CMS实验J/ψJ/ψ结构的证据及与理论家合作的探讨

Kai Yi (Nanjing Normal University)

第六届重味物理与量子色动力学研讨会

19-22 Apr 2024, 青岛, 山东

All-charm Tetra-quarks

First mention of 4c states at 6.2 GeV (1975):
 Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2

 Inspired by 1980 R curve, first calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

The CMS detector & trigger

 η coverage (track & muon): [-2.5,2.5]

Excellent detector for (exotic) quarkonium:

- High-purity muon ID
- Excellent mass resolution, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Excellent vertex resolution
- Special triggers based on muon:

 μ pT, ($\mu\mu$) pT, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ

^{2016+2017+2018: ~145} fb⁻¹

CMS clean J/ψ signal

PRL 132 (2024), 111901

- ~15000 J/ψ pairs after (m(J/ψ J/ψ) <15 GeV)
- ~9000 J/ψ pairs (m(J/ψ J/ψ) <9 GeV)

Large high p_T clean J/ ψ pairs

A blinded CMS analysis

Designed 3 signal regions based on Run I hints

PRL 132 (2024), 111901

CMS merged 3 regions into one: [6.2, 7.8] GeV after LHCb's X(6900)

Comparison with LHCb & ATLAS

- Consistent shape for X(6900) for 3 experiments
- Consistent shape for X(7100) for 3 experiments after scaling
- Consistent shape for X(6600) for CMS and ATLAS after scaling Hard to say between CMS/ATLAS and LHCb

4 significant structures: BW0, BW1, BW2, BW3

- treat BWO as background now
- BW0+NRSPS+NRDPS as our background

Final CMS model w/o interference: 3 BWs + Background

PRL 132 (2024), 111901

- BW2[X(6900)] (9.4σ) –
 confirmation
- Observation of BW1 (6.5 σ)
- Evidence for BW3 (4.1 σ)

	BW1	BW2	BW3
M [MeV]	6552^{+10}_{-10}	6927^{+9}_{-9}	7287^{+20}_{-18}
۲ [MeV]	124^{+32}_{-26}	122^{+24}_{-21}	95^{+59}_{-40}
Ν	470^{+120}_{-110}	492 ⁺⁷⁸ ₋₇₃	156^{+64}_{-51}

Statistical significance only based on: $2 \ln(L_0/L_{max})$

Possibility #1:

- Interference between structures?
- Possibility #2:
- Multiple fine structures?
- We explored possibility #1 in detail

Exploration of possible interference among BWs

Pdf for three BW interference

 $+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{NRDPS} \cdot f_{NRDPS}(m)$

- Many ways of interference due to possible J^{PC} and quantum coherence
 - 2/3/4-object-interference between BW0, BW1, BW2, BW3
- Our choice: interference between BW1, BW2, BW3
 - $\chi^2 prob < 30\%$ for 2-body
 - No significant better description for 4-body
 - No significant improvement including interference with SPS background

CMS interference fit

PRL 132 (2024), 111901

- Interference among BW1, BW2 and Bw3 describes data weil
- Measured mass and width in the interference fit

	M(BW1)	M(BW2)	M(BW3)	Г(BW1)	Г(BW2)	Г(BW3)
Interf. fit [MeV]	6638^{+43}_{-38}	6847^{+44}_{-28}	7134_{-25}^{+48}	440^{+230}_{-200}	191^{+66}_{-49}	97^{+40}_{-29}
Non-interf. fit [MeV]	6552^{+10}_{-10}	6927^{+9}_{-9}	7287^{+20}_{-18}	124_{-26}^{+32}	122^{+24}_{-21}	95^{+59}_{-40}

Comparison with some theoretical calculations

How important is heavy quark

History: X(3872)-2003 (a slide from 2003)

Mismatched mass directly points to exotic

2 heavy quarks inside

2 heavy + 2 light structures \rightarrow 4 heavy structures X(3872): 70 MeV > J/ ψ , can be J/ ψ excited state, X(6600): 3500 MeV J/ ψ , can be J/ ψ excited state? Do not think so

Summary

- CMS identified 3 significant $J/\psi J/\psi$ structures
 - Identified 2 new structures—X(6600) & X(7100), plus confirming X(6900)
- A possible family of structures of all-charm tetra-quarks!
 - Offer a system easier to understand, a new window for strong interaction
- J^{PC}, below 6.6 and beyond 7.1 GeV?

Is there an structure just at $J/\psi J/\psi$ threshold ? Why is or why not?

Backup

SLAC-LBL R measurement inspiration

CMS J/ψJ/ψ study

- CMS detector
- Results w/o interference
- Results w/ interference
- discussion

Summary