Towards NNLO calculation for high energy production of tTH

Li Lin Yang
Zhejiang University

The top quark Yukawa coupling

Relevant for
> Origin of masses of fundamental fermions
> Matter-anti-matter asymmetry (possible source of CP violation)
> Higgs effective potential (vacuum stability)

Associated tTH production

> Direct probe of top quark Yukawa coupling
> Observed in 2018 by ATLAS and CMS

- CP structure probed in 2020

The need for precision

The need for precision

Theoretical status

$>\mathrm{NLO}+$ resummation
Broggio, Ferroglia, Pecjak, LLY: 1611.00049

- Coulomb corrections

$$
\text { Ju, LLY: } 1904.08744
$$

	$13 \mathrm{TeV} \mathrm{LHC} \mathrm{(pb)}$	$14 \mathrm{TeV} \mathrm{LHC} \mathrm{(pb)}$
NLO	$0.493_{-9.2 \%}^{+5.8 \%}$	$0.597_{-9.2 \%}^{+6.1 \%}$
$\mathrm{NLL}^{\prime}+\mathrm{NLO}$	$0.521_{-2.6 \%}^{+1.9 \%}$	$0.630_{-2.6 \%}^{+2.3 \%}$
K-factor	1.06	1.06

Theoretical status

- $\mathrm{NLO}+$ resummation

Broggio, Ferroglia, Pecjak, LLY: 1611.00049

- Coulomb corrections

$$
\text { Ju, LLY: } 1904.08744
$$

	13 TeV LHC (pb)	14 TeV LHC (pb)
NLO	$0.493_{-9.2 \%}^{+5.8 \%}$	$0.597_{-9.2 \%}^{+6.1 \%}$
$\mathrm{NLL}^{\prime}+\mathrm{NLO}$	$0.521_{-2.6 \%}^{+1.9 \%}$	$0.630_{-2.6 \%}^{+2.36}$
K-factor	1.06	1.06

- Bottlenecks towards NNLO
- Two-loop amplitudes
- IR subtraction

Two-loop amplitudes for $t \bar{t} H$

+ many more planar and non-planar families
> Two-loop five-point amplitudes with 7 scales
> Partial results for simpler families e.g.: 2312.08131, 2402.03301
- Full results require much more efforts (analytic + numeric methods)

Two-loop IR singularities

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$
Z^{-1}(\epsilon) \mathscr{M} \mathrm{UV} \text { renormalized }(\epsilon)=\mathcal{O}\left(\epsilon^{0}\right)
$$

Two-loop poles $=$ Two-loop Z-factor \times One-loop amplitude to ϵ^{1}

Two-loop IR singularities

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$
Z^{-1}(\epsilon) \mathscr{M} \mathrm{UV} \text { renormalized }(\epsilon)=\mathcal{O}\left(\epsilon^{0}\right)
$$

Two-loop poles $=$ Two-loop Z-factor \times One-loop amplitude to ϵ^{1}

Ferroglia, Neubert, Pecjak, LLY:
0907.4791, 0908.3676

Two-loop IR singularities

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$
Z^{-1}(\epsilon) \mathscr{M} \mathrm{UV} \text { renormalized }(\epsilon)=\mathcal{O}\left(\epsilon^{0}\right)
$$

Two-loop poles $=$ Two-loop Z-factor \times One-loop amplitude to ϵ^{1}

Ferroglia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676

$$
\begin{aligned}
& \text { Chen, Ma, LLY: } 2201.12998 \\
& \text { Jiang, LLY: } 2303.11657
\end{aligned}
$$

Two-loop IR singularities

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$
Z^{-1}(\epsilon) \mathscr{M} \mathrm{UV}^{\mathrm{U}} \text { renormalized }(\epsilon)=\mathcal{O}\left(\epsilon^{0}\right)
$$

Two-loop poles $=$ Two-loop Z-factor \times One-loop amplitude to ϵ^{1}

Ferroglia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676

> Chen, Ma, LLY: 2201.12998
> Jiang, LLY: 2303.11657

- Predict two-loop IR poles for tTH
- Provide strong check on two-loop amplitudes
- Validate IR subtraction

Off-topic: symbol letters of Feynman integrals

It's very often that Feynman integrals can be written as iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(x_{n}\right) \cdots \int_{x_{0}}^{x_{3}} \mathrm{~d} \alpha_{i_{2}}\left(x_{2}\right) \int_{x_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(x_{1}\right)
$$

Structure determined by symbol letters

Off-topic: symbol letters of Feynman integrals

It's very often that Feynman integrals can be written as iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{x_{0}}^{x_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{x_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right)
$$

Structure determined by symbol letters

Works for elliptic integrals as well
Jiang, Wang, LLY, Zhao: 2305.13951

$$
I\left(f_{1}, f_{2}, \ldots, f_{n} ; \tau, \tau_{0}\right)=(2 \pi i)^{n} \int_{\tau_{0}}^{\tau} d \tau_{1} \int_{\tau_{0}}^{\tau_{1}} d \tau_{2} \ldots \int_{\tau_{0}}^{\tau_{n-1}} d \tau_{n} f_{1}\left(\tau_{1}\right) f_{2}\left(\tau_{2}\right) \ldots f_{n}\left(\tau_{n}\right)
$$

Bottom-up approach: from symbol letters to Feynman integrals

Bottom-up approach: from symbol letters to Feynman integrals

Many efforts trying to construct symbol letters, e.g.:

Chen, Jiang, Xu, LLY: 2008.03045
Chen, Ma, LLY: 2201.12998
Chen, Jiang, Ma, Xu, LLY: 2202.08127
Jiang, LLY: 2303.11657
Chen, Feng, LLY: 2305.01283

Bottom-up approach: from symbol letters to Feynman integrals

Canonical DEs

Symbol letters

$$
\left.g_{N}\right|_{N \text { odd }}=\frac{\epsilon^{(N+1) / 2}}{(4 \pi)^{(N-1) / 2} \Gamma(1-\epsilon)} \int\left(-\frac{\mathcal{K}_{N}}{G_{N}(\boldsymbol{z})}\right)^{\epsilon} \prod_{i=1}^{N} \frac{d z_{i}}{z_{i}},
$$

Chen, Jiang, Ma, Xu, LLY: 2202.08127 one-loop integrals completely known!

Arbitrary order in ϵ

Many efforts trying to construct

$$
\left.g_{N}\right|_{N \text { even }}=\frac{\epsilon^{N / 2}}{(4 \pi)^{(N-1) / 2} \Gamma(1 / 2-\epsilon)} \int \frac{\sqrt{G_{N}(\mathbf{0})}}{\sqrt{G_{N}(\boldsymbol{z})}}\left(-\frac{\mathcal{K}_{N}}{G_{N}(\boldsymbol{z})}\right)^{\epsilon} \prod_{i=1}^{N} \frac{d z_{i}}{z_{i}},
$$ symbol letters, e.g.:

$$
d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}}
$$

Chen, Jiang, Xu, LLY: 2008.03045
Chen, Ma, LLY: 2201.12998

$$
d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}} .
$$

Input for two-loop IR poles!

Canonical bases and symbol letters of

A new algorithmic approach

Based on:

- Recursive structure of Baikov representations
- Landau singularities for rational letters
> Generic ansatz for algebraic letters

Jiang, LLY: 2303.11657
Jiang, Lian, LLY: 2312.03453

A new algorithmic approach

Based on:

- Recursive structure of Baikov representations

$$
\begin{aligned}
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}} \\
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}} .
\end{aligned}
$$

> Generic ansatz for algebraic letters
Tested in many non-trivial examples, providing new results not available in the literature!

Jiang, LLY: 2303.11657
Jiang, Lian, LLY: 2312.03453

A new algorithmic approach

Based on:

- Recursive structure of Baikov representations

$$
\begin{aligned}
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}} \\
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}} .
\end{aligned}
$$

- Generic ansatz for algebraic letters

Tested in many non-trivial examples, providing new results not available in the literature!

Jiang, LLY: 2303.11657
Jiang, Lian, LLY: 2312.03453

But, tTH is still difficult... seeking approximations

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}\left(\left\{p_{i}\right\}, k\right) \simeq F\left(\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right) ; \frac{m_{t}}{\mu_{\mathrm{R}}}\right) \frac{m_{t}}{v} \sum_{i=3,4} \frac{m_{t}}{p_{i} \cdot k} \mathcal{M}\left(\left\{p_{i}\right\}\right)
$$

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}\left(\left\{p_{i}\right\}, k\right) \simeq F\left(\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right) ; \frac{m_{t}}{\mu_{\mathrm{R}}}\right) \frac{m_{t}}{v} \sum_{i=3,4} \frac{m_{t}}{p_{i} \cdot k} \mathcal{M}\left(\left\{p_{i}\right\}\right)
$$

Not a good approximation for two-loop amplitudes:
> One-loop already 30\% error
> Two-loop estimated 100% error

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}\left(\left\{p_{i}\right\}, k\right) \simeq F\left(\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right) ; \frac{m_{t}}{\mu_{\mathrm{R}}}\right) \frac{m_{t}}{v} \sum_{i=3,4} \frac{m_{t}}{p_{i} \cdot k} \mathcal{M}\left(\left\{p_{i}\right\}\right)
$$

Not a good approximation for two-loop amplitudes:
> One-loop already 30\% error
> Two-loop estimated 100% error
The argument was: two-loop amplitudes small for total cross section

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}\left(\left\{p_{i}\right\}, k\right) \simeq F\left(\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right) ; \frac{m_{t}}{\mu_{\mathrm{R}}}\right) \frac{m_{t}}{v} \sum_{i=3,4} \frac{m_{t}}{p_{i} \cdot k} \mathcal{M}\left(\left\{p_{i}\right\}\right)
$$

Not a good approximation for two-loop amplitudes:
> One-loop already 30\% error
> Two-loop estimated 100% error
The argument was: two-loop amplitudes small for total cross section

What about differential cross sections?

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$
\begin{aligned}
& \mathcal{M}^{[p],(m)}\left(\left\{k_{i}\right\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{\mathrm{s}}\left(\mu^{2}\right), \varepsilon\right)= \text { Mitov, Moch: hep-ph/0612149 } \\
& \prod_{i \in\{\text { all legs }\}}\left(Z_{[i]}^{(m \mid 0)}\left(\frac{m^{2}}{\mu^{2}}, \alpha_{\mathrm{s}}\left(\mu^{2}\right), \varepsilon\right)\right)^{\frac{1}{2}} \times \mathcal{M}^{[\mathrm{p}],(m=0)}\left(\left\{k_{i}\right\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{\mathrm{s}}\left(\mu^{2}\right), \varepsilon\right)
\end{aligned}
$$

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$
\mathcal{M}^{[\mathrm{p}],(m)}\left(\left\{k_{i}\right\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{\mathrm{s}}\left(\mu^{2}\right), \varepsilon\right)=1 \quad \text { Mitov, Moch: hep-ph/0612149 }
$$

But the heavy-quark bubbles are not included!

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

$$
\begin{aligned}
& 1205.3662 \\
& 1306.1537 \\
& 1310.3836 \\
& 1601.07020 \\
& 1803.07623 \\
& 1901.08281
\end{aligned}
$$

Best precision:
NNLO+NNLL' in QCD + NLO in EW

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

$$
\begin{aligned}
& 1205.3662 \\
& 1306.1537 \\
& 1310.3836 \\
& 1601.07020 \\
& 1803.07623 \\
& 1901.08281
\end{aligned}
$$

Best precision:
NNLO + NNLL' in QCD + NLO in EW
But the factorization of heavy quark bubbles was not understood...

Heavy-quark bubbles

A new factorization formula

$$
\left|\mathcal{M}^{\text {massive }}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}_{[i]}^{(m \mid 0)}(\{m\})\right)^{1 / 2} \mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text {massless }}(\{p\})\right\rangle
$$

The new soff function

$$
\begin{aligned}
\text { hard }: & k^{\mu} \sim \sqrt{|s|} \\
n_{i} \text {-collinear }: & \left(n_{i} \cdot k, \bar{n}_{i} \cdot k, k_{\perp}\right) \sim \sqrt{|s|}\left(\lambda^{2}, 1, \lambda\right) \\
\text { soft }: & k^{\mu} \sim \sqrt{|s|} \lambda .
\end{aligned}
$$

Rapidity divergence: analytic regulator

$$
\begin{align*}
& I_{\left\{a_{i}\right\}} \equiv \mu^{4 \epsilon} \int \frac{d k_{1}}{(2 \pi)^{d}} \frac{d k_{2}}{(2 \pi)^{d}} \frac{1}{\left[k_{1}^{2}-m_{h}^{2}\right]^{a_{1}}} \frac{1}{\left[k_{2}^{2}-m_{h}^{2}\right]^{a_{2}}} \frac{1}{\left[\left(k_{1}+k_{2}\right)^{2}\right]^{a_{3}}} \frac{1}{\left[\left(k_{1}+k_{2}-p_{1}\right)^{2}-m_{1}^{2}\right]^{a_{4}}} \\
& \times \frac{\left(-\tilde{\mu}^{2}\right)^{\nu}}{\left[\left(k_{1}+k_{2}+p_{2}\right)^{2}-m_{2}^{2}\right]^{a_{5}+\nu}} \frac{1}{\left[\left(k_{1}-p_{1}\right)^{2}\right]^{a_{6}}} \frac{1}{\left[\left(k_{1}+p_{2}\right)^{2}\right]^{a_{7}}}, \tag{3.4}
\end{align*}
$$

$$
\begin{aligned}
& \boldsymbol{\mathcal { S }}(\{p\},\{m\})=1+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \sum_{\substack{i, j \\
i \neq j}}\left(-\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \sum_{h} \mathcal{S}^{(2)}\left(s_{i j}, m_{h}^{2}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
& \mathcal{S}^{(2)}\left(s_{i j}, m_{h}^{2}\right)=T_{F}\left(\frac{\mu^{2}}{m_{h}^{2}}\right)^{2 \epsilon}\left(-\frac{4}{3 \epsilon^{2}}+\frac{20}{9 \epsilon}-\frac{112}{27}-\frac{4 \zeta_{2}}{3}\right) \ln \frac{-s_{i j}}{m_{h}^{2}}
\end{aligned}
$$

Validation of the new formula

$$
\left|\mathcal{M}^{\text {massive }}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}_{[i]}^{(m \mid 0)}(\{m\})\right)^{1 / 2} \mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text {massless }}(\{p\})\right\rangle
$$

Checked in various situations:
> Quark form factors: heavy-heavy, heavy-light, light-light

- Gluon form factor
- Top quark pair amplitude

Two-loop amplitudes for tTH in the high-energy limit

$$
\left|\mathcal{M}^{\text {massive }}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}_{[i]}^{(m \mid 0)}(\{m\})\right)^{1 / 2} \mathcal{S}(\{p\},\{m\})\left|\mathcal{M}^{\text {massless }}(\{p\})\right\rangle
$$

(a) planar pentagon-box (PB)

(b) non-planar hexagon-box (HB)

- Massless amplitudes computed using standard techniques
- Very large expressions, simplified using MultivariateApart
> Fast numeric evaluation with PentagonMI

Numerical results

IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without the heavy quark bubble, the scale-dependence would be wrong!

Numerical results

- Two-loop amplitudes at high energies are ready
> Combine with low energy approximations (threshold / soft Higgs)?
- Differential cross sections (IR subtraction)?

Summary and outlook

- The tTH production is important for probing the top quark Yukawa coupling
- Theoretical status:
- NLO+NNLL resummation for differential cross sections
> NNLO with soft Higgs approximation for total cross section
- Full NNLO not available (main bottleneck: two-loop amplitudes)
- Two-loop IR poles computed
- Towards NNLO prediction at high energies
> High energy factorization formula for QCD amplitudes
> Applied to tTH production: approximate two-loop amplitudes now available
> Future: combine with real emissions (IR subtraction) for differential cross sections

Summary and outlook

- The tTH production is important for probing the top quark Yukawa coupling
- Theoretical status:
- NLO+NNLL resummation for differential cross sections
> NNLO with soft Higgs approximation for total cross section
- Full NNLO not available (main bottleneck: two-loop amplitudes)
- Two-loop IR poles computed
- Towards NNLO prediction at high energies
> High energy factorization formula for QCD amplitudes
> Applied to tTH production: approximate two-loop amplitudes now available
> Future: combine with real emissions (IR subtraction) fo diufaliquts sed/e U!

