Light QCD exotics at BESIII

刘北江

中国科学院高能物理研究所

第六届重味物理和量子色动力学研讨会,青岛,2024.04.19-22

QCD exotics: configurations beyond QM

Hadron spectroscopy

- How does QCD give rise to hadrons?
 - Quark model seems to work really well. Why?
- Key things to search for: additional degree of freedom

 - Evidence for gluonic excitations remains sparse
- Role of gluons:
 - Gluons mediate the strong force
 - Hadron constituent: Mass? Quantum numbers? ...
 - Gluons' unique self-interacting property
 - → New form of matter: glueballs, hybrids
 - Gluonic Excitations provide measurements of the QCD potential

Critical to confinement and mass dynamical generation

Light QCD exotics

2

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for light QCD exotics

- Clean high statistics data samples High cross sections of $e^+e^- \rightarrow J/\psi$, ψ' Low background
- Well defined initial and final states Kinematic constraints I(J^{PC}) filter
- "Gluon-rich" process

- Glueballs
- Spin-exotic states
- Threshold structures & multi-quark states

Glueballs

- Low-lying glueballs with ordinary J^{PC}
- \rightarrow mixing with $q\overline{q}$ mesons
 - ➤Observe a new peak

>Challenge: reveal the exotic admixture

- Model-dependent predictions
 - mass, width, partial width

• Non- $q\overline{q}$ nature difficult to be established

'Cryptoexotic'

- Supernumerary states
- Unusual pattern of production and decay

Glueballs from Lattice simulations in the pure gauge theory without quarks

What we have learned before

-- from MarkIII, BES, Crystal barrel, OBELIX, WA102, GAMS, E852, ...

Scalar: 1 nonet in quark model, $f_0 \& f_0'$

Exp: overpopulation

LQCD : ground state 0⁺ glueball ~1.7 GeV; $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ **Tensor: 2 nonets(³P₂, ³F₂), complicated** Exp: large uncertainty LQCD: 2⁺⁺(2.3~2.4 GeV); $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: $\eta \& \eta'$, "simple"

Exp: lacking of info. above 2 GeV; puzzles $\eta(1295)$? $\eta(1405/1475)$?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$

e⁺e⁻ annihilation pp annihilation central exclusive production charge-exchange reactions

 $f_0(1370), f_0(1500), f_0(1710)$

Scalar glueball candidate

- Scalar glueball is expected to have a large production in J/ψ radiative decays:
 - LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$
 - Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$

> BESIII: $f_0(1710)$ largely overlapped with scalar glueball

- Identification of scalar glueball with coupled-channel analyses based on BESIII data [PLB 816, 136227 (2021), EPJC 82, 80 (2022), EPJC 83,1125(2023)]
- Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports $f_0(1710)$ has a large overlap with glueball [PRD 106 072012(2022)]

BESIII PRD 87 092009 (2013), PRD 92 052003 (2015), PRD 98 072003 (2018)

Trace of tensor glueball

 $egin{aligned} &\Gamma(J/\psi o \gamma G_{2^+}) = 1.01(22) keV \ &\Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2} \end{aligned}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

$$\begin{split} & Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) = \left(3.8^{+0.62+2.37}_{-0.65-2.07}\right) \times 10^{-5} \\ & \text{BESIII PRD 87,092009 (2013)} \end{split} \\ & Br(J/\psi \to \gamma f_2(2340) \to \gamma \varphi \varphi) = \left(1.91 \pm 0.14^{+0.72}_{-0.73}\right) \times 10^{-4} \\ & \text{BESIII PRD 93, 112011 (2016)} \end{aligned} \\ & Br(J/\psi \to \gamma f_2(2340) \to \gamma K_s K_s) = \left(5.54^{+0.34+3.82}_{-0.40-1.49}\right) \times 10^{-5} \\ & \text{BESIII PRD 98,072003 (2018)} \end{aligned}$$
 $\begin{aligned} & Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta' \eta') = \left(8.67 \pm 0.70^{+0.16}_{-1.67}\right) \times 10^{-6} \\ & \text{BESIII PRD 105,072002 (2022)} \end{split}$

Where is the 0⁻⁺ glueball

300 300 100 MARKIII 0 1.0 1.2 1.4 1.6 1.8 2.0 ΜΚ̄π (GeV)

- LQCD: 0⁻⁺(2.3~2.6 GeV)
- What's the nature of the outnumbered $\eta(1405)$?

Long standing E- ι puzzle $M = 1416 \pm 8^{+7}_{-5}; \Gamma = 91^{+67}_{-31-38} + 15 \text{ MeV}/c^2$ $M = 1490^{+14+3}_{-8-6}; \Gamma = 54^{+37+13}_{-21-24} \text{ MeV}/c^2$

Shed new lights on the $\eta(1405)/\eta(1475)$ puzzle

- Two BWs around 1.4 GeV is needed
- $\eta(1405)/\eta(1475)$ poles in coupled-channel analysis
 - PRD 107, L091505 (2023) ; PRD 109, 014021 (2024)

- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded
- $X(1835) \rightarrow \gamma \phi$, $\eta_c \rightarrow \gamma \phi$ are observed ₁₁

X(2370)

- **Observed in** $J/\psi \rightarrow \gamma \eta' \pi \pi$ and $J/\psi \rightarrow \gamma \eta' KK$ ٠
 - Upper limits in $J/\psi \rightarrow \gamma \eta' \eta \eta$ and $J/\psi \rightarrow \gamma \gamma \phi$ (not inconsistent with glueball)
- Mass consistent with LQCD prediction for 0⁻⁺ glueball ٠
- **Spin-parity determined to be** 0⁻⁺ •

Landscape of glueballs has been updated with BESIII' s inputs

Scalar: 1 nonet in quark model, $f_0 \& f_0'$

Exp: overpopulation

LQCD : ground state 0⁺ glueball ~1.7 GeV;

 $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$

Tensor: 2 nonets(³P₂,³F₂), complicated

Exp: large uncertainty LQCD: $2^{++}(2.3 \sim 2.4 \text{ GeV});$ $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

Pseudoscalar: $\eta \& \eta'$, "simple"

Exp: lacking of info. above 2 GeV; puzzles η(1295)? η(1405/1475)?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$ \checkmark Large production rate of $f_0(1710)$ in J/ ψ radiative decays

Large production rate of $f_2(2340)$ in J/ψ radiative decays

 $\checkmark Non-observation of \eta(1295)$

✓η(1405/1475) one state?→
 manifestations of TS

 $\checkmark X(2370) \rightarrow$ various decay modes

- Glueballs
- Spin-exotic states
- Threshold structures & multi-quark states

Light hadrons with exotic quantum numbers

- Unambiguous signature for exotics
 - Light Flavor-exotic hard to establish
 - Efforts concentrate on Spin-exotic
 - Forbidden for $q\overline{q}$: $I^{PC} = 0^{--}$, even⁺⁻, odd⁻⁺

- Only 3 candidates so far: All 1^{-+} isovectors
 - $\pi_1(1400)$: seen in $\eta\pi$
 - $\pi_1(1600)$: seen in $\rho\pi$, $\eta'\pi$, $b_1\pi$, $f_1\pi$
 - $\pi_1(2015)$ (needs confirmation): seen in $b_1\pi$, and $f_1\pi$
- $\pi_1(1400)$ & $\pi_1(1600)$ can be explained as one pole, according to recent analyses

Decay width of 1^{-+} hybrid π_{16}

Lightest spin-exotic state: 1^{-+}

1⁻⁺ Hybrids

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011), PRD 83,014006 (2011), EP.J.P 135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

- An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ)
 - $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV/c}^2, \Gamma = (188 \pm 18^{+3}_{-8}) \text{ MeV/c}^2$ $B(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$
 - Mass consistent with hybrid on LQCD
- Inspired many interpretations: Hybrid/KK₁Molecule/Tetraquark?
- LQCD: $B(J/\psi \rightarrow \gamma \eta_1(hybrid)) \sim O(10^{-5})$ [PRD 107 054511]

Opens a new direction to completing the picture of spin-exotics

"Here, the result by the BESIII experiment of a possible observation of an $\eta_1(1855)$ *state could be a breakthrough."*

Prospects of spin-exotics at BESIII

Uniqueness, enrichment and complementary

- High statistics gluon-rich environment: 10 B J/ ψ , 2.7 B ψ' , a lot of χ_{cJ}
- Snowmass2021: RF7 Summary, 4 whitepapers
 - Significant impact to GlueX @JLab

 $\text{Isoscalar:}\,\eta_1(1855)$

- Decay properties
 - $J/\psi \rightarrow \gamma + \pi a_1, \eta f_1, K_1 \overline{K}, \dots$
- Production properties
 - $J/\psi \rightarrow \omega \eta \eta'$, $\varphi \eta \eta'$,
 - $\chi_{c1} \rightarrow \eta + \eta \eta'$,
- Where is $\eta_1^{(\prime)}$
 - Other partners: 2^{+-} ,
 - Analog in $\bar{c}c$

Isovector: $\pi_1(1600)$

- $J/\psi \rightarrow \rho \eta' \pi$,
- $\chi_{c1} \rightarrow \pi + \pi b_1, \pi f_1$, $\pi \eta'$,
 - LQCD predicted major decay modes: $\pi b_1, \ \pi f_1$

$$\pi_1 I^G(J^{PC}) = 1^-(1^{-+})$$

η

$$K_{1} I^{G} (J^{P}) = \frac{1}{2}^{-} (1^{-})$$

$$\eta'_{1} I^{G} (J^{PC}) = 0^{+} (1^{-+})$$

- Glueballs
- Spin-exotic states
- Threshold structures & multi-quark states

Synergies in new era of precision spectroscopy

- Discoveries of new states \rightarrow spectral properties and patterns
 - Various probes from both heavy and light sectors

• Close collaboration of experiment-theory are needed

Thank you for your attention ²²