形状因子及其应用

杨刚
中国科学院理论物理研究所

第六届重味物理与量子色动力学研讨会 2024年4月19－22日 青岛

Scattering amplitudes

In past over 30 years, significant progress has been made in the studies of scattering amplitudes.
[Parke, Taylor, 1986]

$$
A_{n}^{\text {tree }}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle n 1\rangle}
$$

Scattering amplitudes

In past over 30 years, significant progress has been made in the studies of scattering amplitudes.

New methods

Hidden structures

Amplitudes

\downarrow

Form Factors

Form Factors

Matrix element of on-shell states and a local operators:

$$
\begin{aligned}
F_{n, \mathcal{O}}(1, \ldots, n)= & \int d^{4} x e^{-i q \cdot x}\left\langle p_{1} \ldots p_{n}\right| \mathcal{O}(x)|0\rangle \\
= & \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}-q\right)\left\langle p_{1} \ldots p_{n}\right| \mathcal{O}(0)|0\rangle \\
& (\text { work in momentum space) }
\end{aligned}
$$

$$
q=\sum_{i} p_{i}, \quad q^{2} \neq 0
$$

$\left\langle p_{1} p_{2} \ldots p_{n} \mid 0\right\rangle$
Amplitudes

Form Factors
$\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{n}\right\rangle$
Correlation functions

Form Factors

Matrix element of on-shell states and a local operators:

$$
\begin{aligned}
F_{n, O}(1, \ldots, n) & =\int d^{4} x e^{-i q \cdot x}\left\langle p_{1} \ldots p_{n}\right| \mathcal{O}(x)|0\rangle \\
& =\delta^{(4)}\left(\sum_{i=1}^{n} p_{i}-q\right)\left\langle p_{1} \ldots p_{n}\right| \mathcal{O}(0)|0\rangle
\end{aligned}
$$

$$
q=\sum_{i} p_{i}, \quad q^{2} \neq 0
$$

- Nuclear form factor

Hofstadter 1956

- Sudakov form factor

Sudakov 1954

Operators

Gauge invariant operators are important in QFT.

- Anomalous dimensions (spectrum of hadrons, RG, OPE, ...)
- Correlation functions (e.g., EEC)

Local operators also appear as vertices in EFT Lagrangian. For example: Higgs EFT obtained by integrating Top quark loop:

Wilczek, 1977; Shifman et.al., 1979,

Higgs+gluons scattering

Higgs plus jet production $\quad A\left(q^{H}, 1^{g}, 2^{g}, \ldots, n^{g}\right)=F_{\hat{O}=\mathrm{tr}\left(F^{2}\right)}\left(1^{g}, 2^{g}, \ldots, n^{g}\right)$

Boughezal, Caola, Melnikov, Petriello, Schulze 2013; Chen,
Gehrmann, Glover, Jaquier 2014; Boughezal, Focke, Giele, Liu,
Petriello 2015; Harlander, Liebler, Mantler 2016; Anastasiou, Duhr,
Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 2016;
Lindert, Kudashkin, Melnikov, Wever 2018; Jones, Kerner, Luisoni 2018; Neumann 2018; ...

$p_{T} \sim 2 m_{t} \rightarrow$ High-dimension operators become important.

$$
\mathcal{L}_{\mathrm{eff}}=C_{0} O_{0}+\frac{1}{m_{\mathrm{t}}^{2}} \sum_{i=1}^{4} C_{i} O_{i}+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{4}}\right)
$$

Dimension-5 operator

$$
O_{0}=H \operatorname{tr}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

2-loop: Gehrmann, Jaquier, Glover, Koukoutsakis 2011

Dimension-7 operators

$$
\begin{aligned}
& O_{1}=H \operatorname{tr}\left(F_{\mu}{ }^{\nu} F_{\nu}{ }^{\rho} F_{\rho}{ }^{\mu}\right), \\
& O_{2}=H \operatorname{tr}\left(D_{\rho} F_{\mu \nu} D F^{\mu \nu}\right), \\
& O_{3}=H \operatorname{tr}\left(D^{\rho} F_{\rho \mu} D_{\sigma} F^{\sigma \mu}\right), \\
& O_{4}=H \operatorname{tr}\left(F_{\mu \rho} D^{\rho} D_{\sigma} F^{\sigma \mu}\right) .
\end{aligned}
$$

1-loop: Dawson, Lewis, Zeng 2014
2-loop: Jin, GY 2019

Progress in N=4 SYM

$$
\mathscr{F}_{n}=\int d^{4} x e^{-i q \cdot x}\left\langle p_{1}, \ldots, p_{n}\right| \operatorname{tr}\left(F^{2}\right)(x)|0\rangle
$$

Full-color integrand up to 5 loops

Boels, Kniehl, Tarasov, GY 2012
GY, 2016
Integrated results at 4 loops

Boels, Huber, GY 2017
Huber, von Manteuffel, Panzer,
Schabinger, GY 2020

Full-color integrand up to 4 loops
Lin, GY, Zhang, 2021

Integrated results at 3 loops

Lin, GY, Zhang, 2021
Guan, Lin, Liu, Ma, GY 2023

Integrated results at 2 loops

Guo. Wang, GY, 2022
Guo, Wang, GY, Yin to appear

Computational tools

- On-shell unitarity method

Bern, Dixon, Durban, Kosower 1994; Britto, Cachazo, Feng, 2003

Simple tree blocks -> Higher loop results

- Color-kinematics duality

Large number of diagrams -> Very few "master" diagrams

- Master-integral bootstrap Guo, Wang, gr 2021

Construct final results directly using physical constraints

Sudakov form factor and Casimir scaling conjecture

Sudakov form factor

Logarithm behavior is well-understood:
For dim-reg representation, see: Magnea and Sterman 1990;
Sterman and Tejeda-Yeomans 2002 Bern, Dixon, Smirnov 2005

$$
\log F_{2}(1,2) \simeq-\sum_{l=1}^{\infty} g^{2 l}\left(\frac{\gamma_{\mathrm{cusp}}^{(l)}}{\epsilon^{2}}+\frac{\mathscr{G}_{\mathrm{coll}}^{(l)}}{\epsilon}\right)\left(-q^{2}\right)^{-l \epsilon}+\mathcal{O}\left(\epsilon^{0}\right)
$$

Leading IR singularity -> Cusp anomalous dimension

Color structure

Up to three loops, only quadratic Casimir appears:

At four-loop, there is a new quartic Casimir which contains non-planar part

| L-loop | $L=1$ | $L=2$ | $L=3$ | $L=4$ |
| :---: | :---: | :---: | :---: | :---: | | For $S U(N):$ |
| :--- |
| $C_{A}=N$ |
| Color Factor |C_{A}

$$
\begin{aligned}
& \begin{array}{l}
\text { Diagram-expansion } \\
\quad \text { up to } 3 \text { loops }
\end{array} \quad \mathscr{F}^{(l)}=\mathscr{F}^{\text {tree }} \sum_{l=1}^{\infty} g^{2 l}\left(-q^{2}\right)^{-l \varepsilon_{F}} F^{(l)} \\
& ++\infty+\infty
\end{aligned}
$$

Casimir scaling conjecture

In "On the Structure of Infrared Singularities of Gauge- Theory Amplitudes", JHEP 0906, 081 (2009)
Thomas Becher and Matthias Neubert conjectured that:
"Our formula predicts Casimir scaling of the cusp anomalous dimension to all orders in perturbation theory, and we explicitly check that the constraints exclude the appearance of higher Casimir invariants at four loops."

An explicit four-loop computation is needed.

Four-loop Sudakov form factor

- Integrand: unitarity + color-kinematics duality Boels. Knient. Tarasov, GY 2012

- Numerical integration: Boels, Huber, GY 2017
$\gamma_{\text {cusp, NP }}^{(4)}=-3072 \times(1.60 \pm 0.19) \frac{1}{N_{c}^{2}} \quad$ Finding Uniform Transcendental (UT) basis is the key
- Analytic integration: Huber, von Manteuffel, Panzer, Schabinger, GY 2020
(See also: Henn, Korchemsky, Mistlberger 2020)
$\gamma_{\text {cusp }, \mathrm{NP}}^{(4)}=-3072 \times\left(\frac{3}{8} \zeta_{3}^{2}+\frac{31}{140} \zeta_{2}^{3}\right) \frac{1}{N_{c}^{2}}=-3072 \times 1.52 \frac{1}{N_{c}^{2}}$
Casimir scaling conjecture is incorrect.

Spectrum of YM operators

High dimensional YM operators

Gauge invariant operators:

$$
\begin{aligned}
& \mathcal{O} \sim c\left(a_{1}, \ldots, a_{n}\right)\left(D_{\mu_{11}} \ldots D_{\mu_{1 m_{1}}} F_{\nu_{1} \rho_{1}}\right)^{a_{1}} \cdots\left(D_{\mu_{n 1}} \ldots D_{\mu_{n m_{n}}} F_{\nu_{n} \rho_{n}}\right)^{a_{n}} . \\
& D_{\mu} \star=\partial_{\mu}+i g\left[A_{\mu}, \star\right], \quad\left[D_{\mu}, D_{\nu}\right] \star=i g\left[F_{\mu \nu}, \star\right] \quad F_{\mu \nu}=F_{\mu}^{a} T^{a}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}
\end{aligned}
$$

D-dimensional on-shell methods using form factor formalism:

$$
\mathscr{F}_{n}=\int d^{4} x e^{-i q \cdot x}\left\langle p_{1}, \ldots, p_{n}\right| \mathcal{O}(x)|0\rangle
$$

- Operator basis
- Two-loop renormalization and spectrum (e.g dim-16)
- Two-loop EFT amplitudes

Minimal tree form factors

Dictionary for YM operators:

operator	$D_{\dot{\alpha} \alpha}$	$f_{\alpha \beta}$	$\bar{f}_{\dot{\alpha} \dot{\beta}}$
spinor	$\tilde{\lambda}_{\dot{\alpha}} \lambda_{\alpha}$	$\lambda_{\alpha} \lambda_{\beta}$	$-\tilde{\lambda}_{\dot{\alpha}} \tilde{\lambda}_{\dot{\beta}}$
4-dim	$F_{\mu \nu} \rightarrow F_{\alpha \dot{\alpha} \beta \dot{\beta}}=\epsilon_{\alpha \beta} \bar{f}_{\dot{\alpha} \dot{\beta}}+\epsilon_{\dot{\alpha} \dot{\beta} f_{\alpha \beta}}$		

Used in N=4 SYM: Zwiebel 2011, Wilhelm 2014

operator	D_{μ}	$F_{\mu \nu}$
kinematics	p_{μ}	$p_{\mu} \varepsilon_{\nu}-p_{\nu} \varepsilon_{\mu}$

Important for capturing
"Evanescent operators"

One can translate any local operator into "on-shell" kinematics.

Loop form factor computation

On-shell unitarity-IBP method:
$\left.\mathcal{F}^{(l)}\right|_{\text {cut }}=\prod($ Tree blocks $)=$ Cut integrand $\xrightarrow{\text { IBP with cuts }} \sum_{i} c_{i}\left(\left.I_{i}\right|_{\text {cut }}\right)$

(b)

(c)

(1)

(4)

(5)

(6)

(7)

(8)
(9)

Evanescent operators

Evanescent operator（＂條逝算符＂）：
Vanishing in 4 dimension but non－zero in $d=4-2 \epsilon$

$$
\left.\mathbf{F}_{\mathcal{O}_{L}^{e}, n \geq L}^{(0)}\right|_{4-\operatorname{dim}}=0,\left.\quad \mathbf{F}_{\mathcal{O}_{L}^{e}, L}^{(0)}\right|_{d-\operatorname{dim}} \neq 0
$$

Evanescent operators

Evanescent operator（＂條逝算符＂）：
Vanishing in 4 dimension but non－zero in $d=4-2 \epsilon$

$$
\left.\mathbf{F}_{\mathcal{O}_{L}^{e}, n \geq L}^{(0)}\right|_{4-\operatorname{dim}}=0,\left.\quad \mathbf{F}_{\mathcal{O}_{L}^{e}, L}^{(0)}\right|_{d-\operatorname{dim}} \neq 0
$$

Four－fermion dimension－6 operators：

Evanescent operators

Evanescent operator（＂修逝算符＂）：
Vanishing in 4 dimension but non－zero in $d=4-2 \epsilon$

$$
\left.\mathbf{F}_{\mathcal{O}_{L}^{e}, n \geq L}^{(0)}\right|_{4-\operatorname{dim}}=0,\left.\quad \mathbf{F}_{\mathcal{O}_{L}^{e}, L}^{(0)}\right|_{d-\operatorname{dim}} \neq 0
$$

Gluonic evanescent operators（start to appear at dimension 10）：

Systematic classification and renormalization at two－loop order．

Evanescent operators

- Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO.
YM theory is non-unitary in non-integer spacetime dimensions, due to the existence of evanescent operators.

Evanescent operators

- Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO.

YM theory is non-unitary in non-integer spacetime dimensions, due to the existence of evanescent operators.

```
\partial}\mp@subsup{\nu}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{3789\mu\rho}{12456\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{F}{45}{}\mp@subsup{D}{6}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. ) )],
\partial}\mp@subsup{\partial}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{1}\mp@subsup{\delta}{789\mu\rho}{2356\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{F}{45}{}\mp@subsup{D}{6}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial}\mp@subsup{\nu}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{1}\mp@subsup{\delta}{789\mu\rho}{2356\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{D}{4}{}\mp@subsup{F}{56}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial}\mp@subsup{\nu}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{1}\mp@subsup{\delta}{689\mu\rho}{2357\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{D}{4}{}\mp@subsup{F}{56}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial}\mp@subsup{\partial}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{1}\mp@subsup{\delta}{589\mu\rho}{2367\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{F}{45}{}\mp@subsup{D}{6}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial}\mp@subsup{\partial}{\nu}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{1}\mp@subsup{\delta}{569\mu\rho}{2378\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{D}{4}{}\mp@subsup{F}{56}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial}\mp@subsup{\nu}{\rho}{}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{5}{1}\mp@subsup{\delta}{689\mu\rho}{2347\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{D}{4}{}\mp@subsup{F}{56}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
\partial\nu}\mp@subsup{\partial}{\rho}{}[\mp@subsup{\delta}{4}{2}\mp@subsup{\delta}{389\mu\rho}{1567\nu}(\operatorname{tr}(\mp@subsup{D}{1}{}\mp@subsup{F}{23}{}\mp@subsup{F}{45}{}\mp@subsup{D}{6}{}\mp@subsup{F}{78}{}\mp@subsup{F}{9\mu}{})+\mathrm{ Rev. )})
```


One-loop mixing matrix

Dim-12 evanescent operators

"Color" evanescent operators

- How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

Mathematically we make analytical continuation for Nc and consider AD as a function of Nc .

In this case, there are also complex AD due to the existence of "color" evanescent operators.

"Color" evanescent operators

- How about Yang-Mills Theory with fractional Nc (rank of gauge group)? In this case, there are also complex AD due to the existence of "color" evanescent operators.

A sector of dim-8 operators

Jin, Ren, GY, Yu, to appear

"Color" evanescent operators

- How about Yang-Mills Theory with fractional Nc (rank of gauge group)? In this case, there are also complex AD due to the existence of "color" evanescent operators.

Rich structure for higher dimensional operators

Summary

On-shell
 Amplitudes

Off-shell
 Operators

- Efficient new methods
- New higher-loop results
- Novel structures uncovered
- More to be explored !

Thank you for your attention!

Thank you for your attention!

Backup slides

Evanescent operators

Evanescent operators are important for renormalization beyond one-loop order.

$$
\left(\begin{array}{cc}
Z_{\mathrm{pp}}^{(1)} & Z_{\mathrm{pe}}^{(1)} \\
0 & Z_{\mathrm{ee}}^{(1)}
\end{array}\right), \quad\left(\begin{array}{c}
Z_{\mathrm{pp}}^{(l)} \\
Z_{\mathrm{ep}}^{(l)} \\
Z_{\mathrm{pe}}^{(l)} \\
\mathrm{ee}
\end{array}\right), \quad l \geq 2
$$

One can use finite renormalization scheme such that

$$
\left(\begin{array}{cc}
\hat{\mathcal{D}}_{\mathrm{pp}}^{(l)} & \hat{\mathcal{D}}_{\mathrm{pe}}^{(l)} \\
0 & \hat{\mathcal{D}}_{\mathrm{ee}}^{(l)}
\end{array}\right)
$$

but the lower-loop evanescent operator result are needed.
For example, $\hat{\mathcal{D}}_{\mathrm{pp}}^{(2)}$ contains $\left(-2 \epsilon \hat{Z}_{\mathrm{pe}}^{(1)} \hat{Z}_{\mathrm{ep}}^{(1)}\right)$

Color-kinematics duality

Large number of diagrams

CK-duality

\longrightarrow Very few "master" diagrams

L-loop	$L=1$	$L=2$	$L=3$	$L=4$	$L=5$
\# of topologies	1	2	6	34	306
\# of masters	1	1	1	2	4

Four master graphs @
5-loop:

GY, PRL 2016

Three-point form factors $\cdots(100)^{m}$

Master graphs

$$
\boldsymbol{F}_{3}^{(4)}=\sum_{\sigma_{3}} \sum_{i=1}^{229} \int_{j=1}^{4} d^{D} \ell_{j} \frac{1}{S_{i}} \sigma_{3} \cdot \frac{\mathcal{F}_{3}^{(0)} C_{i} N_{i}}{\prod_{\alpha_{i}} P_{\alpha_{i}}^{2}}
$$

Maximal transcendentality part

N=4 SYM three-point form factor

$$
\begin{aligned}
& -2\left[J_{4}\left(-\frac{u v}{w}\right)+J_{4}\left(-\frac{v w}{u}\right)+J_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\mathrm{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \mathrm{Li}_{2}\left(1-u_{i}\right)+\frac{\log ^{2} u_{i}}{2!}\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4}
\end{aligned}
$$

Brandhuber, Travaglini, GY 2012

The same!

$$
\begin{aligned}
& -2 G(0,0,1,0, u)+G(0,0,1-v, 1-v, u)+2 G(0,0,-v, 1-v, u)-G(0,1,0,1-v, u)+4 G(0,1,1,0, u)-G(0,1,1-v, 0, u)+G(0,1-v, 0,1-v, u) \\
& +G(0,1-v, 1-v, 0, u)-G(0,1-v,-v, 1-v, u)+2 G(0,-v, 0,1-v, u)+2 G(0,-v, 1-v, 0, u)-2 G(0,-v, 1-v, 1-v, u)-2 G(1,0,0,1-v, u) \\
& -2 G(1,0,1-v, 0, u)+4 G(1,1,0,0, u)-4 G(1,1,1,0, u)-2 G(1,1-v, 0,0, u)+G(1-v, 0,0,1-v, u)-G(1-v, 0,1,0, u)-2 G(-v, 1-v, 1-v, u) H(0, v) \\
& -2 G(1-v, 1,0,0, u)+2 G(1-v, 1,0,1-v, u)+2 G(1-v, 1,1-v, 0, u)+G(1-v, 1-v, 0,0, u)+2 G(1-v, 1-v, 1,0, u)-2 G(1-v, 1-v,-v, 1-v, u) \\
& -G(1-v,-v, 1-v, 0, u)+4 G(1-v,-v,-v, 1-v, u)-2 G(-v, 0,1-v, 1-v, u)-2 G(-v, 1-v, 0,1-v, u)-2 G(-v, 1-v, 1-v, 0, u)+4 G(1,0,1,0, u) \\
& +4 G(-v,-v, 1-v, 1-v, u)-4 G(-v,-v,-v, 1-v, u)-G(0,0,1-v, u) H(0, v)-G(0,1,0, u) H(0, v)-G(0,1-v, 0, u) H(0, v)+G(0,1-v, 1-v, u) H(0, v) \\
& -G(0,-v, 1-v, u) H(0, v)-2 G(1,0,0, u) H(0, v)+G(1,0,1-v, u) H(0, v)+G(1,1-v, 0, u) H(0, v)+G(1-v, 0,0, u) H(0, v)-G(1-v, 0,1-v, u) H(0, v) \\
& -G(1-v, 1,0, u) H(0, v)-G(1-v, 1-v, 0, u) H(0, v)-G(1-v,-v, 1-v, u) H(0, v)+G(-v, 0,1-v, u) H(0, v)+G(-v, 1-v, 0, u) H(0, v)+H(1,0,0,1, v) \\
& -G(0,0,1-v, u) H(1, v)-G(0,0,-v, u) H(1, v)+G(0,1,0, u) H(1, v)-G(0,1-v, 0, u) H(1, v)+G(0,1-v,-v, u) H(1, v)-2 G(0,-v, 0, u) H(1, v) \\
& +2 G(0,-v, 1-v, u) H(1, v)+2 G(1,0,0, u) H(1, v)-G(1-v, 0,0, u) H(1, v)+G(1-v, 0,-v, u) H(1, v)-2 G(1-v, 1,0, u) H(1, v)-G(1-v, 0,-v, 1-v, u) \\
& +G(1-v,
\end{aligned}
$$

$\begin{aligned} & -G(0,0, u) \\ & -G(-v, 0,\end{aligned}$
$+2 G(1-$
$-2 G(0,-v$
$v(0,0, v)+H(1,0,1,0, v)$
,v) $-3 G(1-v,-v, u) H(0,1, v)$
v) $-G(1,0, u) H(1,0, v)$
$+G(0, u) H(0,1,0, v)+G(1-v, u) H(0,1,0, v)-G(0, u) H(0,1,1, v)+2 G(-v, u) H(0,1,1, v)+G(0, u) H(1,0,0, v)+G(1-v, u) H(1,0,0, v)+H(1,1,0,0, v)$
$-G(0, u) H(1,0,1, v)+2 G(-v, u) H(1,0,1, v)-G(0, u) H(1,1,0, v)+4 G(1-v, u) H(1,1,0, v)-2 G(-v, u) H(1,1,0, v)+H(0,0,1,1, v)+H(0,1,0,1, v)$
$+G(1-v, 1-v, u) H(0,0, v)+2 G(1-v, 1-v,-v, u) H(1, v)-G(1-v,-v, 0,1-v, u)+H(0,1,1,0, v)+G(1-v, 0,1-v, 0, u)-G(0,1-v, 1,0, u)$
$+4 G(-v, 1-v,-v, 1-v, u)$

Gehrmann, Jaquier, Glover, Koukoutsakis 2011

