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Scattering amplitudes

In past over 30 years, significant progress has been made 
in the studies of scattering amplitudes.

Amplitudes

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

[Parke, Taylor, 1986]
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Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩

(work in momentum space)

Amplitudes Correlation functions

Matrix element of on-shell states and a local operators:
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leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1−4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)
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Operators
Gauge invariant operators are important in QFT.

• Anomalous dimensions (spectrum of hadrons, RG, OPE, …) 
• Correlation functions (e.g., EEC)

Local operators also appear as vertices in EFT Lagrangian.  
For example: Higgs EFT obtained by integrating Top quark loop:

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s
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⇢
1

p2
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h
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T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T
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✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32
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Higgs+gluons scattering

p

p
g H

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,
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cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],
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h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
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T ) can
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Dimension-7 operators

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.

– 3 –

Higgs plus jet production 

High-dimension operators become important.

Dimension-5 operator
O0 = Htr(FμνFμν)
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1 Introduction

O1 = Htr(F ⌫
µ F ⇢

⌫ F µ
⇢ ) , (1.1)

O2 = Htr(D⇢Fµ⌫D
⇢Fµ⌫) , (1.2)

O3 = Htr(D⇢F⇢µD�F
�µ) , (1.3)

O4 = Htr(Fµ⇢D
⇢D�F

�µ) . (1.4)

– 1 –

2-loop: Gehrmann, Jaquier, Glover, Koukoutsakis 2011

1-loop: Dawson, Lewis, Zeng 2014 
2-loop: Jin, GY 2019

Boughezal, Caola, Melnikov, Petriello, Schulze 2013; Chen, 
Gehrmann, Glover, Jaquier 2014; Boughezal, Focke, Giele, Liu, 
Petriello 2015; Harlander, Liebler, Mantler 2016; Anastasiou, Duhr, 
Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 2016; 
Lindert, Kudashkin, Melnikov, Wever 2018; Jones, Kerner, Luisoni 
2018; Neumann 2018; …

A(qH,1g,2g, …, ng) = F𝒪=tr(F2)(1g,2g, …, ng)



Full-color integrand up 
to 4 loops

Integrated results at 3 
loops

Progress in N=4 SYM
ℱn = ∫ d4x e−iq⋅x⟨p1, . . . , pn | tr(F2)(x) |0⟩

Lin, GY, Zhang, 2021

Full-color integrand up 
to 5 loops

Integrated results at 4 
loops

GY, 2016
Boels, Kniehl, Tarasov, GY 2012

Boels, Huber, GY 2017
Guan, Lin, Liu, Ma, GY 2023Huber, von Manteuffel, Panzer, 

Schabinger, GY 2020

Lin, GY, Zhang, 2021

Integrated results 
at 2 loops
Guo, Wang, GY, 2022
Guo, Wang, GY, Yin  to appear

See also: Dixon, Gurdogan, Liu, McLeod, Wilhelm 2021, 2022



Computational tools

𝒪3 = ϕ∂μϕ∂μϕ

𝒪2 = tr(FμνFμν)

• On-shell unitarity method

• Color-kinematics duality

• Master-integral bootstrap

Simple tree blocks -> Higher loop results

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 
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At loop level, a generalization of the above relations provides very strong constraints 
for the integrand. Hundreds of diagrams can be determined by only very few diagrams, 
which we call the master graphs.

Sudakov form factor is a key observable to 
understand the infrared (IR) divergences of 
amplitudes, as well as the factorization 
property of QCD.
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.
In QCD, the known CAD has the same maximal tran-

scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior
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For SU(N) : CA = N d44 =
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, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.

YM         YM⊗

ℱ(l) = ℱtree
∞
∑
l= 1

g2l(−q2)−lϵF (l)ℱ = ∫ d 4x e−iq⋅x⟨p1, p2 |'(x) |0⟩

L-loop L=1 L=2 L=3 L=4

Color Factor CA C2
A C3

A C4
A , d44

[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i= 1 ∫

L
∏

j
d Dℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = −3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops

+ ++
(a)

q
p1

p2

(a)

q

p1

p2

the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.

q

p1

p2

(a) (b) (c)

q

p1

p2

q

p1

p2

(d) (e) (f)

q

p1

p2

` q

p1

p2

` q

p1

p2

`

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys. B425, 217 
(1994); R. Britto, F. Cachazo, and B. Feng, Nucl.Phys. B725, 275 (2005).

[5] T. Becher, M. Neubert, "On the Structure of Infrared Singularities of Gauge-
Theory Amplitudes", JHEP 0906, 081 (2009).

A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + '(ϵ3)

I (a) = [(ℓ3 −p1)2]2 ,

I (b) = (ℓ3 −p1)2 [ℓ2
4 + ℓ2

6 −ℓ2
3 + (ℓ3 −ℓ4 + p1)2 + (ℓ3 −ℓ6 −p1)2] ,

I (c) = [(ℓ3 −p1)2]2 ,

I (d ) = (ℓ3 −p1)2 [(q −ℓ3 −ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ Cu Nu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

Large number of diagrams -> Very few “master” diagrams

Construct final results directly using physical constraints

Bern, Dixon, Durban, Kosower 1994; 
Britto, Cachazo, Feng, 2003

Bern, Carrasco, Johansson 2008

Guo, Wang, GY 2021



Sudakov form factor 
and Casimir scaling conjecture

FL−loop
tr(F2),2 (1g,2g)



Sudakov form factor

Leading IR singularity -> Cusp anomalous dimension

FL−loop
tr(F2),2 (1g,2g)

log F2(1,2) ≃ −
∞

∑
l=1

g2l(
γ(l)

cusp

ϵ2
+

𝒢(l)
coll

ϵ )(−q2)−lϵ + 𝒪(ϵ0)

Logarithm behavior is well-understood:
For dim-reg representation, see:  
Magnea and Sterman 1990; 
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005



Color structure

Up to three loops, only quadratic Casimir appears:

At four-loop, there is a new quartic Casimir which contains non-planar part



Casimir scaling conjecture

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we explicitly check 
that the constraints exclude the appearance of higher Casimir 
invariants at four loops.” 

In "On the Structure of Infrared Singularities of Gauge- Theory Amplitudes", 
JHEP 0906, 081 (2009) 
Thomas Becher and Matthias Neubert conjectured that:

An explicit four-loop computation is needed.



Four-loop Sudakov form factor
• Integrand: unitarity + color-kinematics duality Boels, Kniehl, Tarasov, GY 2012

• Numerical integration: Boels, Huber, GY 2017

Finding Uniform Transcendental (UT) basis is the key

• Analytic integration: Huber, von Manteuffel, Panzer, Schabinger, GY 2020 
(See also: Henn, Korchemsky, Mistlberger 2020)

γ(4)
cusp,NP = − 3072 × (

3
8

ζ2
3 +

31
140

ζ3
2)

1
N2

c
= − 3072 × 1.52

1
N2

c

As mentioned above, physics dictates that the coefficients of orders ϵ{−8,−7,−6,−5,−4,−3}

vanish in the final result, which is numerically indeed the case and provides a strong con-

sistency check of our computation. The coefficients of order ϵ−7 must even vanish in each

of the 23 UT integrals separately. The orders ϵ{−8,−6,−5,−4,−3} are in most cases non-zero in

individual integrals but cancel in the final result. As described below, the precision of the

orders ϵ{−8,−6,−5,−4} is good enough to translate the reported numbers into small rational

multiples of {1, ζ2, ζ3, ζ4}. After doing so, these orders also vanish analytically in the final

result of the nonplanar form factor.

As can be seen from table 1, the first non-zero term is at order ϵ−2. The result 1.60±0.19

has a statistical significance to deviate from zero of 8.4σ. Adding individual uncertainties

linearly to account for potential systematic effects would yield 1.60 ± 0.58; still significantly

non-zero.7 We will argue below that there is no evidence for systematically underestimated

error bars in our calculation.

Translating the result of the order ϵ−2 of the nonplanar form factor into a result for the

sought-after nonplanar four-loop CAD yields for gauge group SU(Nc)

γ(4)cusp, NP = −3072 × (1.60 ± 0.19)
1

N2
c
, (5.7)

where the prefactor 3072 = 2×24×64 is the normalisation stemming from the permutational

sum, the colour factor [42], and the denominator of (2.5), respectively. Compared to the

planar result γ(4)cusp,P = −1752ζ6 − 64ζ23 ∼ −1875, we observe that the nonplanar CAD has

the same sign. If we use Nc = 3, its value becomes γ(4)cusp, NP ∼ −546 ± 65, i.e. the planar

contribution is a factor of 3 – 4 larger.

The result at order ϵ−1 is also given in table 1. This contains the nonplanar four-loop

collinear anomalous dimension:

G(4)
coll, NP = −384× (−17.98 ± 3.25)

1

N2
c
, (5.8)

where the prefactor 384 = 2× 24 × 8 has the similar origin as γ(4)cusp, NP above. Interestingly,

compared to the four-loop planar collinear AD result, G(4)
coll, P = −1240.9(3) [89], we observe

that the nonplanar central value result +(6904±1248)/N2
c indicates the sign is different; it is

also different from the sign of the nonplanar cusp AD above. This is a new feature comparing

to all known planar results in which collinear AD always has same sign as cusp AD.8 Note that

our result is in tension with a vanishing result at the 5.5σ level. The largest contribution to

the error budget within the integrals at this order comes from I(27)8 , which contributes ∼ 1.86,

followed by four integrals which contribute between 0.95 and 1 each, whereas all others are

below 0.75. We mention that the linearly summed error is obtained as −17.98 ± 11.89.

7Note that these numbers are slightly improved compared to those in [15].
8One should also keep in mind that unlike cusp AD, collinear AD is scheme dependent, thus the sign may

change in different schemes.
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Casimir scaling conjecture is incorrect.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)



Spectrum of YM operators

FL−loop
tr(F2),2 (1g,2g)



High dimensional YM operators
Gauge invariant operators:
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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ℱn = ∫ d4x e−iq⋅x⟨p1, . . . , pn |𝒪(x) |0⟩

• Two-loop renormalization and spectrum (e.g dim-16)

• Two-loop EFT amplitudes

• Operator basis

D-dimensional on-shell methods using form factor formalism:

1804.04653, 1904.07260, 1910.09384, with Jin; 2011.02494 with Jin, Ren; 
2202.08285, 2208.08976, 2301.01786, 2312.08445 with Jin, Ren, Yu



Minimal tree form factors

Dictionary for YM operators:

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between
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A minimal tree-level form factor means the number of external gluons is equal to the length
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form factor [53–55]:
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D-dim

Important for capturing 
“Evanescent operators”

One can translate any local operator into “on-shell” kinematics.

Used in N=4 SYM: Zwiebel 2011, Wilhelm 2014



Loop form factor computation

(a) (b) (c) (d)
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p3

Figure 3. Complete set of cuts fully probing contributions from all the master integrals
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p2p3
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(8) cyclic.

p3
p1

p2

(7)

p3

p1

p2

(9) cyclic.

p3
p1

p2

(9)

Figure 4. Master integrals probed by s12-triple cut

(�1)3, while operator from fabc/dabc sector has C-parity CO = +/�, so the total C-parity of

the form factor is �/+ 2. As a result, coe�cients of integrals (5) and (6) as well as (7) and

(8) are related with each other as:

c6I6 =

(
�c5I5

��
1$2

, f -sector

c5I5
��
1$2

, d-sector
, c8I8 =

(
�c7I7

��
1$3

, f -sector

c7I7
��
1$3

, d-sector
. (3.2)

Notice also that I3 and its two cyclic partners share a degenerate expression, but here we

treat them as distinct ones and sum cyclic permutations together.

A spanning set of planar cuts fully probing these master integrals are shown in Fig. 3.

As already mentioned, a particular cut can probe only a subset of master integrals. Among

master integral coe�cients, c1, c2, c3, c4 are probed respectively by cuts (c), (b), (a), (d)

in Fig. 3. To probe c5 one should apply s123-triple-cut (a), which also probes the coe�cient

of integral I6|(p3!p1!p2!p3). To probe c7 and c9 one can apply s12-triple-cut (b), or s312-

triple-cut. Notice the coe�cients of I8|(1!3!2!1) and I9|(1!2!3!1) can also be probed by

cut (b). Since di↵erent cut channels can probe same or symmetry-related master integrals,

this provides strong consistency checks for the results.

Below we provide some more details of the calculation by considering a particular cut

channel. Taking cut (b) in Fig. 3 as an example, this cut allows us to determine the coe�cients

of master integrals as shown in Fig. 4.

The cut integrand is obtained by sewing a planar four-gluon tree form factor together

with a planar five-gluon tree amplitude. Since we consider D-dimensional cuts, the tree results

are computed via Feynman rules. The sewing process involves the helicity sum of cut states:
Z

dPS
X

helicities of ✏l1,l2,l3

F (0)(p3,�l1,�l2,�l3)A
(0)(p1, p2, l3, l2, l1) , (3.3)

2Considering f
abc

F
a
F

b
F

c, under C-parity it becomes fabc
F

c
F

b
F

a(�1)3 which remains the same.
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(1) (2)

Figure 1. (1) The 2-loop non-planar topology has vanishing color factor. (2) Nonplanar topology
contributing to leading color begins to appear at 3-loop.

(1)
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p2p3
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p1

p2
p3

(4)

p1

p2
p3

(9)

p3

p2

p1

(5)

p1

p2
p3

(6)

p3
p1

p2

(7)

p2

p3

p1

(8)

p3

p1

p2

Figure 2. Master integrals (plus their cyclic permutations) that contribute to planar two-loop minimal
form factors of length-3 operators.

loops nonplanar topology (even at leading Nc color) will contribute, as shown in Fig. 1(b),

and therefore nonplanar cut is necessary. Since the one-loop case is quite simple, below we

will focus on the two-loop computation.

The complete set of two-loop master integrals for minimal length-3 form factors are given

in Fig. 2. With color decomposition, the two-loop color-ordered form factors, associated with

color factor tr(T a1T a2T a3), can be written as a sum of master integrals Ii as

F (2)
O

=
⇣
c1I1 + c2I2 + c3I3 + c4I4 +

⇥
c5I5 + c6I6

⇤
+

⇥
c7I7 + c8I8

⇤
+ c9I9

⌘
+ cyc.perm.(1, 2, 3) ,

(3.1)

where master integrals {Ii} strictly correspond to the topology and labeling given in Fig. 2.

The master coe�cients ci are what we want to obtain using unitarity-IBP method. Before

considering that, let us discuss one important feature of the master integrals.

One can see that (5), (6) and (7), (8) in Fig. 2 are pairs of ‘mirror’ topologies. In

color-ordered form factors, they should be considered to be independent because they are

inequivalent planar diagrams and therefore probed by di↵erent planar cuts. On the other

hand, they are closely related to each other: graphically, (5) and (6) are related by label

flipping 1 $ 2, while (7) and (8) are related by flipping 3 $ 1. From the planar color point

of view, they are related by reversing color orientation, which is equivalent to a “C-parity

transformation” (see e.g. [56]), so the kinematic parts of a fixed color order tr(123) and the

reversed color order tr(321) only di↵er by an overall C-parity factor decided by external

particles and inserted operator. The external particles are three gluons which have C-parity
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3. LOOP COMPUTATION VIA UNITARITY-IBP CONTENTS

We summarize the operators in different sectors according the form factor structure as

Operator F
(0)(�,�,+) F

(0)(�,�,�) color factor
O↵; f / A1 0 f abc

O↵;d / A1 0 dabc

O� ; f 0 / A2 f abc

O� ;d 0 / A2 dabc

(11)

where the two helicity sectors are associated to two spinor factors:

A1 = h12i3[13][23] , A2 = h12ih13ih23i . (12)

As examples, let us consider again the dim-10 operators. Firstly, by properly (anti)symmetrizing
the set of basis (7), one can write the operators in different color sectors as

Example: Dim-10 basis (Form II)

O
0
10;1 =

1
2

f abc(D12F34)a(D15F34)b(F25)c , O
0
10;2 = f abc(D12F34)a(D5F34)b(D1F25)c ,

O
0
10;3 = dabc(D12F34)a(D5F34)b(D1F25)c , (13)

O
0
10;4 =

1
2

f abc(D12F34)a(D1F35)b(D2F45)c , O
0
10;5 =

1
2

f abc(D12F34)a(D12F35)b(F45)c .

Furthermore, by investigating the spinor factors of minimal form factors, the operators can
be put in different helicity sectors via certain linear combinations. We summarize the final
dimension-10 length-3 basis operators that will be used for loop computation as

Example: Dim-10 basis (Form III)

Basis operator F
(0)(�,�,+) F

(0)(�,�,�) color factor
O10;↵; f ;1 =

1
2@

2
OP1 � 1

12@
4
OP2

1
2 s123A1 0 f abc

O10;↵; f ;2 =O
0
10;1 �O010;5

1
2 s12A1 0 f abc

O10;↵;d;1 =O
0
10;3

1
2(s13 � s23)A1 0 dabc

O10;� ; f ;1 =
1
12@

4
OP2 0 1

4 s2
123A2 f abc

O10;� ; f ;2 =O
0
10;5 0 1

4(s
2
12 + s2

23 + s2
13)A2 f abc

(14)

3 Loop computation via unitarity-IBP

To compute the loop form factors for the basis operators, we apply the unitarity-IBP strategy
that combines unitarity cut [11–13] and integration by parts (IBP) methods [14, 15] (using
public packages e.g. [16–19]). The work flow of our strategy can be illustrated as follows:

F
(l)
���
cut
=
Y
(Tree blocks) = Cut integrand

IBP with cuts����������!
X

i

ci
�
Ii
��
cut
�

. (15)

This strategy has been used to study form factors and Higgs amplitudes in [6,7,20,21] and for
pure gluon amplitudes in [22, 23]. Similar strategy has been used in the numerical unitarity
approach [24,25], and the idea of applying cuts to simplify IBP has also been used in e.g. [26–
29].

The complete set of two-loop master integrals for minimal length-3 form factors are given
in Fig. 1. The two-loop color-ordered form factors, associated with color factor tr(T a1 T a2 T a3)
via color decomposition, can be written as a sum of master integrals Ii as

F (2)
O
=
î
c1 I1 + c2 I2 + c3 I3 + c4 I4 +

�
c5 I5 + c6 I6
�
+
�
c7 I7 + c8 I8
�
+ c9 I9

ó
+ cyc.perm. , (16)

4

On-shell unitarity-IBP method:



Evanescent operators
2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ
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𝒪(n)
4-ferm = ψ̄γ[μ1…γμn]ψ ψ̄γ[μ1

…γμn]ψ , n ≥ 5 .

Buras, Weisz 1990; Dugan, Grinstein 1991; Herrlich and U. Nierste 1994

Four-fermion dimension-6 operators:

Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ



Evanescent operators

In this paper, we consider a new class of evanescent operators in the pure Yang-Mills

theory, which are composed of field strength Fµν and covariant derivatives Dµ. A simple

example of such operators can be given as

Oe =
1

16
δµ1µ2µ3µ4µ5
ν1 ν2 ν3 ν4 ν5tr(Dν5Fµ1µ2Fµ3µ4Dµ5Fν1ν2Fν3ν4) , (1.2)

where δµ1..µn
ν1...νn = det(δµν ) is the generalized Kronecker symbol (see Section 2 for detail). This

operator is zero in four dimensions but has non-trivial matrix elements such as form factors

in general d dimensions. For example, its (color-ordered) minimal tree-level form factor can

be given as

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (1.3)

which is a non-trivial function of Lorentz product of momenta and polarization vectors in d

dimensions. The main goal of this paper is to study the classification of such operators and

their one-loop renormalization.

Unlike the four fermion operators in (1.1), due to the insertion of covariant derivatives

and different ways of Lorentz contractions, the gluonic evanescent operators like (1.2) exhibit

richer structures. Moreover, at a given mass dimension, the number of all the possible Lorentz

contraction structures is finite, which means that the gluonic evanescent operators are also

finite, calling for a systematic way to construct their independent basis. To classify these

operators, it will be convenient to apply the correspondence between local operators and

form factors [13, 14]. The main advantage is that form factors are on-shell matrix elements,

thus the constraints from the equation of motion and Bianchi identities can be taken into

account automatically, see e.g. [15]. Here, due to the special nature of evanescent operators,

the usual spinor helicity formalism will be insufficient. Instead, one needs to consider form

factors consisting of d-dimensional Lorentz vectors (i.e. external momenta and polarization

vectors) such as in (1.3). Since the Yang-Mills operators contain non-trivial color factors, the

form factor expressions provide also a useful framework to organize the color structures. One

can first classify function basis at the form factor level and then map back to basis operators.

We will apply a strategy to construct the basis evanescent operators along this line.

To study the quantum effect of evanescent operators, we perform one-loop computation of

their form factors. The calculation is based on the unitarity method [16, 17] in d dimensions.

Using the form factor results, we can study their renormalization and operator-mixing behav-

iors. We provide explicit results of the one-loop renormalization matrices and the anomalous

dimensions for the dimension-ten basis operators. These one-loop results will be necessary

ingredients for the two-loop renormalization of physical operators.

This paper is organized as follows. In Section 2, we first give the definition of evanescent

operators and then describe the systematic construction of the operator basis. In Section 3 we

first explain the one-loop computation of full-color form factors using the unitarity method,

then we discuss the renormalization and obtain the anomalous dimensions of the complete set

of evanescent operators with dimension 10. A summary and discussion are given in Section 4

followed by a series of appendices. Several technique details in the operator construction are
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2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely
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d-dim
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Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here
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Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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dimension goes to its physical value (usually four dimensions)
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Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ

Systematic classification and renormalization at two-loop order.



• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

Evanescent operators

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.
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Evanescent operators

4

conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs can be cal-
culated within each sector.

The complex anomalous dimensions start to appear in
a sector at dimension 12, where the operators are
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where “Rev.” denotes reversion within the trace. Note
that the first operator in (13) is the only dimension-12
operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on oper-
ators that are Lorentz scalars. An alert reader may find
that the above operators are actually total derivatives
of dimension-10 tensor-2 operators. We will see in (15)
below that the eigenvalue equation for these eight opera-
tors is not factorizable (with rational coe�cients), which
implies that their Z matrix cannot be decomposed into
smaller blocks. Thus there should exist eight dimension-
10 tensor-2 primary operators which give the same eight
anomalous dimensions.

The one-loop dilatation matrix of this sector is the
left-upper part of the following matrix: (the full matrix
is the dilatation matrix of a dimension-12 sector in the
Yang-Mills scalar theory, which will be described soon.)
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The one-loop ADs are given by the eigenvalue equation:
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with �
(1)
⇤ = x

2�0
. Remarkably, two of the �

(1)
⇤ ’s are com-

plex with numerical values:

0.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [20].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[21].
We further mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].
To study the complex ADs in a model with mass fields,

we add Nf scalar fields to the YM

LYMS = LYM +

NfX
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where Nf is the number of flavors and the scalars are in
the adjoint representation with a = 1, . . . , N2

c
� 1. The

theory is called as the Yang Mills scalar theory (YMS).
The one-loop beta function is di↵erent from YM and one
should change the �0 in (9) to

�
YMS
0 =

11

3
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6
. (18)

For Nf = 22, the one-loop beta function vanishes and for
Nf > 22, the fixed point becomes an IR one and is at
d < 4.
One can get a sector by enlarge the one in (13) by 2

more flavor singlet operators
X
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One-loop mixing matrix

4

(namely, (Z(1)) p
e = 0) [13], one can safely divide oper-

ators into evanescent and physical sectors and compute
their one-loop ADs separately. Our calculation shows
that the one-loop complex ADs, which only happen in
the evanescent sectors, begin to appear at canonical di-
mension 12. This is consistent with the fact that negative
norm states start at this dimension as discussed in the
last section. The operator basis can be further classified
into small sectors according to their parity under charge
conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs for opera-
tors in di↵erent sectors are just eigenvalues of di↵erent
sub-blocks.

As a concrete example, at length four, the lowest di-
mensional sector including complex ADs is a dimension-
12 sector containing eight evanescent operators:
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.

The one-loop Z-matrix of this sector reads
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(14)

The one-loop ADs �
(1)
⇤ are roots of the following eigen-

value equation:
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which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new

A pair of complex 
eigenvalues:

Dim-12 evanescent operators

4
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norm states start at this dimension as discussed in the
last section. The operator basis can be further classified
into small sectors according to their parity under charge
conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs for opera-
tors in di↵erent sectors are just eigenvalues of di↵erent
sub-blocks.
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.

The one-loop Z-matrix of this sector reads
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x
8
�

609x7

44
+

160645x6

1936
�

2994289x5

10648
+

137886093x4

234256

�
1002685855x3

1288408
+

17961071517x2

28344976
�

22596287199x

77948684

+
195122885985

3429742096
= 0 , (15)

which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new

• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.



• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

“Color” evanescent operators

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.

symbols with rank higher than Nc. Here a rank-n Kronecker symbol is defined as

�
i1···in
j1···jn

:=

�������

�
i1
j1

. . . �
i1
jn

...
...

�
in
j1

. . . �
in
jn

�������
. (2.3)

Following we give a further explanation.

New basis of color factors. Recall that single traces and multi traces of the same length

form a natural basis of color factors. For example, length-4 trace basis includes six single traces

and three double traces. A trace color factor can be constructed by color contraction, i.e.

to contract a product of T am
imjm

with a delta tensor in fundamental representation space, such

as tr(123) = �
j1
i2
�
j2
i3
�
j3
i1
T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

, where in, jn are valued in {1, 2, . . . , Nc}. Accordingly, a

product of T am
imjm

contracted with Kronecker symbols usually gives a linear combination of

traces, e.g.

�
i1i2i3
j1j2j3

T
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T
a2
i2j2

T
a3
i3j3

= tr(123) + tr(132) = d
a1a2a3 . (2.4)

We say a color factor is of �-n if the highest Kronecker symbol contained by it has rank n. So

d
abc is of �-3. A color factor of �-n vanishes for integer Nc less than n, since �

i1···in
j1···jn

is totally

anti-symmetric among indices lying in the same row.

For a given length-L, one can first pick up the only �-L color factor, then all the �-(L�1)

ones and so on. In this way one obtains a new basis of color factors, layered in ranks of

Kronecker symbols. Take length four as an example, the only �-4 factor reads

�
i1i2i3i4
j1j2j3j4

T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

T
a4
i4j4

= �
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X

⌧2Z3

tr(1⌧(2))tr(⌧(3)⌧(4)) . (2.5)

The complete length-4 �-3 color factors that are not only linearly independent themselves but

also independent of (2.5) can be chosen as
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�
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, �
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, �

i1i4i3
j1j4j2

�
i2
j3
, �

i1i2i4
j1j2j3

�
i3
j4
, �
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�
i4
j2
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a1
i1j1

T
a2
i2j2

T
a3
i3j3

T
a4
i4j4

. (2.6)

Their expansion in trace bases reads,

�
i�(1)i�(2)i�(3)

j�(1)j�(2)j�(4)
�
i�(4)

j�(3)
T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

T
a4
i4j4

= tr(�(3)�(4)�(1)�(2))�
1

2
tr(�(3)�(4))tr(�(1)�(2))

+ �(1) $ �(2) , � 2 S3 . (2.7)

For SU(Nc) theory all the trace factors are at least of �-2, since the neighboring two single

delta �
jm�1
im

�
jm
im+1

can be rewritten as �imim+1
jm�1jm

. The rest three independent length-4 �-3 factors

can be chosen as the three double traces,

�
i1i⌧(2)
j1j⌧(2)

�
i⌧(3)i⌧(4)
j⌧(3)j⌧(4)

⇥ T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

T
a4
i4j4

= tr(1⌧(2))tr(⌧(3)⌧(4)) , ⌧ 2 Z3 . (2.8)

So far we have created a new basis of length-4 color factors including one �-4, five �-3 and

three �-2.

– 4 –

Mathematically we make analytical continuation for Nc and consider 
AD as a function of Nc.



Jin, Ren, GY, Yu, to appear

• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

“Color” evanescent operators

Figure 2: anomalous dimensions of the operators in dim-8 length-4 (�)2(+)2 sector.

Riemann surface and cycles (?)

Figure 3: anomalous dimensions of the operators in dim-8 length-4 (�)2(+)2 sector.
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Complex AD

A sector of dim-8 operators

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.



• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.

“Color” evanescent operators

Jin, Ren, GY, Yu, to appear

(a) (b)

Figure 7: The real parts of some ADs in the size-16 sector of dim-12, length-4, C-even,

(�)2(+)2, and type D-(2,2). The eigenvalues which always keep real within the concerned

interval are not drawn.

Figure 8: The counting of complex ADs and minority signs of the Gram matrix for the

size-16 sector of dim-12, length-4, C-even, (�)2(+)2, and type D-(2,2)..

4.4 Anomalous dimensions as Riemann surfaces

If Nc is valued in complex plane, then the ADs as functions of Nc form a Riemann surface.

More precisely, the degree-n eigenvalue equation f = 0 defines a degree-n algebraic curve in

P
2 (�, Nc should be considered as homogeneous coordinates x/z, y/z).

This curve has no singular points (no nonzero (x, y, z) satisfying f = @xf = @yf = @zf),

so from the Plücker’s formula [15], the genus of this curve is (n � 1)(n � 2)/2. (number of

homologous inequivalent 1-cycles are 2g = (n� 1)(n� 2), but following 1-cycles we show are

possibly not homologous inequivalent.) In Figure 9 one genus of the algebraic curve defined

from (4.10) is drawn under the 3d projection.

As mentioned in Appendix C, the number of di↵erent exceptional points is no larger than

n(n� 1). From (4.12) we see the discriminant of the (�)4 sector is a degree-12 polynomial of

– 21 –

A sector of dim-12 operators

Rich structure for higher 
dimensional operators



Summary

On-shell 
Amplitudes

Off-shell 
Operators

Form Factors

Efficient new methods

New higher-loop results

Novel structures uncovered

• More to be explored !

Thank you for your attention!
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For example,          contains 

Evanescent operators

Evanescent operators are important for renormalization 
beyond one-loop order.

convenient order to renormalize the form factors of a given operator is from lower-point ones

to higher-point ones. In this way, one can use the mixing matrix elements associated with

lower-length operators as input in the renormalization of a higher-point form factor. This not

only simplifies the computation but also provides a check for the computation.

In the MS scheme, the Z matrices have the blockwise structures

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(2)
pp Z(2)

pe

Z(2)
ep Z(2)

ee

!
, (3.28)

where the block Z(1)
ep vanishes. This is due to the fact that the fact that the form factor of an

evanescent operator is one order higher in the ✏ expansion. According to (3.15) and (3.16),

the dilatation matrices have similar blockwise structures
 
D(1)

pp D(1)
pe

0 D(1)
ee

!
,

 
D(l)

pp D(l)
pe

D(l)
ep D(l)

ee

!
. (3.29)

Note that starting from two loops, all four blocks of Z and D matrices are in general non-

vanishing.

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(l)
pp Z(l)

pe

Z(l)
ep Z(l)

ee

!
, l � 2 (3.30)

3.3.2 Finite renormalization scheme

We give an introduction for the finite renormalization scheme in this subsection. To distin-

guish from the MS scheme, we use Ẑ and D̂ to denote the Z matrix and dilatation matrix in

the finite renormalization scheme. The most important feature of the finite renormalization

scheme is that the block D̂(l)
ep in the dilatation matrix is O(✏) at all orders. Therefore in the

✏ ! 0 limit, the dilatation matrix take the block upper triangular form [3, 4, 7]:

 
D̂(l)

pp D̂(l)
pe

0 D̂(l)
ee

!
. (3.31)

We will see that this simplifies the calculation of physical anomalous dimensions.

In the finite renormalization scheme, the renormalization of physical operators are the

same as the ones in the MS scheme and we have

Ẑ(l)
pp = Z(l)

pp , Ẑ(l)
pe = Z(l)

pe . (3.32)

While the renormalization of evanescent operators is di↵erent. This scheme takes into account

the fact that the form factor of an evanescent operator is one order higher in the ✏ expansion,

and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”
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the finite renormalization scheme. The most important feature of the finite renormalization

scheme is that the block D̂(l)
ep in the dilatation matrix is O(✏) at all orders. Therefore in the

✏ ! 0 limit, the dilatation matrix take the block upper triangular form [3, 4, 7]:

 
D̂(l)

pp D̂(l)
pe

0 D̂(l)
ee

!
. (3.31)

We will see that this simplifies the calculation of physical anomalous dimensions.

In the finite renormalization scheme, the renormalization of physical operators are the

same as the ones in the MS scheme and we have

Ẑ(l)
pp = Z(l)

pp , Ẑ(l)
pe = Z(l)

pe . (3.32)

While the renormalization of evanescent operators is di↵erent. This scheme takes into account

the fact that the form factor of an evanescent operator is one order higher in the ✏ expansion,

and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”
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but the lower-loop evanescent operator result are needed. 

Again, Ẑ(2) j

i

��
fin

only contributes to the block Z(2)
ep . At the two-loop order, one can check the

divergent mixing to the physical operators in Ẑ 0(2) j

i
should be the same as in Ẑ(2) j

i

��
div

. From

(3.16), one can see that Ẑ(2) j

i

��
fin

contributes to the O(✏) of the two-loop dilatation matrix,

therefore it does not contribute to the calculation of the two-loop anomalous dimensions (it

begins to contribute at the three-loop order).

As mentioned at the beginning of this subsection, the key feature of the finite renormal-

ization scheme is that the dilatation matrix has the form of (3.31) under the limit ✏ ! 0.

At the one-loop order, this is straightforward since Ẑ(1)
ep is finite, thus D̂(1)

ep ⇠ O(✏). At the

two-loop order, the leading divergence of Ẑ(2)
ep is of O(1/✏), and the relation (3.17) still applies

to the leading divergences (which is one order higher in the ✏-expansion than usual cases)

[1, 4]:

Ẑ(2)
ep | 1

✏�part =
1

2

�
Ẑ(1)
ep Ẑ(1)

pp + Ẑ(1)
ee Ẑ(1)

ep

�
� �0

2✏
Ẑ(1)
ep . (3.39)

Using (3.39) and (3.16), it should then be clear that D̂(2)
ep is also O(✏). Note that the block

Ẑ(1)
ep which is finite is necessary in this cancellation. We check that our explicit two-loop

calculations indeed confirm this structure.

Since block upper triangular form (3.31), the physical anomalous dimensions are just the

eigenvalues of the D̂pp. This does not mean that evanescent operators have no e↵ect on the

physical anomalous dimensions. At the two-loop order, the e↵ect of the evanescent opera-

tors on D̂(2)
pp comes from the term (�2✏Ẑ(1)

pe Ẑ
(1)
ep ) according to (3.16). Obviously, evanescent

operators should be renormalized up to the one-loop order in the calculation of the two-loop

physical anomalous dimensions.

We point out here that anomalous dimensions are scheme dependent, due to the non-

vanishing beta function in the pure YM theory, and therefore, the results in the finite renor-

malization scheme are di↵erent from the ones in the MS scheme. On the other hand, at the

conformal fixed point, anomalous dimensions should be independent of the renormalization

scheme. A detailed discussion of the scheme dependence of anomalous dimensions will be

given in Section 5.2.

4 Calculation of bare form factors

In this section, we consider the computation of bare form factors up to the two-loop order.

In Section 4.1, we give an overall description of our calculation. In Section 4.2, we discuss

two methods for integral tensor reduction in detail.

4.1 Unitarity-IBP method

The main strategy of our calculation is based on a combination of the unitarity method [17–

19] and the IBP reduction [20, 21]. This strategy has been applied to compute form factors

(and Higgs amplitudes) in [28–30] and for pure gluon amplitudes in [31–33]. The numerical

IBP method by cuts was also studied in [34–39].
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Color-kinematics duality

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 

double-copy

CK-duality
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At loop level, a generalization of the above relations provides very strong constraints 
for the integrand. Hundreds of diagrams can be determined by only very few diagrams, 
which we call the master graphs.

Sudakov form factor is a key observable to 
understand the infrared (IR) divergences of 
amplitudes, as well as the factorization 
property of QCD.
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).

2

The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1
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Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],
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At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is
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i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
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where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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that only 10 of them, (21) – (30) as shown in Fig. ??,
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Integrands are only identified up to terms that inte-
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand
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graphs @    
5-loop:
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When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = −3072 × (1.60 ± 0.19) 1
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Sudakov Form Factor in N=4 SYM 
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].
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Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + '(ϵ3)

I (a) = [(ℓ3 −p1)2]2 ,

I (b) = (ℓ3 −p1)2 [ℓ2
4 + ℓ2

6 −ℓ2
3 + (ℓ3 −ℓ4 + p1)2 + (ℓ3 −ℓ6 −p1)2] ,

I (c) = [(ℓ3 −p1)2]2 ,

I (d ) = (ℓ3 −p1)2 [(q −ℓ3 −ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ Cu Nu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

Large number of diagrams Very few “master” diagrams

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 

double-copy

CK-duality
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amplitudes, as well as the factorization 
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior

2

0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
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�b

�f
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�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)

24
The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],
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At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is
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SYM has been computed [12–14] to be
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CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].
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The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)

24
The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.

YM         YM⊗

ℱ(l) = ℱtree
∞
∑
l= 1

g2l(−q2)−lϵF (l)ℱ = ∫ d 4x e−iq⋅x⟨p1, p2 |'(x) |0⟩

L-loop L=1 L=2 L=3 L=4

Color Factor CA C2
A C3

A C4
A , d44

[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i= 1 ∫

L
∏

j
d Dℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = −3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops

+ ++
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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p2

(a) (b) (c)

q
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p2

q

p1

p2

(d) (e) (f)

q

p1

p2

` q

p1

p2

` q

p1

p2

`

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys. B425, 217 
(1994); R. Britto, F. Cachazo, and B. Feng, Nucl.Phys. B725, 275 (2005).

[5] T. Becher, M. Neubert, "On the Structure of Infrared Singularities of Gauge-
Theory Amplitudes", JHEP 0906, 081 (2009).

A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + '(ϵ3)

I (a) = [(ℓ3 −p1)2]2 ,

I (b) = (ℓ3 −p1)2 [ℓ2
4 + ℓ2

6 −ℓ2
3 + (ℓ3 −ℓ4 + p1)2 + (ℓ3 −ℓ6 −p1)2] ,

I (c) = [(ℓ3 −p1)2]2 ,

I (d ) = (ℓ3 −p1)2 [(q −ℓ3 −ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ Cu Nu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

CK-duality
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Three-point form factors
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

2

those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet
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q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-

Master graphs
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