Towards NNLO calculation for high energy production of tTH

Li Lin Yang Zhejiang University

The top quark Yukawa coupling

Relevant for

- Origin of masses of fundamental fermions
- Matter-anti-matter asymmetry (possible source) of CP violation)
- Higgs effective potential (vacuum stability)

Associated tTH production

Direct probe of top quark Yukawa coupling ► Observed in 2018 by ATLAS and CMS ► CP structure probed in 2020

The need for precision

The need for precision

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment

Theoretical status

► NLO + resummation

Coulomb corrections

Ju, LLY: 1904.08744

	$13 { m TeV LH}$
NLO	$0.493^{+5.}_{-9.}$
NLL'+NLO	$0.521^{+1.}_{-2.}$
K-factor	1.06

M_{ff} (GeV)

Theoretical status

► NLO + resummation

Coulomb corrections

Ju, LLY: 1904.08744

	$13 { m TeV LH}$
NLO	$0.493^{+5.}_{-9.}$
NLL'+NLO	$0.521^{+1.}_{-2.}$
K-factor	1.06

- Bottlenecks towards NNLO
 - ► Two-loop amplitudes
 - ► IR subtraction

500

600

400

700

800

M_{ff} (GeV)

Two-loop amplitudes for $t\bar{t}H$

- ► Two-loop five-point amplitudes with 7 scales
- Partial results for simpler families
- Full results require much more efforts (analytic + numeric methods)

+ many more planar and non-planar families

e.g.: 2312.08131, 2402.03301

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathcal{M}$ UV renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Chen, Ma, Wang, LLY, Ye: 2202.02913

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathcal{M}^{UV}$ renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Chen, Ma, Wang, LLY, Ye: 2202.02913

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathcal{M}^{UV}$ renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Chen, Ma, LLY: 2201.12998 Jiang, LLY: 2303.11657

Chen, Ma, Wang, LLY, Ye: 2202.02913

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathscr{M}^{UV}$ renormali

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676 Chen, Ma, LLY: 2201.12998 Jiang, LLY: 2303.11657

- Predict two-loop IR poles for tTH
- Provide strong check on two-loop amplitudes
- ► Validate IR subtraction

Chen, Ma, Wang, LLY, Ye: 2202.02913

15.03938540

7.650785464

-2.390051823

2.390051823

2.390051823

2.390051823

 C^q

 D_l^q

 D_h^q

 F_{lh}^q F_h^q

4.731722368

3.860049613

-7.221133335

0.597121534

-186.5751188

0.308675876

6.24434919

1.610219156

-6.244349191

85.25318119 6.363526190

-10.52987601

8.076713126

19.49234494 -14.56717053

-34.95784899

-21.39439443

-6.605875838

4.86038798

77.52356965

19.76269918

Off-topic: symbol letters of Feynman integrals

It's very often that Feynman integrals can be written as iterated integrals

 $\int_{\mathbf{x}_0}^{\mathbf{x}} \mathrm{d}\alpha_{i_n}(\mathbf{x}_n) \cdots \int_{\mathbf{x}_0}^{\mathbf{x}_3} \mathrm{d}\alpha_{i_2}(\mathbf{x}_2) \int_{\mathbf{x}_0}^{\mathbf{x}_2} \mathrm{d}\alpha_{i_1}(\mathbf{x}_1)$

Structure determined by symbol letters

Off-topic: symbol letters of Feynman integrals

It's very often that Feynman integrals can be written as iterated integrals

Works for elliptic integrals as well

Jiang, Wang, LLY, Zhao: 2305.13951

$$I(f_1, f_2, ..., f_n; \tau, \tau_0) =$$

$$\mathbf{x}_{3} \, \mathrm{d}\alpha_{i_{2}}(\mathbf{x}_{2}) \int_{\mathbf{x}_{0}}^{\mathbf{x}_{2}} \mathrm{d}\alpha_{i_{1}}(\mathbf{x}_{1})$$

Structure determined by symbol letters

Bottom-up approach: from symbol letters to Feynman integrals

Bottom-up approach: from symbol letters to Feynman integrals

Many efforts trying to construct symbol letters, e.g.:

Chen, Jiang, Xu, LLY: 2008.03045 Chen, Ma, LLY: 2201.12998 Chen, Jiang, Ma, Xu, LLY: 2202.08127 Jiang, LLY: 2303.11657 Chen, Feng, LLY: 2305.01283

Bottom-up approach: from symbol letters to Feynman integrals

Many efforts trying to construct symbol letters, e.g.:

Chen, Jiang, Xu, LLY: 2008.03045 Chen, Ma, LLY: 2201.12998 Chen, Jiang, Ma, Xu, LLY: 2202.08127 Jiang, LLY: 2303.11657 Chen, Feng, LLY: 2305.01283

$$d\log rac{G(\{q_1,q_2,\ G(\{q_1,q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_2,\ q_3,\ q_4)}{G(\{q_1,q_2,\ q_3,\ q_3,\ q_3,\ q_3,\ q_3,\ q_3,\ q_4)}$$

Canonical bases and symbol letters of one-loop integrals completely known!

Input for two-loop IR poles!

A new algorithmic approach

Based on:

- Recursive structure of Baikov representations
- Landau singularities for rational letters
- ► Generic ansatz for algebraic letters

Jiang, LLY: 2303.11657 Jiang, Lian, LLY: 2312.03453

Jiang, Liu, Xu, LLY: 2401.07632

https://github.com/windfolgen/Baikovletter

$$d\log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots, q_n)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots, q_n)}}$$

$$d \log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots, q_{n+1})}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots, q_{n+1})}}$$

A new algorithmic approach

Based on:

- Recursive structure of Baikov represent
- Landau singularities for rational letters
- ► Generic ansatz for algebraic letters

Jiang, Lian, LLY: 2312.03453

Jiang, Liu, Xu, LLY: 2401.07632

https://github.com/windfolgen/Baikovletter

$$\begin{array}{ll} \text{tations} & d\log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots)}} \\ \text{S} & d\log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots)}} \\ \end{array}$$

Tested in many non-trivial examples, providing new results not available in the literature!

 p_2

A new algorithmic approach

Based on:

- Recursive structure of Baikov represent
- Landau singularities for rational letters
- ► Generic ansatz for algebraic letters

Jiang, Lian, LLY: 2312.03453

Jiang, Liu, Xu, LLY: 2401.07632

https://github.com/windfolgen/Baikovletter

tations
$$d \log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots)}}$$

$$d \log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots)}}$$

Tested in many non-trivial examples, providing new results not available in the literature!

But, tTH is still difficult... seeking approximations

 p_2

Eikonal approximation: $2 \rightarrow 2$ kinematics

 $\mathcal{M}(\{p_i\},k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}});\frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r_i}{p_i}$$

Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r}{p_i}$$

Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

 $pp \to t\bar{t}H$

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r}{p_i}$$

Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

What about differential cross sections?

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

49

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_{\rm s}(\mu^2), \varepsilon\right) = \prod_{i \in \{\text{all legs}\}} \left(Z^{(m|0)}_{[i]}\left(\frac{m^2}{\mu^2}, \alpha_{\rm s}(\mu^2)\right)\right)$$

But the heavy-quark bubbles are not included!

Mitov, Moch: hep-ph/0612149

 $(\mathbf{r}), \mathbf{\epsilon} \left(\mathbf{k} \right) \right)^{\frac{1}{2}} \times \mathcal{M}^{[\mathbf{p}], (m=0)} \left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_{\mathbf{s}}(\mu^2), \mathbf{\epsilon} \right)$

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

Best precision: NNLO+NNLL' in QCD + NLO in EW

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

Best precision: NNLO+NNLL' in QCD + NLO in EW

But the factorization of heavy quark bubbles was not understood...

Heavy-quark bubbles

A new factorization formula

$$ig| \mathcal{M}^{ ext{massive}}(\{p\},\{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$

Wang, Xia, LLY, Ye: 2312.12242

The new soft function

$$\boldsymbol{\mathcal{S}}(\{p\},\{m\}) = 1 + \left(\frac{\alpha_s}{4\pi}\right)^2 \sum_{\substack{i,j\\i\neq j}} \left(-\boldsymbol{T}_i \cdot \boldsymbol{T}_j\right) \sum_h \mathcal{S}^{(2)}(s_{ij},r_i)$$

 $\mathcal{S}^{(2)}(s_{ij},$ "

$$\begin{split} & \text{hard}: k^{\mu} \sim \sqrt{|s|} \,, \\ & n_i \text{-collinear}: (n_i \cdot k, \, \bar{n}_i \cdot k, \, k_{\perp}) \sim \sqrt{|s|} \, (\lambda^2, \, 1, \, \lambda) \\ & \text{soft}: k^{\mu} \sim \sqrt{|s|} \, \lambda \,. \end{split}$$

Rapidity divergence: analytic regulator

$$\frac{1}{k_1^2 - m_h^2]^{a_1}} \frac{1}{[k_2^2 - m_h^2]^{a_2}} \frac{1}{[(k_1 + k_2)^2]^{a_3}} \frac{1}{[(k_1 + k_2 - p_1)^2 - m_1^2]^{a_4}} \\ \frac{(-\tilde{\mu}^2)^{\nu}}{[(k_1 + k_2 + p_2)^2 - m_2^2]^{a_5 + \nu}} \frac{1}{[(k_1 - p_1)^2]^{a_6}} \frac{1}{[(k_1 + p_2)^2]^{a_7}}, \quad (3.4)$$

 $m_h^2) + \mathcal{O}(lpha_s^3)$

$$m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s_{ij}}{m_h^2}$$

242

Validation of the new formula

$$ig| \mathcal{M}^{ ext{massive}}(\{p\}, \{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$

 $\boldsymbol{\mathcal{S}}(\{p\},\{m\}) \left| \mathcal{M}^{\mathrm{massless}}(\{p\}) \right\rangle$

Checked in various situations:

- Quark form factors: heavy-heavy, heavy-light, light-light
- Gluon form factor
- ► Top quark pair amplitude

Two-loop amplitudes for tTH in the high-energy limit

$$ig| \mathcal{M}^{ ext{massive}}(\{p\}, \{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$

 p_4

(a) planar pentagon-box (PB)

(b) non-planar hexagon-box (HB)

(c) non-planar double pentagon (DP) (d) planar hexagon-triangle (HT) Wang, Xia, LLY, Ye: 2402.00431

 $\left(\boldsymbol{\mathcal{S}}(\{p\},\{m\}) \middle| \mathcal{M}^{\mathrm{massless}}(\{p\})
ight)$

- Massless amplitudes computed using standard techniques
- Very large expressions, simplified using MultivariateApart
- Fast numeric evaluation with PentagonMI

Numerical results

IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without the heavy quark bubble, the scale-dependence would be wrong!

Numerical results

- Two-loop amplitudes at high energies are ready
- Combine with low energy approximations (threshold / soft Higgs)?
- Differential cross sections (IR subtraction)?

Summary and outlook

- > The tTH production is important for probing the top quark Yukawa coupling
- ► Theoretical status:
 - ► NLO+NNLL resummation for differential cross sections
 - NNLO with soft Higgs approximation for total cross section
 - ► Full NNLO not available (main bottleneck: two-loop amplitudes)
 - ► Two-loop IR poles computed
- Towards NNLO prediction at high energies
 - High energy factorization formula for QCD amplitudes
 - Applied to tTH production: approximate two-loop amplitudes now available
 - Future: combine with real emissions (IR subtraction) for differential cross sections

Summary and outlook

- > The tTH production is important for probing the top quark Yukawa coupling
- ► Theoretical status:
 - ► NLO+NNLL resummation for differential cross sections
 - NNLO with soft Higgs approximation for total cross section
 - ► Full NNLO not available (main bottleneck: two-loop amplitudes)
 - ► Two-loop IR poles computed
- Towards NNLO prediction at high energies
 - High energy factorization formula for QCD amplitudes
 - Applied to tTH production: approximate two-loop amplitudes now available
 Future: combine with real emissions (IR subtraction) for differential res sections U.

