics the charges Nab generate rotations:

�0

c ' �c + i
2 [✓ · N,�c]

which specifies the Poisson brackets in classical mechanics

�0

c = �c + 1
2 {✓ · N,�c}

• Comparing the expressions, we find symmetry dictated Poisson
brackets between hydrodynamic variables:

{nab(x),�c(y)} = (Jab)cd �d(x) �(x � y)
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Poisson Brackets for e↵ective Hydrodynamic Hamiltonians
Dzyaloshinskii & Volovik ’79

• An infinitesimal O(4) rotation is parameterized by

�0

c = ⇤cd �d ' �c + 1
2 ✓ · Jcd �d

• In quantum mechanics the charges Nab generate rotations:

�0

c ' �c + i
2 [✓ · N,�c]

which specifies the Poisson brackets in classical mechanics

�0

c = �c + 1
2 {✓ · N,�c}

• Comparing the expressions, we find symmetry dictated Poisson
brackets between hydrodynamic variables:

{nab(x),�c(y)} = (�ac�b(x) � �bc �a(x)) �(x � y)
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H / mq:

H =

Z
d3x

1

2
r�a · r�a +

1

2
m2

0(T )�2 +
�

4
�4

� H�0 +
n2

ab

4�0

and gives the equilibrium distribution with the correct critical EOS:

Z =

Z
D�Dn e�H[�,n]/Tc

The hydro equations of motion take the form

@�

@t
+ {�, H} =0 + visc. corrections + noise

@nab

@t
+ {nab, H} =0 + visc. corrections + noise
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H / mq:

H =

Z
d3x

1

2
r�a · r�a +

1

2
m2

0(T )�2 +
�

4
�4

� H�0 +
n2

ab

4�0

and gives the equilibrium distribution with the correct critical EOS:

Z =

Z
D�Dn e�H[�,n]/Tc

The hydro equations of motion take the form

@�

@t
+ {�, H} = � �

�H

��a
+ ⇠a

@nab

@t
+ {nab, H} = �0r

2 �H

�nab| {z }
dissipation

+ r · ⇠ab

| {z }
noise
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The equations and the simulations: see also Schlichting, Smekal

We have a charge di↵usion equation coupled to order parameter:

@tnab + r · (r�[a�b])| {z }
poisson bracket

+H[a�b] = D0r
2nab| {z }

di↵usion

+ r · ⇠ab| {z }
noise

and a rotation of the order parameter induced by the charge:

@t�a +
nab

�0
�b

| {z }
poisson bracket

= ��0
�H

��a| {z }
dissipation

+ ⇠a
|{z}
noise

Numerical scheme based operator splitting:

1. Evolve the Hamiltonian evolution with a symplectic stepper

2. Treat the dissipative Langevin steps as Metropolis-Hastings updates
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Our cold world:   T< Tcritical

The hot world:   T> Tcritical
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Statics and the Chiral Condensate

Ma(t) ⌘
1

V

Z

x
�a(t, x) �̄ ⌘ hM0(t)i

0

0.1

0.2

0.3

0.4

-0.08 -0.06 -0.04 -0.02 0

H=0

FIG. 1. Left: � on the critical line for L = 32 and L = 64 together with a finite volume fit to

the data, which determines the non-universal parameters H0, L0 and CH . The fit form is taken

from Engels and Karsch [6] (see text surrounding eq. (B6)). Also shown is the results of the fit

at L = 1. Right: Extracted infinite volume expectation value, ⌃ ⌘ limH�0+ limL�� �, as a

function tr ⌘ (m2
0 � m2

c)/|m2
c |. The fits and extraction procedure are discussed in the text. Also

shown is the fit result without the subleading correction.

Extracting the magnetization � is di�cult as, in any finite volume,

lim
H�0

�̄|L fixed = 0 . (28)

This is because when H�V � 1, the orientation of magnetization vector Ma begins to
wander on the group manifold, averaging to zero in the limit of zero external magnetic field.
One way to extract � is to look at the fluctuations of Ma, evaluating hM

2
i = hMaMai,

which is approximately �2 at large volume. The leading deviation of hM
2
i and �2 at finite

volume comes from the fluctuations of long wavelength Goldstone modes, and can be neatly
analyzed with a Euclidean pion EFT [37]. We detail these corrections in App. B 3, which
were essential to a reliable extraction of �(T ).

Our results for �(T ) are shown in the right panel of Fig. 1, and are fit with the functional
form

� = b1(�tr)
� (1 + (�tr)

!⌫
CT ) . (29)

with critical exponents � and � from [6] and � from [36]. Here we are using

tr ⌘
m

2
0 � m

2
c

|mc|
2

, (30)

instead of t̄r, and we defined b1 ⌘ (|m2
c |/m

2)�. The second term in (29) captures the first
subleading correction to scaling.

Our fit to �(T ) is shown in the right panel of Fig. 1 and yields b1 = 0.544(4) and
CT = 0.20(2) with a �

2
/dof = 1.4. We have excluded the largest value of (�tr) from the fit.

For comparison, we also show the fit results for the first term b1(�tr)�. Clearly, for precision
work the subleading corrections are important in the temperature range we are considering.

10
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“Artists” conception of the phase transition dynamics

High Temperature:  Diffusion of axial charge

Low Temperature: pion propagation

<latexit sha1_base64="IMur2AN9VxLYiRoDUUIM/+LevjY=">AAACRXicbVBNb9NAFHwuXyV8pXDksiJC4kJko6r0glrEhQOHgkhbKQ7W8/olWXXX6+4+R4os/x5+CieuIH5EJQ6IK2ycHmjLSCvNznuj2Z280spzHP+INq5dv3Hz1ubt3p279+4/6G89PPS2dpJG0mrrjnP0pFVJI1as6bhyhCbXdJSfvFnNjxbkvLLlR15WNDE4K9VUSeQgZf3XaY6uOW2zD+I0eydeie6eejUz2Ar61DxX6YJkkzLWrUhlYVmshQW6aq7aNusP4mHcQVwlyTkZ7P2EDgdZ/ywtrKwNlSw1ej9O4oonDTpWUlPbS2tPFcoTnNE40BIN+UnTfbUVT4NSiKl14ZQsOvVfR4PG+6XJw6ZBnvvLs5X4v9m45unupFFlVTOVch00rbVgK1a9iUI5kqyXgaB0KrxVyDk6lBzavZCSm+AWudXFKqUX+kkut3GVHL4YJjvDnffbg/3ddVGwCY/hCTyDBF7CPryFAxiBhM/wFb7B9+hLdBb9in6vVzeic88juIDoz1+ZerO+</latexit>

q̄RqL = �̄e�i�� ·��
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The phase transition and axial charge correlations:

GAA(t) =

Z
d3x h~nA(t, x) · ~nA(0,0)i

See a change in the dynamics across Tpc:
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/

Let’s take a fourier transform and analyze the transition
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Features of the phase transition in the axial charge correlations:

GAA(!) =

Z
dt d3x ei!t

h~nA(t, x) · ~nA(0,0)i
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Can see the transition from di↵usion of quarks to propagation of pions. . .
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Scaling of simulations at Tc:

At T = Tc, we varied the magnetic field, finding the response functions:
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FIG. 8. Left: Time dependent axial charge correlation functions for di�erent magnetic fields on

the critical line, z = 0. Right: Corresponding statistical correlator in frequency space.

FIG. 9. Left: Ratios, tmin(H2)/tmin(H1), extracted from the first minima of Fig. 8 as a function of

H1/H2 (see text). On the critical line, we expect this ratio to be described by a universal critical

exponent tmin(H2)/tmin(H1) = (H1/H2)⇣⌫c . Our best fit gives ⇣ = 1.47 ± 0.01. Right: Time

dependent axial correlation functions as a function of an appropriately rescaled time variable.

We show this ratio as a function of H1/H2 in the left panel of Fig. 9. The data are well
described by the power law form, and we obtain a nominal value for the dynamical exponent
of

�fit = 1.47 ± 0.01 , (51)

taking �c = 0.4024 from [6].

With an estimate of the critical exponent in hand, we can verify the ansatz (49). Indeed
by appropriately rescaling times and frequencies, we expect to see our correlators GAA(t, H)

18

k=0

See a time scaling of the real time correlations with quark mass H,
which tunes the correlation length.
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Dynamical critical exponent of the O(4) transition: Rajagopal, Wilczek

The relaxation time and correlations scale with the correlation length ⇠:

!GAA(!, ⇠) = f(! ⌧R)| {z }
universal fcn

with ⌧R / ⇠⇣

| {z }
relaxation time

The correlation length scales as ⇠ / H�⌫c and the time as ⌧R / H�⇣⌫c :
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compare to 3/2
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The pion hydrodynamic EFT :

Well below the critical point, the �̄(T ) is constant and '(t, x) fluctuates

⌃ = �̄(T ) e�i~⌧ ·~'(t,x) �a = �̄(T ) (1 , ~'(t, x))

The Hamilton equations of motion are

@tnA + {nA, H} = 0 and @t'+ {', H} = 0

and lead to

@tnA + r · JA = f2m2'
| {z }

PCAC

and @t' =
nA

�| {z }
Josephn’s constraint

Here JA = f2
r' and the parameters are proptional to �̄(T )

f2
/ �̄2(T ) f2m2 = H�̄(T )| {z }

GOR
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Long wavelength pion (superfluid) modes: Son, Stephanov hep-ph/020422

'(t, x)

• Linearizing the equation of motion ' = Ce�i!t+iq·x one finds

'(t, q) = Ce�(�/2)te�i!qt

• The quasi-particle energy is:

!2
q ⌘ v2

0(q
2 + m2) v2

0(T ) ⌘
f2

�0
( pion velocity

The parameters scale with the chiral condensate:

v2
0 / �̄(T )2 v2

0m
2

/ H�̄(T )

And �̄(T ) = hq̄qi vanishes near Tc, frustrating the propagation. . .
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Phenomenology of Soft Pions in Data
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Evidence for the chiral crossover in the heavy ion data?
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Figure 3. Top: The best fit for �, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
�

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and
protons show some residual deviations. For the pions this is a reflection of the deviation between
model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in
a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be
due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We
note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none
appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are
able to produce a uniformly good description of identified particle spectra from central to mid-
central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering
studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal
hydrodynamic simulations, but the agreement worsened when e�ects of viscosity were included. In
the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and
proton yields, which is in line with our finding when we attempt to fit only the pion spectra.
In Ref. [40] where the e�ect of both bulk viscosity and hadronic rescattering were studied, the
data to model agreement is arguably on the same level as in our work, although we employ a
single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]
have concentrated on momentum integrated observables. In summary, the excellent quality of
experimental data of identified particle spectra indicates the need of including additional physics
in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,
can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Because the pions are the Goldstones of the transition, I expect an
enhancement at low pT , relative to vanilla hydro
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Evidence for the chiral crossover in the heavy ion data?
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Figure 3. Top: The best fit for �, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
�

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and
protons show some residual deviations. For the pions this is a reflection of the deviation between
model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in
a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be
due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We
note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none
appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are
able to produce a uniformly good description of identified particle spectra from central to mid-
central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering
studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal
hydrodynamic simulations, but the agreement worsened when e�ects of viscosity were included. In
the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and
proton yields, which is in line with our finding when we attempt to fit only the pion spectra.
In Ref. [40] where the e�ect of both bulk viscosity and hadronic rescattering were studied, the
data to model agreement is arguably on the same level as in our work, although we employ a
single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]
have concentrated on momentum integrated observables. In summary, the excellent quality of
experimental data of identified particle spectra indicates the need of including additional physics
in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,
can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Expect an enhancement at low pT

n(!q) =
1

evq/T � 1
'

T

vq
) 1, Since at Tc, the velocity v ) 0 !
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New Detector: ALICE ITS3
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Summary and Outlook:

1. We are encouraged by estimates and current measurements.

2. We are simulating the real-time dynamics of the chiral critical point

I The numerical method may be useful for stochastic hydro generally

3. We reproduced the expected dynamical scaling laws:

⌧R / ⇠⇣ ⇣ =
d

2
' 1.47 ± 0.01

4. The pion waves are well calibrated.

5. The next step is to study the expanding case:

I This will predict soft pions and their correlations with expansion for
heavy ion collisions

The hadronization of the pion is the (only) hadronization process that can
be studied rigorously, and only with hydrodynamics!
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Dynamical scaling of � correlation functions:

G��(!) =

Z
dt d3x ei!t

h�(t, x) · �(0,0)i
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FIG. 11. Left: Statistical correlator in the �� channel, on the critical line. Right: Corresponding

spectral function as a function of rescaled frequencies. The estimated critical exponent used for

the rescaling is determined from the axial channel. The dynamical scaling hypothesis is satisfied

and we observe a collapse of the di�erent curves.

a scan in temperature across the phase transition. We qualitatively confirmed that the
dynamics takes place as expected, by studying the real-time correlation functions in the ��,
�� and axial-axial channels. At high temperature, the � and � are degenerate and the axial
charge is almost conserved. In the broken phase, the � remains purely dissipative, while
the � propagates and carries axial charge. In particular, we were able to observe that the
coupling of the � to the axial charge precisely happens in the vicinity of the pseudocritical
point, zpc, defined as the line in the phase diagram where the static susceptibility peaks.
This observation is yet another link between the static and dynamical properties of this
critical model.

We also performed a quantitative study of the pion properties in the broken phase. We
were able to fit the dynamical correlator to a particle resonance ansatz predicted by the chiral
hydrodynamic e�ective theory, and extract the pole mass and decay width. Furthermore, we
verified that the Gell-Mann-Oakes-Renner relation, which relates the dynamical pole mass
of the pions to their static screening mass, holds at the sub-percent level. Last but not least,
we performed a set of simulations along the critical line and extracted the dynamical critical
exponent � = 1.47 ± 0.01 (stat), very close to the critical scaling prediction � = 1.5 [2].

The numerical determination of � can be considered as a first step towards a complete
quantitative characterization of the dynamics of the O(4) antiferromagnet. Such a char-
acterization would include additional studies at finite spatial momentum as in [27], and a
more complete investigation of the dynamics in the chiral limit at finite volume with an
appropriate real-time EFT. (The corresponding finite volume static EFT was written down
long ago [37], and was helpful in the thermodynamic analysis in Sect. B 3). In order to
use the model to analyze heavy-ion data as discussed in [17, 18], it will be important to
analyze the critical O(4) dynamics for an expanding fluid, which introduces a rich hierarchy
of scales. Finally, it will be interesting to apply the algorithm presented in App. A to other
stochastic and critical systems.

20
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