

Recent results of Belle II

殷俊昊 南开大学

$$\mathcal{L}_{ ext{II}}^{ ext{peak}} pprox 30 imes \mathcal{L}_{ ext{I}}^{ ext{peak}}$$

$$\int^{\text{goal}} \mathcal{L}_{\text{II}} dt = 50 \text{ ab}^{-1} \approx 50 \int \mathcal{L}_{\text{I}} dt$$

Trigger Challenges

- High luminosity, high background
 - O Total physics trigger rate: 15 kHz @ $8.0 \times 10^{35}/cm^2/s$ (designed)
 - Large beam-related; QED background, Huge bhabha
- Two levels of triggers
 - Hardware trigger Level 1 trigger
 - Software trigger High level trigger
- Predefined selections to various physics processes
 - $^{\circ}$ $\Upsilon(4S)$ + continuum, ~100% efficiency
 - Individual designed for low multiplicity process
 - $^{\circ}$ Selection criteria, *i.e.* $E_{ECL} > 2.0 \; \mathrm{GeV}$ for ISR processes
 - O Neural network based, i.e. $e^+e^- \rightarrow \tau^+\tau^-$

Belle II RUN-I (2019-2022)

- $(364 \pm 2) \text{ fb}^{-1} \Upsilon(4S)$ on resonance data
- $(42.6 \pm 0.3) \text{ fb}^{-1} \Upsilon(4S)$ off resonance data
- $(19.7 \pm 0.1) \text{ fb}^{-1} \Upsilon(10753) \text{ scan data}$

luminosity: $4.7 \times 10^{34} / \text{cm}^2 / \text{s!} > 2 \, \text{fb}^{-1} \, \text{per day!}$

record of KEKB/Belle

 2×10^{34} /cm²/s; currents > 1 A record of PEPII/BaBar 1×10^{34} /cm²/s; currents > 2 A

squeezing further β_y^* (\rightarrow 0.6mm) doubling (or more) the currents $\Rightarrow L > 10^{35}/cm^2/s$ after LS 1

Search for $B \to \gamma \gamma$

Belle + Belle II, Preliminary

Very rare in SM with $\mathcal{B}(B \to \gamma \gamma) = (1.4^{+1.4}_{-1.8}) \times 10^{-8}$ (Y. L. Shen, et. al, JHEP12, 169(2020))

Previous searches	Limits
L3 (73 pb^{-1})	$< 3.9 \times 10^{-5}$
Belle (104 fb^{-1})	$< 6.2 \times 10^{-7}$
BaBar (426 fb^{-1})	$< 3.2 \times 10^{-7}$

Big challenge due to large background.

- Simultaneous 3D fit to M_{bc} , ΔE , and C'_{BDT} .
- Combined signal yield: $11.0^{+6.48}_{-5.48}$ with significance of 2.5σ

	${\cal B}(B^0 o\gamma\gamma)$	$\mathcal{B}(B^0 o \gamma \gamma)$
		(at 90% CL)
Belle	$(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$	$< 9.9 \times 10^{-8}$
Belle II	$(1.7^{+3.7}_{-2.4} \pm 0.3) \times 10^{-8}$	$< 7.4 \times 10^{-8}$
Combined	$(3.7^{+2.2}_{-1.8} \pm 0.7) \times 10^{-8}$	$< 6.4 \times 10^{-8}$

★ 5 improvement over previous best UL.

CP and isospin asymmetries in $B \to \rho \gamma$

Belle + Belle II, Preliminary

- Clean environment to search for BSM physics
- SM expect CP-average isospin asymmetry as $\bar{A}_{\rm I}^{\rm SM} = (5.2 \pm 2.8)~\%$

$$A_{\rm I} = (A_{\rm I}^{\bar 0} + A_{\rm I}^{0+})/2, \text{ with } A_{\rm I}^{\bar 0} = \frac{c_\rho^2 \Gamma(\bar B^0 \to \rho^0 \gamma) - \Gamma(B^- \to \rho^- \gamma)}{c_\rho^2 \Gamma(\bar B^0 \to \rho^0 \gamma) + \Gamma(B^- \to \rho^- \gamma)}$$

• Current world average $A_{\rm I}^{\rm exp} = (30^{+16}_{-13})\,\%$.

$$\mathcal{B}(B^{+} \to \rho^{+} \gamma) = (12.85^{+2.02+1.38}_{-1.92-1.13}) \times 10^{-7},$$

$$\mathcal{B}(B^{0} \to \rho^{0} \gamma) = (7.45^{+1.33+0.97}_{-1.27-0.79}) \times 10^{-7},$$

$$A_{\rm CP}(B^{+} \to \rho^{+} \gamma) = (-7.1^{+15.3+1.4}_{-15.2-1.3}) \%,$$

$$A_{\rm I}(B \to \rho \gamma) = (14.2^{+11.0+6.6+6.0}_{-11.7-6.4-6.5}) \%,$$

- Consistent with the SM prediction.
- Highest precision to date; supersede the previous measurements from Belle

Measurement of $B \to K^* \gamma$

Belle II, Preliminary

- CP and isospin asymmetries are theoretically clean to cancellation of form factor uncertainties.
- Sensitive to NP.
- Simultaneous fit to M_{bc} and ΔE for different modes

$$\mathcal{A}_{CP} = rac{\Gamma(\overline{B}
ightarrow \overline{K}^* \gamma) - \Gamma(B
ightarrow K^* \gamma)}{\Gamma(\overline{B}
ightarrow \overline{K}^* \gamma) + \Gamma(B
ightarrow K^* \gamma)}$$

$$\Delta_{0+} = rac{\Gamma(B^0 o K^{*0} \gamma) - \Gamma(B^+ o K^{*+} \gamma)}{\Gamma(B^0 o K^{*0} \gamma) + \Gamma(B^+ o K^{*+} \gamma)},$$

Results:

$$\mathcal{B}[B^0 \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5},$$
 $\mathcal{B}[B^+ \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5},$
 $\mathcal{A}_{CP}[B^0 \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%,$
 $\mathcal{A}_{CP}[B^+ \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%,$
 $\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%, \text{ and}$
 $\Delta_{0+} = (5.1 \pm 2.0 \pm 1.5)\%,$

$|V_{ub}|$ using $B^0 \to \pi^- l^+ \nu_l$, $B^+ \to \rho^0 l^+ \nu_l$

Simultaneous fit in 2D grid of M_{bc} and ΔE for each bin of q^2 :

13 bins for $B^0 \to \pi^- l^+ \nu_l$ mode, 10 bins for $B^+ \to \rho^0 l^+ \nu_l$ mode.

Preliminary

NEW!!

$$M_{bc} = \sqrt{E_{
m beam}^{*2} - |\vec{p}_B^{**}|^2} = \sqrt{\left(\frac{\sqrt{s}}{2}\right)^2 - |\vec{p}_B^{**}|^2}$$
 $\Delta E = E_B^* - E_{
m beam}^* = E_B^* - \frac{\sqrt{s}}{2}$

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$$

 $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$
stat syst

Consistent with world average.

Extracted |Vub| with lattice QCD and/or light-cone sum rules (LCSR) constraints of form factors

$$|V_{ub}|_{B\to\pi\ell\nu} = (3.93 \pm 0.09(\text{stat}) \pm 0.13(\text{syst}) \pm 0.19(\text{theo})) \times 10^{-3}$$
, (LQCD)
= $(3.73 \pm 0.07(\text{stat}) \pm 0.07(\text{syst}) \pm 0.16(\text{theo})) \times 10^{-3}$, (LQCD+LCSR)

 $|V_{ub}|_{B\to\rho\ell\nu} = (3.19 \pm 0.12(\text{stat}) \pm 0.18(\text{syst}) \pm 0.26(\text{theo})) \times 10^{-3}$, (LCSR)

Preliminary

LFU test via R(D) vs. $R(D^*)$

Measurement of $R(D^*)$

Preliminary

First $R(D^*)$ measurement on Belle II

 $B \to D^* \tau \nu$ and $B \to D^* \ell \nu$ measured by 2D binned likelihood fit to:

- Missing mass of undetected neutrinos
- Sum of energy from extra photons in ECL ($E_{
 m ECL}$)

Signal enhanced region

$$M_{\text{miss}}^2 \in [1.5, 6.0] \text{ GeV}^2$$

 $R(D^*) = 0.267 ^{+0.041}_{-0.039} (stat.) ^{+0.028}_{-0.033} (syst.)$

Consistent with the SM and previous measurements.

First measurement of $R(X_{\tau/\ell})$

- · First measurement at B factories.
 - Different systematic uncertainties from $R(D^{(*)})$
- X reconstructed from remaining tracks and neutrals
- 2D-fit to M_{miss}^2 and p_{ℓ}^B
 - $R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat.}) \pm 0.037(\text{syst.})$
 - $R(X_{\tau/u}) = 0.222 \pm 0.027(\text{stat.}) \pm 0.050(\text{syst.})$
- Combining:
 - $R(X_{\tau/\mu}) = 0.228 \pm 0.016$ (stat.) ± 0.036 (syst.)

In agreement with SM prediction and $R(D^{(*)})$ expectation SM: 0.223 ± 0.005 arXiv:2311.07248

$$R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\nu_{\tau})}{\mathscr{B}(B \to X\ell\nu_{\ell})}$$

au Lepton Flavor Universality Violation

preliminary

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{BF\left[\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\right]}{BF\left[\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\right]}} \frac{f\left(m_{e}^{2}/m_{\tau}^{2}\right)}{f\left(m_{\mu}^{2}/m_{\tau}^{2}\right)}$$

In the SM:
$$\left(\frac{g_{\mu}}{g_e}\right)_{\tau} = 1$$

Tests with 3x1 topology: same method as Babar

tag
$$(BF\sim15\%)$$
 e^+
 $e^ e^ in_{thrus}$
 in_{thrus}
 in_{thrus

$$R_{\mu} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} = 0.9675 \pm 0.0007 \pm 0.0036.$$

Consistent with previous measurements

Most precise to date

τ Lepton Flavor Violation

preliminary

- A search for the charged-lepton-flavour violating decay $au o \mu\mu\mu$
- Provide indisputable evidence of physics beyond the SM.

- Novel inclusive tagging followed by a BDT-based selection.
 - 2.5 times higher efficiency than Belle and 37% higher efficiency than 1-prong tagging
- One event in signal region:

•
$$B(\tau^- \to \mu^- \mu^+ \mu^-) = (3.1 + 8.7 \pm 0.1) \times 10^{-9}$$

- $< 1.9(1.8) \times 10^{-8}$ for observed (expected) limit at 90% C.L.
- Less data, more restrictive than Belle

Cross section measurement of $e^+e^- \to \pi^+\pi^-\pi^0$

• Background, 0.5% at omega peaks.

Cross section $\sigma_{ee \to 3\pi}(M_i(3\pi)) = \frac{N_{\rm unfolded}, i}{\varepsilon(M_i(3\pi)) \cdot L_{\rm eff}(M_i(3\pi)) \cdot r_{\rm rad}}$ Radiative correction Effective luminosity $r_{rad} = 1.0080 \pm 0.0007$

Correction is <1 %.

Cross section at ω resonance is 5-10% higher than SND, BABAR, and CMD-2.

$$a_{\mu}^{\text{LO,HVP,3}\pi}(0.62\text{-}1.8~\text{GeV}) = (48.91 \pm 0.25_{\text{stat}} \pm 1.07_{\text{syst}}) \times 10^{-10}$$

	a _μ (3π)×10 ¹⁰	Difference×10 ¹⁰	
BABAR alone [PRD104 11 (2021)]	45.86 ± 0.14 ± 0.58	-2.5σ (6.9%)	
Global fit [JHEP08 208 (2023)]	45.91 ± 0.37 ± 0.38	-2.5σ (6.5%)	

For further improvement, QED NNLO MC generators are crucial.

Plan to make precise measurements on the cross sections in other ISR processes $e^+e^- \to \pi^+\pi^-$.

Summary

- Belle II has collected 424/fb data before Long Shutdown 1.
- Provide crucial test for SM
 - Rare B decays, B anomalies...
- Smaller data, but more or equivalent accuracy for many analyses
 - Special trigger for individual physics procedure
 - Advanced software tools, FEI, flavor tagger, etc.
 - 0 ...
- Unique data provide unique results
 - Spectroscopy, charm baryons (Sen's talk)
- LS1 is finished and new run has started Feb. this year.
 - More data, more new results

BACKUP

Reconstruction and background suppression

Charged particles:

- $p_t > 0.1 \text{ GeV/c}$
- close to collision point
- in central region

Neutral particles:

- *E*>100 MeV
- in central region

Signal candidate:

- charged particle
- Kaon identification
- Minimal q^2_{rec}

Event (pre-selection):

- $4 \le N_{\text{track}} \le 10$
- E_{total} >4 GeV
- $17^{\circ} < \vartheta_{\text{miss}} < 160^{\circ}$

BDT₁ (first filter):

12 event-shape based kinematic variables

BDT₂ (final selection):

• 35 input variables: using signal, event, and their correlations

- Selection criteria for particles to ensure high and well-measured efficiency
- Signal candidate selected using mass of the neutrino pair q_{rec}^2 (computed as K^+ recoil) Three-step filter: basic event cuts, BDT-based filter (BDT₁) and final selection (BDT₂). BDT₂ improves performance in terms of s/\s+b by almost factor 3

^{*}Missing momentum is reconstructed using beam and all reconstructed particle 4-momenta

Examples of input variables for BDT₁ and BDT₂

- Example of input distributions at pre-selection level, 1% of data, with detector-level corrections applied but no physics modeling corrections
- Each variable is examined to have reasonable description by simulation and significant separation power

Signal efficiency validation

Background from $B \rightarrow D(\rightarrow K^{\dagger}X) lv$ and $B \rightarrow K^{\dagger}D(\rightarrow K_{L}X)$

- Main backgrounds: semileptonic $B \rightarrow D(\rightarrow K^{\dagger}X)lv$ decays and prompt $B \rightarrow K^{\dagger}X$ production (>90%)
- Semileptonic decays suppressed by several MVA variables, checked at each selection step
- Prompt K^+ production studied using prompt π^+ from $B^+ \to \pi^+ X$ (and I^+ from $B^+ \to I^+ X$) decays
- Systematic uncertainties on decay branching fractions, enlarged for $D(\to K_i X)$ and $B \to D^{**} I V$

1 ۶

Background from $B^+ \rightarrow K^+ K^0 K^0$

$$\leftarrow B^+ \rightarrow K^+ K_S K_S$$
 decays

- Backgrounds from $B^+ \to K^+ nn$ and $B^+ \to K^+ K^0 K^0$ have branching fractions of few x 10⁻⁵, however K_i and neutrons can escape EM calorimeter
- $B^+ \rightarrow K^+ K^0 K^0^-$ modeled based on BaBar analysis (arXiv:1201.5897)
- Dedicated checks of K_i performance in calorimeter using radiative φ production
- Dedicated checks using $B^+ \to K^+ K_c K_c$ and $B^0 \to K_c K^+ K^-$ control channels

γ measurement in $B^+ o D(K_S^0 h^+ h^-) h^+$ with Belle and Belle II data

Determine bin-by-bin asymmetries $(N_-^{-i}-N_+^{+i})/(N_-^{-i}+N_+^{+i})$ in each Dalitz plot bin i

$$\begin{aligned} x_{\pm}^{DK} &= r_{B}^{DK} \cos(\delta_{B}^{DK} \pm \phi_{3}) \\ y_{\pm}^{DK} &= r_{B}^{DK} \sin(\delta_{B}^{DK} \pm \phi_{3}) \end{aligned}$$

$$\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ},$$

$$r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$$

$$\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ},$$

$$r_B^{D\pi} = 0.017 \pm 0.006 \pm 0.001 \pm 0.001,$$

$$\delta_B^{D\pi} = (341.0 \pm 17.0 \pm 1.2 \pm 2.6)^{\circ}.$$

Measurement of $B^\pm \to D_{\mathrm{CP}^+} K^\pm$ with Belle and Belle II data

• Simultaneous fit to $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$ with D decays to CP eigenstates

$$\mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{(\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}K^+))/2}$$

$$\mathcal{A}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}$$

$$\mathcal{R}_{CP\pm} \approx \frac{R_{CP\pm}}{R_{\text{flav}}}$$

$$\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$$

 $\mathcal{A}_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}$

	$68.3\%~\mathrm{CL}$	95.4% CL
	[8.5, 16.5]	[5.0, 22.0]
ϕ_3 (°)	[84.5, 95.5]	[80.0, 100.0]
	$[163.3,\ 171.5]$	[157.5, 175.0]
r_B	[0.321, 0.465]	[0.241, 0.522]

R(X) Result

-The first results of
$$R(X)=rac{\mathcal{B}\left(B o X au
u_{ au}
ight)}{\mathcal{B}\left(B o X\ell
u_{\ell}
ight)}$$
 at B factory:

$$R(X_{\tau/e}) = 0.232 \pm 0.042$$
, [0.020 (stat), 0.037 (syst)]
 $R(X_{\tau/\mu}) = 0.222 \pm 0.057$, [0.027 (stat), 0.050 (syst)]
 $R(X_{\tau/\ell}) = 0.228 \pm 0.039$, [0.016 (stat), 0.036 (syst)]

Major systematics: MC statistics, PDF shape, BR of $B \rightarrow D^{**} \ell \nu$

-Consistent with SM prediction

SM prediction

12

$\sin 2\phi_1$ using $B^0 \to K_S^0 J/\psi$

preliminary

- Use $J/\psi \rightarrow e^+e^-, \mu^+\mu^-, K_S^0 \rightarrow \pi^+\pi^-$
- Analysis method:
 - Employ Graph Flavor tagger based on Dynamic Graph Convolution Neural Network (GFIaT)
 - Determine signal yields and subtract background using sWeights from ΔE fit
 - Fit Δt to extract S_{CP} and C_{CP} :

$$f_{CP}^{\text{true}} = \frac{1}{4\tau_B^0} e^{-|\Delta t|} / \tau_B^0 (1 + q[S_{CP} \sin(\Delta m \Delta t) - C_{CP} \cos(\Delta m \Delta t)])$$

- SM expectation: $S_{CP} = \sin 2\phi_1$, and $C_{CP} = 0$
- Flavor resolution effect and resolution function taken from calibration with $B^0 o D^{(*)+}\pi^-$

cross check:

SM expectation:
$$S_{cp} = C_{CP} = 0$$

 $S_{cp} = 0.008 \pm 0.019$

 $C_{cp} = -0.018 \pm 0.026$

$$C_{CP} = -0.035 \pm 0.026 \text{ (stat)} \pm 0.012 \text{ (syst)}$$

 $S_{CP} = 0.724 \pm 0.035 \text{ (stat)} \pm 0.014 \text{ (syst)}$

Previous stat. uncertainties:

Belle II ICHEP22: $\sigma S_{CP} = 0.062$ (improvement equivalent to 3.1X larger dataset)

Previous results (JPsi KS only):

Belle 2012: $\sigma S_{CP} = 0.029$

BaBar 2009: $\sigma S_{CP} = 0.036$

LHCb 2023: $\sigma S_{CD} = 0.015$

GFlaT established as standard tool for forthcoming TDCPV analyses

CP asymmetries in $B^0 \to K_S^0 \pi^0 \gamma$

preliminary

- $b \rightarrow s\gamma$ proceeds via one-loop diagrams
 - Sensitive to BSM physics
- Mixing-induced time-dependent CP asymmetries (S) are expected to be small
 - $S_{CP} = -0.035 \pm 0.017$ (arXiv:hep-ph/0406055)

$$S(K^{*0}\gamma) = 0.00^{+0.27+0.03}_{-0.26-0.04},$$

 $C(K^{*0}\gamma) = 0.10 \pm 0.13 \pm 0.03,$
 $S(K_S^0\pi^0\gamma) = 0.04^{+0.45}_{-0.44} \pm 0.10,$
 $C(K_S^0\pi^0\gamma) = -0.06 \pm 0.25 \pm 0.07,$

Most precise result up to date!

HFLAV:

$$K^{*0}\gamma$$
: $C_{CP} = -0.04 \pm 0.14 \ S_{CP} = -0.16 \pm 0.22 \ K_S \pi^0 \gamma$: $C_{CP} = -0.07 \pm 0.12 \ S_{CP} = -0.15 \pm 0.20$ *The HFLAV $K_S \pi^0 \gamma$ values include $K^{*0} \gamma$

CP asymmetries in $B^0 \to \eta' K_S^0$

preliminary

- Process $b \to sq\bar{q}$ via loop amplitude
- High transition rate relative to other gluonic penguins
- Addition source BSM could be involved
- Deviation from $\sin 2\phi_1$ would suggest BSM physics
- Cross checked with $B^+ \to \eta' K^+$, where no CP asymmetry is expected

$$C_{\eta' K_S^0} = -0.19 \pm 0.08 \pm 0.03,$$
 $S_{\eta' K_S^0} = 0.67 \pm 0.10 \pm 0.04,$

$$C = -0.05 \pm 0.04$$
 and $S = 0.63 \pm 0.06$ from HFLAV

Measurement of CPV in $B^0 o \pi^0 K_S^0$

- Process $b \to s d \bar d$ via loop amplitude
- High transition rate relative to other gluonic penguins
- Addition source BSM could be involved
- Deviation from $\sin 2\phi_1$ would suggest BSM physics
- Cross checked with $B^+ \to \eta' K^+$, where no CP asymmetry is expected

Time dependent CPV using $B^0 \to K_S^0 K_S^0 K_S^0$

preliminary

• Current world average:

$$C = -0.15 \pm 0.12$$

$$S = -0.83 \pm 0.17$$

Need improvement on uncertainties.

Use the likelihood from the fit, resulting 2D confidence intervals

68.27% interval given $S^2 + C^2 \le 1$

$$B^0 \to \phi K_S^0$$

PRD 108, 072012 (202

Current world average:

$$C = 0.01 \pm 0.14$$

$$S = 0.74^{+0.11}_{-0.13}$$

whereas C is expected to be zero in SM, with $S=0.02\pm0.01$

• Cross checked with $B^+ \to \phi K^+$, resulting $C = -0.12 \pm 0.10$ and $S = -0.09 \pm 0.12$

$$C = -0.31 \pm 0.20 \pm 0.05$$

$$S = 0.54 \pm 0.26^{+0.06}_{-0.08}$$

- Compatible with previous determinations from Belle and BABAR.
- Similar uncertainty on C despite of smaller data sample.
- Improvement on the statistical uncertainty on S for the same number of signal events.

Angular asymmetries using $B^0 \to D^{*-} \mathcal{E}^+ \nu_{\mathcal{E}}$

- $B^0 \to D^{*-}\ell\nu$ is mediated in the SM via W-boson exchange.
- Characterized in terms of a recoil parameter and 3 helicity angles.
- Calculate the asymmetry: $\mathscr{A}_{\chi}(w) = \frac{N_{\chi}^{+}w N_{\chi}^{-}(w)}{N_{\chi}^{+}w + N_{\chi}^{-}(w)}$
- Difference $\Delta A_{\chi}(w) = A_{\chi}^{\mu}(w) A_{\chi}^{e}(w)$, is sensitive to LUV.
- Separate signal candidates into angular categories + and based on the measured value of x.

First comprehensive tests of LU in the angular distributions of semileptonic B decays.

Agrees well with SM.

Direct CPV using $B \to K\pi$ and $B \to \pi\pi$

arXiv:2310.06381

- Charmless hadronic B meson decays feature non-negligible contributions from loop amplitudes.
- Sensitive to contributions from non-SM physics.

$$I_{K\pi} = A_{K^{+}\pi^{-}} + A_{K^{0}\pi^{+}} \frac{Br(K^{0}\pi^{+})}{Br(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{K^{+}\pi^{0}} \frac{Br(K^{+}\pi^{0})}{Br(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{K^{0}\pi^{0}} \frac{Br(K^{0}\pi^{0})}{Br(K^{+}\pi^{-})} \approx 0$$

• Belle II measures all modes in coherent way with unique access to $B^0 o K_S^0 \pi^0$

 $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$ (world average: $I_{K\pi} = 0.13 \pm 0.11$) competitive with world average with $362fb^{-1}$

Observation of $Y(10753) \rightarrow \omega \chi_{bJ}$ in $e^+e^- \rightarrow \gamma \omega \Upsilon(1S)$

Clear $\omega\chi_{bJ}$ signals at $\sqrt{s}=10.745$ and $10.805~{\rm GeV}$

PRL 130, 091902 (2023)

$\Gamma_{ee}\mathscr{B}_f$	Solution I	Solution II
$\Gamma_{ee} \mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$(0.63 \pm 0.39 \pm 0.20)$ eV	$(2.01 \pm 0.38 \pm 0.76) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$(0.53 \pm 0.46 \pm 0.15) \text{ eV}$	$(1.32 \pm 0.44 \pm 0.55) \text{ eV}$

- $\frac{\Gamma_{ee} \mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})}{\Gamma_{ee} \mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})} \sim 1.0$ agrees with the expectation for HQET^[3]
- $\frac{\Gamma_{ee} \mathcal{B}(\omega \chi_{b1/2})}{\Gamma_{ee} \mathcal{B}(\pi^+\pi^-\Upsilon(2S))^{[2]}} \sim 1.5 \text{ for } \Upsilon(10753) \text{ and } \sim 0.1 \text{ for } \Upsilon(10870)$

[1]PRL 113, 142001(2014); [2]. JHEP 10, 220(2019); [3]. arXiv:hep-ph/9908366;

- $^{\circ}$ Confirm the existence of $\Upsilon(10753)$.
- O Large difference of $\frac{\mathscr{B}(\omega\chi_{bJ})}{\mathscr{B}(\pi^+\pi^-\Upsilon(nS))}$ between $\Upsilon(10753)$ and $\Upsilon(10870)$.

PRD 108, 092013 (2023)

$|V_{cb}|$ using $ar{B}^0 o D^{*+} \mathscr{C}^- ar{ u}_{\mathscr{C}}$

- $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell$ is parameterized by the recoil parameter (w) and three decay angles (θ_l , χ , θ_V)
- 2D-binned likelihood fit to $(\cos\theta_{\rm BY},\,\Delta M)$ for each bin of variables.

$$^{\circ}\cos\theta_{\mathrm{BY}} = \frac{2E_{B}^{CM}E_{Y}^{CM} - m_{B}^{2} - m_{Y}^{2}}{2|p_{B}^{CM}||p_{Y}^{CM}|}, \Delta M = M(D^{*+}) - M(D)$$

integral projection

- Include all measured w, θ_l , χ , θ_V to extract form factor & |Vcb|
- Fit differential shapes with form factor expansion based on Caprini-Lellouch-Neubert (CLN) [Nucl. Phys. B530, 153 (1998)] & Boyd-Grinstein-Lebed (BGL) parameterisations [Phys. Rev. D56, 6895 (1997)]

$$\begin{split} |V_{cb}|\eta_{\rm EW}\mathcal{F}(1) &= \frac{1}{\sqrt{m_B m_{D^*}}} \left(\frac{|\tilde{b}_0|}{P_f(0)\phi_f(0)}\right) \\ |V_{cb}|_{\rm BGL} &= (40.9 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3} \\ |V_{cb}|_{\rm CLN} &= (40.4 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3} \\ &\uparrow \qquad \uparrow \qquad \qquad \uparrow \\ \text{Slow pion eff. plays} \qquad \qquad \begin{matrix} \text{Input from LQCD at zero-recoil F(1)} \end{matrix} \end{split}$$

Measurement of τ mass

PRD 108, 032006 (2023)

Pseudomass method:

$$m_{\tau}^{2} = (p_{h} + p_{\nu})^{2}$$

$$= 2 E_{h} (E_{\tau} - E_{h}) + m_{h}^{2} - 2 |\vec{p}_{h}| (E_{\tau} - E_{h}) \cos(\vec{p}_{h}, \vec{p}_{\nu})$$

The direction of the neutrino is not known, since $\cos(\vec{p}_h, \vec{p}_v) \leq 1$

Pseudomass:
$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$$

 $m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \text{ MeV/}c^2$

World's best!

Smaller data

BUT better statistical precision!

Preliminary

Measurement of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$

- Reconstruct B_{tag} with FEI
- Yield signals from simultaneous fit to M_{bc} (SR and SB)

Shape increase at $B\bar{B}^*$ threshold. Suggestive of something?

$\sin 2\phi_1$ measurement

- Sensitive to BSM physics
- Fit Δt to extract S_{CP} and C_{CP} :

$$f_{CP}^{\text{true}} = \frac{1}{4\tau_B^0} e^{-|\Delta t|} / \tau_B^0 (1 + q[S_{CP} \sin(\Delta m \Delta t) - C_{CP} \cos(\Delta m \Delta t)])$$

- SM expectation: $S_{CP} = \sin 2\phi_1$, and $C_{CP} = 0$
- Deviation from $\sin 2\phi_1$ would suggest BSM physics
- Sensitive to BSM physics in
 - $b \rightarrow sq\bar{q}$
 - $b \rightarrow s \gamma$

 $\overline{B}_{\mathsf{tag}}^{\mathsf{0}}$

 B_{CP}^0

 $\Upsilon(4S)$

Boost

channel	S_meas	C_meas	
$B^0 \to K_S^0 J/\psi$	$0.724 \pm 0.035 \pm 0.014$	$-0.035 \pm 0.026 \pm 0.012$	preliminary
$B^0 \to K_S^0 \pi^0 \gamma$	$0.04^{+0.45}_{-0.44} \pm 0.10$	$-0.06 \pm 0.25 \pm 0.07$	preliminary
$B^0 \to \eta' K_S^0$	$0.67 \pm 0.10 \pm 0.04$	$-0.19 \pm 0.08 \pm 0.03$	preliminary
$B^0 \to \pi^0 K_S^0$	$0.75^{+0.20}_{-0.23} \pm 0.04$	$-0.04^{+0.14}_{-0.15} \pm 0.05$	PRL 131, 111803 (2023)
$B^0 \to \phi K_S^0$	$0.54 \pm 0.26^{+0.06}_{-0.08}$	$-0.31 \pm 0.20 \pm 0.05$	PRD 108, 072012 (2023)

Pseudo-experiments

- Consistent with world average and SM expectation.
- $B^0 o \eta' K_S^0$ provides the most sensitive results up to date.
- Smaller data size but equivalent uncertainties, sometimes better.

Combined measurement of ϕ_3 with Belle & Belle II

Preliminary

- Four different methods using 17 different final states
- Inputs on D decays dynamics from other experiments
 - r_D (amplitude ratio), δ_D (strong-phase difference), κ_D (coherence factor), etc.

B decay	D decay	Method	Data set	
			(Belle + Belle II)[fb^{-1}]
$B^+ o Dh^+$	$D o K_{ m s}^0 h^- h^+$	BPGGSZ	711 + 128	[JHEP 02 063 (2022)]
$B^+ \to Dh^+$	$D ightarrow K_{\mathrm{S}}^0 \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0	[JHEP 10 178 (2019)]
$B^+ o D h^+$	$D o K_{\scriptscriptstyle { m S}}^0\pi^0, K^-K^+$	GLW	711 + 189	[arxiv:2308.05048]
$B^+ \to D h^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0	[PRL 106 231803 (2011)]
$B^+ o D h^+$	$D o K_{\scriptscriptstyle { m S}}^0K^-\pi^+$	GLS	711 + 362	[JHEP 09 (2023) 146]
$B^+ o D^*K^+$	$D ightarrow K_{\mathrm{S}}^0 \pi^- \pi^+$	BPGGSZ	605 + 0	[PRD 81 112002 (2010)]
$B^+ o D^*K^+$	$D ightarrow K_{ ext{ iny S}}^{0}\pi^{0}, K_{ ext{ iny S}}^{0}\phi, K_{ ext{ iny S}}^{0}\omega,$	GLW	210 + 0	[DDD 72 051106 (2006)]
$D \rightarrow D R$	$K^-K^+,\pi^-\pi^+$	GLW	210-0	[PRD 73 051106 (2006)]

Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta_B^{D\pi}(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^{\circ})$
			Plugin	method			
Best fit value	78.6	0.117	138.4	0.0165	347.0	0.234	341
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	$[337.4,\ 355.7]$	[0.165, 0.303]	[327, 355]
95.5% interval	[63, 92]	[0.092,0.141]	[118, 154]	[0.006, 0.027]	$[322,\ 366]$	[0.10, 0.37]	[307, 369]

 $\phi_3 = (78.6 \pm 7.3)^\circ$, consistent with WA, $\phi_3 = (66.2^{+3.2}_{-3.6})^\circ$, within 2σ

Measurement of branching fraction of $B^+ \to K^+ \nu \bar{\nu}$

arXiv:2311.14647

- $\mathcal{B}(B \to K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} \text{(arXiv:2207.13371)}$
- We use 4.97×10^{-6} as a reference, after removal of $B \to \tau(K\bar{\nu})\nu$
- Extensions beyond SM may lead to significant rate increase
- Very challenging experimentally, not yet observed
 - Low branching fraction, high background contributions
 - 3-body kinematics, no good kinematic variable to fit

Analysis strategy

arXiv:2311.14647

- Two analyses:
 - More sensitive inclusive tagging (ITA)
 - Conventional hadronic tagging (HTA)
- Kinematic properties to suppress background with MVA
- Use classifier output as (one of) the fit variable(s), use simulation for signal and background templates
- Use multiple control channels to validate simulation with data

arXiv:2311.14647

- Extract signal from maximum likelihood fit
 - Inclusive tag: in bins of $q_{\rm rec}^2$ and $\eta({
 m BDT}_2)$
 - Hadronic tag: in bins of $\eta(BDT_h)$
- Signal is extracted in terms of signal strength μ signal relative to SM expectation
 - Inclusive tag: $\mu = 5.4 \pm 1.0 (stat) \pm 1.1 (syst)$
 - Hadronic tag: $\mu = 2.2^{+1.8}_{-1.7}(\text{stat})^{+1.6}_{-1.1}(\text{syst})$
 - Combined: $\mu = 4.6 \pm 1.0 (stat) \pm 0.9 (syst)$

ITA and HTA results are consistent at 1.2σ level

Inclusive tag: $\mathcal{B} = 2.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst})$

Hadronic tag: $\mathscr{B} = 1.1^{+0.9}_{-0.8}(\text{stat})^{+0.8}_{-0.5}(\text{syst})$

Combined: $\mathcal{B} = 2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})$

For the inclusive tag, significance of the result

- wrt null hypothesis is 3.5σ
- wrt SM is 2.9σ

For the hadronic tag, significance of the result

- wrt null hypothesis is 1.1σ
- wrt SM is 0.6σ

For the combination, significance of the result

- wrt null hypothesis is 3.5σ
- wrt SM is 2.7σ

First evidence of the $B^+ \to K^+ \nu \bar{\nu}$ decay!

$R(X_{\tau/\ell})$, event distributions

- for reliable template shapes for fitting
 - make detailed adjustments to MC (FF's, B and D BF's)
 - corrections by comparing MC to data in control region: low q^2 , low $M_{\rm miss}^2$, high M_X
 - e.g. adjust M_X in p_{ℓ} > 1.4 GeV sideband; using these weights also improves modeling in $M_{\rm miss}^2$ and q^2

Main sources of systematic uncertainty:

•	MC stat	±5.7 %
•	Bkg shape	±5.5 %
•	M_X modeling	±7.1 %
•	$B \to X_c \ell \nu$ BFs	±7.7 %
•	$B \to X_c \ell \nu$ FFs	±7.9 %

U,

Belle, Preliminary

Search for $b \to d\ell^+\ell^-$

Sensitive to NP.

First search for the channels of

•
$$B^{+,0} \to (\omega, \rho^{+,0})e^+e^-$$

•
$$B^{+,0} \to (\omega, \rho^{+,0}) \mu^+ \mu^-$$

Best limits for the channels of

•
$$B^{+,0} \to (\eta, \pi^{+,0})e^+e^-$$

•
$$B^{+,0} \to (\eta, \pi^{+,0})\mu^+\mu^-$$

channel	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	ε (%)	$\mathcal{B}^{\text{UL}} \ (10^{-8})$	$\mathcal{B} \ (10^{-8})$
$B^0 o \eta e^+ e^-$	$0.0^{+1.4}_{-1.0}$	3.1	3.9	< 10.5	$0.0^{+4.9}_{-3.4} \pm 0.1$
$B^{ m o} ightarrow \eta \mu^+ \mu^-$	$0.8^{+1.5}_{-1.1}$	4.2	5.9	< 9.4	$1.9^{+3.4}_{-2.5}\pm0.2$
$eta^{\scriptscriptstyle ext{O}} o \eta \ell^+ \ell^-$	$0.5^{+1.0}_{-0.8}$	1.8	4.9	< 4.8	$1.3^{+2.8}_{-2.2} \pm 0.1$
$B^0 o \omega e^+ e^-$	$-0.3^{+3.2}_{-2.5}$	3.7	1.6	< 30.7	$-2.1^{+26.5}_{-20.8} \pm 0.2$
$B^0 o \omega \mu^+ \mu^-$	$1.7^{+2.3}_{-1.6}$	5.5	2.9	< 24.9	$7.7^{+10.8}_{-7.5} \pm 0.6$
$3^{\circ} ightarrow \omega \ell^{+} \ell^{-}$	$1.0^{+1.8}_{-1.3}$	3.6	2.2	< 22.0	$6.4^{+10.7}_{-7.8} \pm 0.5$
$\mathrm{B^0} ightarrow \pi^0 e^+ e^-$	$-2.9_{-1.4}^{+1.8}$	4.0	6.7	< 7.9	$-5.8^{+3.6}_{-2.8} \pm 0.5$
$B^0 o \pi^0 \mu^+ \mu^-$	$-0.5^{+3.6}_{-2.7}$	6.1	13.7	< 5.9	$-0.4^{+3.5}_{-2.6} \pm 0.1$
$B^0 o \pi^0 \ell^+ \ell^-$	$-1.8^{+1.6}_{-1.1}$	2.9	10.2	< 3.8	$-2.3^{+2.1}_{-1.5}\pm0.2$
$B^+ \to \pi^+ e^+ e^-$	$0.1^{+2.5}_{-1.6}$	5.0	11.5	< 5.4	$0.1^{+2.7}_{-1.8} \pm 0.1$
$B^0 o ho^0 e^+ e^-$	$5.6^{+3.5}_{-2.7}$	10.8	3.2	< 45.5	$23.6^{+14.6}_{-11.2} \pm 1.1$
$B^+ o ho^+e^+e^-$	$-4.4^{+2.3}_{-2.0}$	5.3	1.4	< 46.7	$-38.2^{+24.5}_{-17.2} \pm 3.4$
$B^+ o ho^+ \mu^+ \mu^-$	$3.0^{+4.0}_{-3.0}$	8.7	2.9	< 38.1	$13.0^{+17.5}_{-13.3} \pm 1.1$
$B^+ o ho^+ \ell^+ \ell^-$	$0.4^{+2.3}_{-1.8}$	3.0	2.0	< 18.9	$2.5^{+14.6}_{-11.8} \pm 0.2$