AND ALL AND ALL AND ALL AND ALL AND AND AND AND ALL AND

Dense QCD Matter and Astrophysical Implications

ANDA. ANDA. ANDA. ANDA. ANDA. AND ANDA. ANDA. ANDA. ANDA. ANDA. ANDA. ANDA. ANDA. ANDA. ANDA

Kenji Fukushima The University of Tokyo

— Fudan Summer School 2024 —

1

Lecture Plan

Basic Course

- **1. Foundation of Nuclear Physics**
- 2. Foundation of Neutron Stars
- [Advanced Course]
 - **3. Exotic Phases and Phase Transitions**
 - 4. Constraing the EOS

Foundation of Nuclear Physics

Nuclear Matter

ARDA: ARDA

The (stable) densest matter on the Earth

Heavy nuclei have an almost constant density.

 $n_{\rm sat} = 0.16$ (nucleon) fm⁻³

[Nuclei from Wikipedia] in

called "saturation density" in nuclear physics

In astrophysics, the rest-mass density is used:

$$\rho_{\rm sat} = 2.6 \times 10^{14} {\rm g \, cm^{-3}}$$

Nuclear Matter

How dense (dilute) is it?

Interaction Cloud Size $r_{\rm soft} \sim 1/(2m_{\pi}) \sim 0.7 \, {\rm fm}$

Baryon Number Distribution Size $r_{hard} \sim 0.5 \text{ fm}$

Closest Packed State (hcp/fcc) Filling rate ~ 74%

$$0.74 \times \left(\frac{4\pi}{3}r_{\text{hard}}^3\right)^{-1} \approx 1.4 \text{ fm}^{-3} \approx 8.3 n_{\text{sat}}$$

 $r_{\rm soft}$

 $r_{\rm hard}$

Nuclear matter cannot exist at this density!

Nuclear Matter

How dense (dilute) is it?

Percolation transition?

3D critical filling density $\sim 34\%$

Interaction-mediated Percolation

(From Wikipedia)

$$0.34 \times \left(\frac{4\pi}{3} r_{\text{soft}}^3\right)^{-1} \approx 0.24 \text{ fm}^{-3} \approx 1.5 n_{\text{sat}}$$

್ರಿವೇ ಪ್ರತಿಸಿದ್ದರೆ, ಪ್ರತಿಸ್ಥಾನ, ಪ್ರತಿಸಿ ಪ್ರತಿಸಿದ್ದರೆ,

Standard nuclear-physics calculations may break down at this density due to the lack of multi-body interactions.

See: Fukushima-Kojo-Weise (2020) for more details.

Phase Diagram

QCD Phase Diagram

[Nuclear Science NSAC Long Range Plan]

August 21, 2024 @ Fudan U.

Nuclear Liquid-Gas Transition
Nuclear Saturation

Self-bound fermionic systems have a preferred density. Diluteness is realized as a "mixed phase" of nuclei.

This is how we can live!

Nuclear Liquid-Gas Transition **1st-order Phase Transition**

Nuclear Liquid-Gas Transition ಸಹೆಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವಿಸು ಸೇವಿಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವಿಸುವುದೆ, ಸೇವ **Mass Formula** $m(Z,N)c^2 = Am_Nc^2 - B(Z,N)$ $B(Z,N) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{\rm sym} \frac{(N-Z)^2}{A}$ **Volume Surface** Coulomb **Symmetry** $a_V \sim 16 \,\mathrm{MeV}$ $a_{\rm Sym} \sim 24 \,{\rm MeV}$ $\frac{E(\rho)}{A}$ ρ٥ For N = Z and $A \to \infty$ $B/A \sim a_V \sim 16 \,\mathrm{MeV}$ ρ_0

Mass Formula

$$\begin{split} m(Z,N)c^2 &= Am_Nc^2 - B(Z,N) \\ B(Z,N) &= a_VA - a_SA^{2/3} - a_C\frac{Z^2}{A^{1/3}} - a_{\text{sym}}\frac{(N-Z)^2}{A} \end{split}$$

For small A, the symmetric energy makes $N \sim Z$, while the Coulomb energy leads to $N \gg Z$ for large A.

If A is too large, heavy nuclei break up to smaller nuclei (nuclear fission).

Nuclear Chart

Along the stable (black) curve (Heisenberg's valley), the slope is getting smaller than 1.

[From Wikipedia]

ANDAR ANDAR ANDAR ANDAR AND AR AND AND AND AND AR AND A

ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA

Gigantic nuclei stabilized by Gravity?

B.1 We assume that N = A and Z = 0 is realized for sufficiently large A and Eq. (1) 1.5 pt is not modified. The binding energy due to gravity is

$$B_{\rm grav} = \frac{3}{5} \frac{GM^2}{R}, \label{eq:grav}$$

where $M = m_N A$ and $R = \gamma A^{1/3}$ with $\gamma \simeq 1.1 \times 10^{-15}$ m = 1.1 fm are the mass and the size of the nucleus, respectively. For $B_{\rm grav} = a_{\rm grav} A^{5/3}$, obtain $a_{\rm grav}$ in the MeV unit up to the first significant digit. Then, ignoring the surface term, estimate A_c up to the first significant digit. In the calculation, use $m_N c^2 \simeq 939$ MeV and $G = \hbar c/M_P^2$ where $M_P c^2 \simeq 1.22 \times 10^{22}$ MeV and $\hbar c \simeq 197$ MeV \cdot fm.

Theory

https://international-physicsolympiad2023-tokyo.jp/theoretical-exam/

$$B_{\text{grav}} = a_{\text{grav}} A^{5/3}$$
 $G = \hbar c / M_{\text{Planck}}^2$

$$a_{\text{grav}} = \frac{3}{5} \frac{G(AM_n)^2}{1.2A^{1/3}} \cdot A^{-5/3} = 7 \times 10^{-37} \,\text{MeV}$$

Stability Condition

(B.E) =
$$(a_V - a_{sym})A + a_{grav}A^{5/3} > 0$$

"Radius" of This Gigantic Nuclei

$$A_{\rm c} = \left(\frac{a_{\rm sym} - a_V}{a_{\rm grav}}\right)^{3/2} \simeq 3.8 \times 10^{55} \to R = 1.2A^{1/3} \,\text{fm} \simeq 4 \,\text{km}$$

Foundation of Neutron Stars

Lev Landau and the conception of neutron stars

Yakovlev-Haensel-Baym-Pethick (2012)

White dwarfs have the mass limit (Chandrasekhar mass limit)

Heavier? Protons + Electrons? February 1931

Chadwick's discovery of neutrons January 1932

ALARSAN ALARSA

Force Balance

Gravitational force is supported by the pressure from inside.

Hydrostatic condition for $r \sim r + dr$

$$\frac{dp(r)}{dr} = -G\frac{M(r)}{r^2}\varepsilon(r) \qquad (2)$$

M(r) represents the integrated mass in r-sphere.

$$\frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r)$$
(3)
(In Newtonian gravity)

A relation between p and $\varepsilon \longrightarrow Equation of State (EOS)$

To solve Eqs. (2) and (3), we need the equation of state showing the relation between pressure P and mass density ρ , which is assumed to be given by the following polytropic relation for arbitrary r in terms of a positive number n,

, Mengi, Mengi, Meni Mengi, Mengi,

$$P = K \rho^{1+1/n}$$
, (4) Polytoropic EOS

where *K* is a positive constant independent of ρ .

Pressure distribution inside a star can be calculated from the differential equation with the following boundary condition, $\rho(r = 0) = \rho_0$ with a parameter ρ_0 . By eliminating P from Eqs. (2) and (4) and replacing the reduced mass density $\rho/\rho_0 = \psi^n$ and the reduced length $r/r_0 = \xi$ in terms of a certain scale r_0 , we obtain

$$\xi^2 \frac{d\psi}{d\xi} = -\frac{GM}{(n+1)r_0 K\rho_0^{1/n}} \label{eq:eq:elements}$$

By taking a derivative of this equation with respect to ξ , eliminating M by using Eq. (3), and choosing an appropriate value of r_0 , we obtain a second-order differential equation,

$$\frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2\frac{d\psi}{d\xi}\right) = -\psi^n$$

Lane-Emden Eq.

Determine r_0 in terms of ρ_0 , n, K, and G.

This upper limit of *M* is the Chandrasekhar limit.

Much simpler argument for the maximum mass

$$p \sim \hbar n^{1/3} \rightarrow E_{\rm kin} \sim Apc \sim \frac{\hbar c A^{4/3}}{R}$$
$$E_{\rm total}(R) \sim \frac{\hbar c A^{4/3}}{R} - G \frac{A^2 M_n^2}{R} \quad \text{If } A \text{ is too large, the system} \\ \text{collapses to } R \rightarrow 0.$$

 $(R \rightarrow \infty \text{ is stabilized by } E_{\text{kin}} \sim 1/R^2 \text{ in the non-rela. limit.)}$

The order-estimated critical mass:

$$M_{\rm c} \sim \left(\frac{M_{\rm Planck}}{M_n}\right)^3 M_n \simeq 2M_{\odot}$$

Compilation of the observed data (68% Credible)

ಸಹೆದ್ದಾರೆ. ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹೆದ ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹೆದ್ದಾರೆ, ಸಹ

Fujimoto-Fukushima-Kamata-Murase (2024)

Maximum Mass Constraint

Shapiro time delay

C.2 Under the influence of the gravitational potential ϕ we have time delays discussed in **C.1** and the effective speed of light is changed. When $\phi(r = \infty) = 0$, in the region where $\phi \neq 0$, the effective speed of light, c_{eff} , observed at the infinity can be given up to the first order in ϕ/c^2 as

$$c_{\rm eff} \approx \left(1 + \frac{2\phi}{c^2}\right) \, c$$

including the effect of space distortion. We note that the light path can be approximated as a straight line.

As shown in Fig. 2, we take the *x*-axis along the light path from the neutron star **N** to the Earth **E** and place x = 0 at the point where the White Dwarf **W** is the closest to the light path. Let $x_N (< 0)$ be the *x*-coordinate of **N**, $x_E (> 0)$ be that of **E**, and *d* be the distance between **W** and the light path.

Estimate the changes of the arrival time Δt caused by the White Dwarf with mass M and express the answer in a simple form disregarding higher order terms of the following small quantities: $d/|x_N| \ll 1$, $d/x_E \ll 1$, and $GM/(c^2d) \ll 1$. If necessary, the following integration formula can be used.

$$\int \frac{dx}{\sqrt{x^2 + d^2}} = \frac{1}{2} \log \left(\frac{\sqrt{x^2 + d^2} + x}{\sqrt{x^2 + d^2} - x} \right) + C,$$

where C is an integration constant.

August 21, 2024 @ Fudan U.

Maximum Mass Constraint

Demorest et al. (2010-2016)

$1.928(17)M_{\odot}$ (PSR J1614-2230)

II Saxton (NRAO/AUI/NSE

Maximum Mass Constraint

August 21, 2024 @ Fudan U.

Neutron Star Mass M

Neutron Star Radius R

Mathematically proven:

$$p = p(\varepsilon) \longrightarrow M = M(R)$$

One-to-one Correspondence through TOV eq. Lindblom (1992)

> This is the case even with the 1st-order phase transition.

August 21, 2024 @ Fudan U.

 \mathcal{E}

Pressure $p(\varepsilon)$ Stiff — large c_s dp $d\varepsilon$ Soft – small $c_{\rm c}$

Mass-density ρ or Energy-density ε

Very useful formula:

$$p(\mu) = p_0 + n_0 \int_{\mu_0}^{\mu} d\mu' \exp\left[\int_{\mu_0}^{\mu'} d\mu'' \frac{1}{\mu'' c_s^2(\mu'')}\right]$$

If the sound speed is larger (stiffer), the pressure is suppressed.

Derive this by yourself!

[Hint]
$$c_s^2(\mu) = \frac{\partial p}{\partial \mu} \left(\frac{\partial \varepsilon}{\partial \mu}\right)^{-1} = \frac{n}{\mu(\partial n/\partial \mu)}$$

Structures of pQCD on ε -p LO: $p \sim \#\mu_B^4$ (massless case) $\rightarrow \varepsilon = \frac{1}{2}p$ **NLO:** $p \sim (\# + \alpha_s \#) \mu_B^4 \rightarrow \varepsilon = \frac{1}{3} p$ (unchanged!) N²LO: $p \sim (\# + \alpha_s \# + \alpha_s^2 \# + \# \alpha_s^2 \ln \mu_B^2 / \mu_0^2) \mu_B^4$ **Conformality broken Running Coupling** $\sim \ln(X^2 \mu_a^2 / \Lambda_{\overline{MS}}^2)$
Exotic Phases and Phase Transitions

ANDAR ANDAR ANDAR ANDAR AND AR AND AND AND AND AR AND A

Fukushima-Hatsuda (2010); see also 50 Years of QCD Chap.7 (2023)

OCD Critical Point

T

t-direction

'-direction

Assumed to be positive for stability

a = 0: 2-nd order a = b = 0: Tricritical

August 21, 2024 @ Fudan U.

 μ_{B}

bayin debayin debayin deba debayin debayin debayin de In the massless NJL model **Nickel (2008)** $\Omega(M) \sim aM^2 + bM^4 + cM^6$ Inhomogeneous condensates induce $\partial M \neq 0$ — $\Omega(M,q) \to aM^2 + bM^4 + cM^6 + dq^2M^2 + \cdots$ Spatial inhomogeneity occurs for d < 0 (Lifshitz point) It happens to result in $b \propto d$! Lifshitz point and QCD CP coincide!

ARDAL ARDA

"Mean-Field" Phase Diagram Review: Buballa-Carignano (2014)

<u>ನಿ ಮಹಿಸುವುದಿ ಮಹಿಸುವುದಿ ಮಹಿಸು ಮಹಿಸುವುದಿ ಮಹಿಸುವುದಿ ಮಹಿಸುವುದಿ ಮಹಿಸ</u> **High density limit where pQCD should work:** → Color Super Conductivity Fermi Surface $\mu_q \sim 500 \text{ MeV} \rightarrow \rho \sim 10\rho_0$ Attractive Force $3 \times 3 \rightarrow \overline{3}$ $\sqrt{p_F^2 + m_s^2} = \mu_q$ $\rightarrow p_F \simeq \mu_q - \frac{m_s^2}{2\mu_q}$ Gap ∆ u quark s hole Fermi momentum

Gap and Fermi surface mismatch are of the same order

Color Interaction

$$(t^{a})_{ij}(t^{a})_{kl} = -\frac{N_{c}+1}{4N_{c}} (\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj}) + \frac{N_{c}-1}{4N_{c}} (\delta_{ij}\delta_{kl} + \delta_{il}\delta_{kj})$$
Color Triplet
Color Sextet
(antisymmetric)
Attractive
Color Sextet
Repulsive

(**flavor**) (**spin**) (**orbital**) should be symmetric Always mixed with triplet No new physics brought in Harmlessly neglected

$3 \otimes 3 = \overline{3} \otimes 6$

Quantum numbers and operators

J^{P}	Color	Flavor	Operator
0+ 1+	$\frac{\overline{3}}{\overline{3}}$	3 6	$ \overline{\Psi}_{C} \gamma_{5} \Psi, \overline{\Psi}_{C} \gamma_{0} \gamma_{5} \Psi \overline{\Psi}_{C} \gamma_{i} \Psi, \overline{\Psi}_{C} \sigma_{0i} \Psi $
0- 1-	$\frac{\overline{3}}{\overline{3}}$	6 3	$ \overline{\psi}_{C}\psi, \overline{\psi}_{C}\gamma_{0}\psi \\ \overline{\psi}_{C}\gamma_{i}\gamma_{5}\psi, \overline{\psi}_{C}\sigma_{ij}\psi $

Spin-dependent Part Breit Interaction

$$H_{\text{color-spin}} = \alpha_s \sum_{i \neq j} M_{ij} (\boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j) (\boldsymbol{s}_i \cdot \boldsymbol{s}_j)$$

color spin

> spin-singlet (antisymmetric) + flavor triplet (antisymmetric) $(s_i \cdot s_j) |\mathbf{0}\rangle = -(3/4) |\mathbf{0}\rangle$ Good Diquark

> spin-triplet (symmetric) + flavor sextet (symmetric) $(s_i \cdot s_j) |\mathbf{1}\rangle = +(1/4) |\mathbf{1}\rangle$ Bad Diquark

(Good) Diquark Condensate

$$\Delta_{\alpha i} \propto \varepsilon_{\alpha\beta\gamma}\varepsilon_{ijk} \langle \bar{\psi}_{\beta j} i\gamma^5 C \bar{\psi}_{\gamma k}^T \rangle$$

Color-Flavor Locking Ansatz

ANDAR ANDAR ANDAR ANDAR AND AR AND AND AND AND AR AND A

$$N: S = 1/2$$

$$\Delta: S = 3/2$$

$$H_{color-spin} = -\frac{3}{4}C$$

$$U$$

$$H_{color-spin} = -\frac{3}{4}C$$

$$S = 1$$

$$S = 1/2$$

$$H_{color-spin} = -\frac{3}{4}C$$

$$H_{color-spin} = -\frac{3}{4}C$$

 $m_{\rm bad} - m_{\rm good} \approx \frac{2}{3}(M_{\Delta} - M_N)$ confirmed in lattice QCD

Matching of Symmetry Breaking Patterns

Baryons: 8+1 (low-lying)

 $\langle ud \rangle \langle ds \rangle \langle su \rangle$ Diquark condensates break chiral symmetry in the same way as the hadronic phase.

Diquarks realize duality between baryons and quarks!

Dense QCD may have more stringent duality than crossover at high *T*...

 $U(1)_{A} \text{ breaking interaction} \\ \det \bar{\psi}_{Lj} \psi_{Ri} + \det \bar{\psi}_{Rj} \psi_{Li} \\ \rightarrow \det R_{im} \bar{\psi}_{Ln} \psi_{Rm} L_{nj}^{\dagger} + \det L_{im} \bar{\psi}_{Rn} \psi_{Lm} R_{nj}^{\dagger}$

For $N_f = 3$, this is a six point interaction:

't Hooft-Isidori-Maiani--Polosa-Riquer (2008)

$$\sim \langle \psi \psi \rangle \langle \bar{\psi} \bar{\psi} \rangle \langle \bar{\psi} \psi \rangle$$

Anomaly induces a mixing between mesons and diquarks

ARDAL ARDAL

No phase transition because $\sim \Delta \Delta^* M$

Hatsuda-Tachibana--Yamamoto-Baym (2006)

U(1)_A breaking interaction

. All the second second second second

Fradkin-Shenker (1979)

Intuitive picture Fujimoto-Fukushima-Weise (2020) **Neutron superfluid Color superconductor** $\cdot n_{
m B}$ $\sim 10 \, n_0$ $\overline{\sim 5} n_0$ $\sim n_0$

No change in global symmetry for the 2-flavor case. No need to have a phase transition \rightarrow Crossover ?

Thinking Experiment

ALPANA ALPAN

Superfluid vortices pinned in the NS cores

Vortex Continuity Scenario

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)

ALPANA ALPAN

Topological 1st-order PT ? Cherman-Sen-Yaffe (2018)

Continuity still alive...

Hayashi (2024)

August 21, 2024 @ Fudan U.

Another Exotica from Large Nc Theoretical Preparation: Large-Nc Counting

Another Exotica from Large Nc Theoretical Preparation: Large-Nc Counting

Non-planar diagrams and quark loops suppressed!

Another Exotica from Large Nc This is NOT the end of the story!

If there are infinitely many quarks, mesons do not interact, but baryons do interact very strongly!

Pressure of Quark Matter Kinetic Energy ~ O(N_c)

Pressure of Baryonic Matter

Interaction Energy ~ O(N_c)

Quarkyonic

McLerran-Pisarski (2008)

Another Exotica from Large Nc Strongly Interacting Baryons ~ Free Quarks

Another Exotica from Large Nc

ALAR, ALAR

Another Exotica from Large Nc

NY NA MARANA NY NA M

Remember that the pion (interaction) percolation starts from $\sim 1.5 n_{sat}$

Quarkyonic regime may start near normal nuclear matter?

See: Koch-McLerran-Miller-Vovchenko (2024)

Constraing the EOS

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

August 21, 2024 @ Fudan U.

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Proof of principle

August 21, 2024 @ Fudan U.

EOS Inference Program Fujimoto-Fukushima-Kamata-Murase (2018-2024) Machine learning shows amazing performance!

Overfitting is miraculously avoided!

EOS Inference Program

ĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĔĬŊĿĔĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿĿĿĦĨŊĿ

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Interpretation

[1st-order-like EoS]

Phase transition is manifested by a minimum in the speed of sound.
AND AL AND AL AND AL AND AL AND AL AND AL AND AND AL AND A

[High-Temperature QCD — QGP Crossover]

Fujimoto-Fukushima-McLerran-Praszalowicz (2022)

Measure of conformality:
$$\Delta = \frac{1}{3} - \frac{p}{\varepsilon}$$

$$c_s^2 = \frac{dp}{d\varepsilon} = c_{s, \text{ deriv}}^2 + c_{s, \text{ non-deriv}}^2$$

$$c_{s, \text{ deriv}}^2 = -\varepsilon \frac{d\Delta}{d\varepsilon} \qquad c_{s, \text{ non-deriv}}^2 = \frac{1}{3} - \Delta$$

Derivative Non-Derivative
Dominant at high density making a peak!
August 21, 2024 @ Fudan U. 74

ANDER STERE ST

Brandes-Fukushima-Iida-Yu (2024)

Newer analysis suggests that the trace anomaly goes negative!

Derivative contribution makes a peak structure!

Speed of Sound

ARDA, ARDA

Interesting question... $\Delta < 0$???

Negative trace anomaly implies the presence of "condensates"!?

August 21, 2024 @ Fudan U.

degrees of freedom

ARDA, ARDA

Lesson from high-isospin matter Abbott+ (2023)

[Speed of sound peak]

[Negative trace anomaly]

No loops, just condensates

August 21, 2024 @ Fudan U.

ġĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢĊĊĔĊŢŎŎĿĔĊŢĊĊĸĔĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢĊĸĊĸĔĊŢŎ

Brandes-Fukushima-Iida-Yu (2024)

Assume a general Ginzburg-Landau potential for "some" bosonic condensates to fit the NS trace anomaly behavior: 50 - 300 MeV

cf. Kurkela-Rajagopal-Steinhorst (2024)

$$\Delta_{\text{pair}} < 457 \text{ MeV} (216 \text{ MeV})$$

for $\mu_B = 2.6 \text{ GeV}$

Maybe 2SC vs. CFL?? Different condensates??

Gravitational waves from the binary NS merger GW170817 (2017 August 17)

LIGO/Virgo (2018)

Softer than H4? WFF1 okay? APR4 preferred?

Favors soft EOS at low density (high density regions really constrained?)

ŎŎŊŗŴĸĔŎŶŊŗŴĸĔŎŶġĔŴĸĔŎŶŊŗŴĸĔŎŶŶŢŶĬŎŊŶŴĿŎŎŶŊŗŴĸĔŎŶŊŗŴĸĔŎŶŊĿŴĸĔŎŶŊĿŴĸĔŎŶŊĿŴĸĔŎŶŊ

1st-order phase transition is NOT excluded...

ML inferred EoSs: Fujimoto-Fukushima-Murase (2021)

Can we see the phase transition with the GW signal? Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMF_Q : EOS with a strong-1st PT to Quark Matter (3~4 times n_{sat}) CMF_H : EOS without quarks

Quark matter shortens the lifetime of post-merger supramassive/hypermassive (uniform / differential) neutron star.

What if the transition is only a smooth crossover?

HERE STREES HERE STREES

たっぷ、おぼたっぷ、おぼたっぷ、おぼたっぷらがだたっぷ、おぼたっぷ、お

August 21, 2024 @ Fudan U.

Electromagnetic Counterpart

Kilonova brightness: ejected mass $> 0.05 M_{\odot}$

AT 2017 gfo

Brightness and "color" depend on the EOS and the total mass.

Electromagnetic Counterpart

ALENAL, ALEN

is already ruled out.

Asymmetric mass system can still be consistent.

Consistency with the kilonova tells us a lot!

Summary

Speed of sound at high density may increase above the conformal value. This could be confirmed by the heavy-ion collision.

Trace anomaly is going negative and it implies the presence of some condensates. Color-super?

QCD phase transition is detectable through the GW signal even if it is a smooth crossover.

GW170817 was such a fine-tuned event!!!