R measurements at **BESIII**

Guangshun Huang (黄光顺) University of Science and Technology of China

第六届重味物理与量子色动力学研讨会 Apr.20, 2024, Qingdao

Outline

> Introduction

> Recap of BESII R measurements

> R scans at BESIII

- 4 points test run
- 104 points in 3.85-4.6 GeV
- 22 points in 2.0-3.08 GeV
- First R values at BESIII

> Summary

Standard Model

- Successful, but many parameters;
- Precision test needed!

SM parameters

Quantity	Value	Standard Model	Pull	Quantity	Value	Standard Model	Pull
M_Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3	$\overline{m_t \; [\text{GeV}]}$	172.89 ± 0.59	173.19 ± 0.55	-0.5
Γ_Z [GeV]	2.4955 ± 0.0023	2.4942 ± 0.0009	0.6	M_H [GeV]	125.30 ± 0.13	125.30 ± 0.13	0.0
$\sigma_{\rm had}$ [nb]	41.481 ± 0.033	41.482 ± 0.008	0.0	M_W [GeV]	80.387 ± 0.016	80.361 ± 0.006	1.6
R_e	20.804 ± 0.050	20.736 ± 0.010	1.4		80.376 ± 0.033		0.5
R_{μ}	20.784 ± 0.034	20.735 ± 0.010	1.4		80.370 ± 0.019		0.5
R_{τ}	20.764 ± 0.045	20.781 ± 0.010	-0.4	Γ_W [GeV]	2.046 ± 0.049	2.090 ± 0.001	-0.9
R_b	0.21629 ± 0.00066	0.21581 ± 0.00002	0.7		2.195 ± 0.083		1.3
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0	$g_V^{\nu e}$	-0.040 ± 0.015	-0.0398 ± 0.0001	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01619 ± 0.00007	-0.7	$g^{ u e}_A$	-0.507 ± 0.014	-0.5064	0.0
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.5	$Q_W(e)$	-0.0403 ± 0.0053	-0.0476 ± 0.0002	1.4
$A_{DD}^{(0,\tau)}$	0.0188 ± 0.0017		1.5	$Q_W(p)$	0.0719 ± 0.0045	0.0711 ± 0.0002	0.2
$A^{(0,b)}$	0.0996 ± 0.0016	0.1030 ± 0.0002	-2.1	$Q_W(Cs)$	-72.82 ± 0.42	-73.23 ± 0.01	1.0
A_{FB}	0.0707 0.0025	0.0726 + 0.0002	2.1	$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.88 ± 0.02	0.1
A_{FB}	0.0707 ± 0.0035	0.0736 ± 0.0002	-0.8	\widehat{s}_Z^2 (eDIS)	0.2299 ± 0.0043	0.23121 ± 0.00004	-0.3
$A_{FB}^{(o,o)}$	0.0976 ± 0.0114	0.1031 ± 0.0002	-0.5	τ_{τ} [fs]	290.75 ± 0.36	288.90 ± 2.24	0.8
\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23153 ± 0.00004	0.7	$\frac{1}{2}(g_{\mu} - 2 - \frac{\alpha}{\pi})$	$(4511.18 \pm 0.78) \times 10^{-9}$	$(4508.74 \pm 0.03) \times 10^{-9}$	3.1
	0.23148 ± 0.00033		-0.2				
	0.23129 ± 0.00033		-0.7				
A_e	0.15138 ± 0.00216	0.1469 ± 0.0003	2.1	• 2	indonond	ont onos.	
	0.1544 ± 0.0060		1.2	· J	παερεπα	EIIL UHES.	
	0.1498 ± 0.0049		0.6		•		
A_{μ}	0.142 ± 0.015		-0.3			1.	
$A_{ au}$	0.136 ± 0.015		-0.7	α,	G_{Γ} and N	7,	
	0.1439 ± 0.0043		-0.7	· · · · · · · · · · · · · · · · · · ·	Γ	2'	
A_b	0.923 ± 0.020	0.9347	-0.6	_ •		-	
A_c	0.670 ± 0.027	0.6677 ± 0.0001	0.1		ohal fit nr	oforrad	
A_s	0.895 ± 0.091	0.9356	-0.4		obai iit pi		

$m_{\rm H},\,m_{\rm t}\,\text{and}\,\,\alpha$ in SM fit

Improvement due to better precision of α , ...

Uncertainties of SM parameters

$\Delta \alpha (M_7^2)$

- $\Delta \alpha(s) = \Delta \alpha(s)_{\text{lepton}} + \Delta \alpha(s)_{\text{top}} + \Delta \alpha^{(5)}_{\text{had}}(s)$; Dominant: $\Delta \alpha^{(5)}_{\text{had}}(s) = -\frac{\alpha s}{3\pi} \operatorname{Re} \int_{E_{\text{th}}}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\varepsilon)}$

 $a_{\mu} \equiv (g_{\mu} - 2)/2$

• ~5 σ discrepancy?

Tension also from $\pi^+\pi^-$ in [0.32, 1.2] GeV by CMD-3 (arXiv:2302.08834)

2024.4.20

Guangshun Huang: R at BESIII

8

• R in low energy matters more!

- R is one of the most fundamental quantities in particle physics that directly reflect the flavor and color of quarks.
- **Directly test** quark model & QCD, and **discover** new particles.

Measurement of R Values

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had}} \cdot (1 + \delta)$$

- N_{had}: observed hadronic events
- N_{bg}: background events
- L: integrated luminosity
- ϵ_{had} : detection efficiency for N_{had}
- δ : radiative correction factor
- $\sigma_{\mu\mu}$: can be precisely calculated(QED). Measurement of R is to measure the total $\sigma(e^+e^-\rightarrow hadrons)$

Except for controlling each item to the precision requested, stable long term machine and detector performance is crucial.

R Scans at **BESII**

 6 + 85 energy points, total ~5 pb⁻¹ data, average uncertainty 6.6%, factor of 2~3 better.

2024.4.20

Relative Contributions to the Uncertainties of a_{μ} and $\Delta\alpha(M_{z}{}^{2})$

After **BESII** R scan

Before BESII R scan

Impact of BESII R to Higgs mass From SM fit:

Impact of BESII R to muon (g_{μ} -2)

15

Last data at BESII

 Large samples at 2.6, 3.07, 3.65 GeV just before shutdown, ~10 pb⁻¹, uncertainties ~3.5%

• PLB677, 239 (2009)

Bird View of BEPCII /BESIII

BESIII

detector

4.2IHEP, Beijing

Storage ring

BSRF

Beijing electron positron collider BEPCII

Beam energy 1.0-2.45 GeV Energy spread: 5.16 \times 10^{-4}

Linac

Design luminosity 1×10^{33} /cm²/s @ ψ (3770) achieved Apr.5, 2016.

2004: start BEPCII construction 2008: test run of BEPCII 2009-nowis BECPII/BESIII data taking7

The BESIII Detector

BESIII Data sets

$\Delta \alpha (M_Z^2)$ and a_{μ} : Status BESIII starting

Burkhardt, Pietrzyk 2011

TABLE I. Contributions to $\Delta \alpha_{had}^{(5)}(m_Z^2)$.

Range \sqrt{s} , GeV	$\Delta lpha$	Relative error			
$ ho (\pi^+\pi^-)$	0.00349	0.5%			
Narrow resonances	0.00184	3.1%			
1.05-2.0	0.00156	15%			
2.0–5.0	0.00371	5.0%			
5–7	0.00183	6%			
7–12	0.00304	1.4%			
>12	0.01203	0.2%			
	0.02750	1.2%			
Still the 2 nd largest one.					

R Scan Strategy at BESIII (original plan)

Phase I: pre-study,

Machine study at 2.0, 2.5 and 4.2(4.6) GeV, MC tuning, ...

• Phase II: scan continuum region,

15 points in 2.0–3.6 GeV, step 100 MeV, 100k+ hadrons<3 GeV.

•Phase III: scan resonance region,

~100 points in 3.8–4.6 GeV, 100k events, step 2, 5,10, 20 MeV.

(10⁸ hadrons at 4040, 4160, 4415 for radiative decay search?)

BESIII R Scan in 3.8 - 4.6 GeV

- Data taken in 2013.12.9 2014.1.24;
- 104 energy points in total, ~800 pb⁻¹;
- >100k hadronic events each points.

Low energy run in 2.0 – 3.08 GeV

- Data taken in 2014.12.30 2015.6.16;
- 22 points, ~650 pb⁻¹;
- Unique sample in the energy range.

Analysis with continuum data

- 14 points in 2.2324 3.671 GeV:
 - 4 of test run: 2.2324, 2.4, 2.8, 3.4 GeV;
 - $-3 \text{ of J/}\psi \text{ scan: } 3.05, 3.06, 3.08 \text{ GeV};$
 - $-4 \text{ of } \tau \text{ scan: } 3.5424, 3.5538, 3.5611, 3.6002 \text{ GeV};$
 - $-2 \text{ off } \psi(3770)$: 3.5, 3.671 GeV;
 - $-1 \text{ off } \psi(3686)$: 3.65 GeV.
- Goal: 3% precision;

Strategy of hadron selection

Background level

Hadron production and detection

Guangshun Huang: R at BESIII

String fragmentation scheme: LUARLW

String fragmentation in t-x space

2 cluster divided at vertex V

LUARLW: charged multiplicity

LUARLW: polar angle $\cos\theta$

LUARLW: neutral multiplicity for 2-prg

HYBRID: an alternative generator

- Combination of Phokhara, ConExc, LUARLW;
- Phokhara: 10 measured exclusive processes with intermediate states $(2\pi, 3\pi, 4\pi,...)$;
- ConExc: 47 measured exclusive processes assuming PHSP model (KKπ, KKππ, γJ/ψ,...);
- LUARLW: for the rest, but no repeating.

• Idea: as much experimental info as possible.

Why HYBRID?

At low energy, cross sections were largely measured:

HYBRID: charged multiplicity

Efficiencies

ISR correction (1+ δ)

• Feynman Diagram scheme used:

LUARLW vs HYBRID

\sqrt{s} (GeV)	LUARLW ε _{had} (%)	HYBRID ε _{had} (%)	Diff. (%)	$\frac{\text{luarlw}}{(1+\delta)}$	$\frac{\text{hybrid}}{(1+\delta)}$	Diff. (%)
2.2324	64.45	64.50	-0.09	1.1955	1.2016	-0.52
2.4000	67.29	67.62	-0.49	1.2043	1.2118	-0.62
2.8000	72.25	73.16	-1.25	1.2185	1.2276	-0.74
3.0500	73.91	74.54	-0.85	1.1929	1.2040	-0.93
3.0600	73.88	74.54	-0.90	1.1825	1.1940	-0.97
3.0800	73.98	74.11	-0.18	1.1228	1.1357	-1.15
3.4000	74.81	75.19	-0.50	1.3817	1.4009	-1.39
3.5000	75.32	75.88	-0.75	1.3509	1.3690	-1.33
3.5424	75.58	76.17	-0.78	1.3413	1.3587	-1.30
3.5538	75.50	76.23	-0.97	1.3384	1.3557	-1.29
3.5611	75.50	76.27	-1.02	1.3368	1.3542	-1.30
3.6002	75.73	76.52	-1.05	1.3285	1.3453	-1.26
3.6500	76.00	76.89	-1.16	1.3082	1.3234	-1.16
3.6710	76.11	77.11	-1.30	1.2597	1.2718	-0.96

The differences in R are taken as systematic uncertainties.

Cross section line-shape

Guangshun Huang: R at BESIII

Systematic uncertainty

- Less than 3%;
- Dominated by generator model.

	Event	QED	Beam		Trigger	Signal	ISR	
\sqrt{s} (GeV)	selection	background	background	Luminosity	efficiency	model	correction	Total
2.2324	0.41	0.23	0.28	0.80	0.10	0.60	1.15	1.62
2.4000	0.55	0.27	0.15	0.80	0.10	1.11	1.10	1.87
2.8000	0.58	0.28	0.34	0.80	0.10	1.97	1.06	2.48
3.0500	0.61	0.33	0.41	0.80	0.10	1.76	1.01	2.33
3.0600	0.60	0.34	0.48	0.80	0.10	1.84	1.00	2.39
3.0800	0.61	0.35	0.35	0.80	0.10	1.31	1.05	2.02
3.4000	0.65	0.33	0.16	0.80	0.10	1.86	1.24	2.49
3.5000	0.60	0.35	0.62	0.80	0.10	2.05	1.16	2.66
3.5424	0.61	0.37	0.01	0.80	0.10	2.05	1.14	2.58
3.5538	0.66	0.31	0.39	0.80	0.10	2.22	1.13	2.74
3.5611	0.74	0.34	0.34	0.80	0.10	2.28	1.12	2.81
3.6002	0.66	0.33	0.38	0.80	0.10	2.27	1.09	2.77
3.6500	0.53	0.35	0.69	0.80	0.10	2.28	1.13	2.83
3.6710	0.61	0.42	0.63	0.80	0.10	2.23	1.04	2.77

Final results

- R measured at 14 energies in continuum;
- Systematics dominant;
- Phys.Rev.Lett.128, 062004 (2022).

\sqrt{s} (GeV)	$N_{ m had}^{ m obs}$	$N_{ m bkg}$	$\sigma^0_{\mu\mu}$ (nb)	$\mathcal{L}_{int} \ (pb^{-1})$	$\varepsilon_{\rm had}~(\%)$	$1 + \delta$	R
2.2324	83 227	2041	17.427	2.645	64.45	1.195	$2.286 \pm 0.008 \pm 0.037$
2.4000	96 627	2331	15.079	3.415	67.29	1.204	$2.260 \pm 0.008 \pm 0.042$
2.8000	83 802	2075	11.078	3.753	72.25	1.219	$2.233 \pm 0.008 \pm 0.055$
3.0500	283 822	7719	9.337	14.89	73.91	1.193	$2.252 \pm 0.004 \pm 0.052$
3.0600	282 467	7683	9.276	15.04	73.88	1.183	$2.255 \pm 0.004 \pm 0.054$
3.0800	552435	15 433	9.156	31.02	73.98	1.123	$2.277 \pm 0.003 \pm 0.046$
3.4000	32 202	843	7.513	1.733	74.81	1.382	$2.330 \pm 0.014 \pm 0.058$
3.5000	62 670	1691	7.090	3.633	75.32	1.351	$2.327 \pm 0.010 \pm 0.062$
3.5424	145 303	3872	6.921	8.693	75.58	1.341	$2.319 \pm 0.006 \pm 0.060$
3.5538	92 996	2469	6.877	5.562	75.50	1.338	$2.342 \pm 0.008 \pm 0.064$
3.5611	64 650	2477	6.849	3.847	75.50	1.337	$2.338 \pm 0.010 \pm 0.066$
3.6002	159644	9817	6.701	9.502	75.73	1.328	$2.339 \pm 0.006 \pm 0.065$
3.6500	78 730	6168	6.519	4.760	76.00	1.308	$2.352 \pm 0.009 \pm 0.067$
3.6710	75 253	6461	6.445	4.628	76.11	1.260	$2.405 \pm 0.010 \pm 0.067$

- Precision better than 3%;
- Larger than pQCD by 2.7σ in [3.4, 3.7] GeV.

2024.4.20

Guangshun Huang: R at BESIII

42

Ongoing studies and prospects

- R value in full energy range [2.0, 4.95] GeV;
- Comprehensive measurement at 2.0 GeV:

2024.4.20

Ongoing studies and prospects

- R via ISR technique down to $\pi^+\pi^-$ threshold! $\sqrt{s} = 3.6710 \text{ GeV}$ 10^{-1} -LUARLW HYBRID 10^{-2} 10^{-3} 10^{-4} 10⁻⁵ 0.5 -0.5 2 3 $\sqrt{s'}$ (GeV)
- Data taking in [1.8, 2.0] GeV right now!

Summary

- R measurements at BESII were a great success: 5(+10) pb⁻¹
 - 6+85 energies in 2–5 GeV, precision ~6%;
 - Ultimate 3.5% reached at 3 energies.
- R-QCD data taken at BESIII in 2–4.6 GeV: 1.5 fb⁻¹
 - Test run at 4 points in the low energy region;
 - A 104-point fine scan from 3.8 GeV to 4.6 GeV;
 - Data taken at 22 points between 2.0 GeV to 3.08 GeV.
- BESIII First R values with uncertainties <3% at 14 energies in [2.2324, 3.671] GeV published: PRL 128, 062004 (2022);
- Taking data in 1.8-2.0 GeV, exciting moment also for BEPCII!
- More results to come...