LHCb 实验升级进展和计划 LHCb Upgrades: Status and Plans

李一鸣 Yiming Li 中国科学院高能物理研究所 Institute of High Energy Physics, CAS

第六届重味物理与量子色动力学研讨会@青岛, 20 Apr 2024

LHCb as we knew

2024 / 04 / 20

Data samples

Most physics output using data before 2019

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2024

Limitation due to trigger saturation

Previous luminosity of 4×10^{32} cm⁻²s⁻¹ limited by detector capability!

LHCb Run 2 Trigger Diagram

Goal of LHCb Upgrade I

Removing the hardware trigger

- Increase lumi by a factor of 5
 - $4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Upgraded LHCb: what it looks like now

Tracking system

VELO

Silicon pixel to replace strips

- 55um * 55um pixel with microchannel cooling
- 26 pair of modules
- $\Phi_{max} \sim 7 \times 10^{14} \rightarrow 8 \times 10^{15} n_{eq} \text{ cm}^{-2}$
- 150um thick RF foil
- Only 5.1mm away from the beam

Upstream Tracker (UT)

- Key component in tracking
 - Reducing ghost rate, speeding up tracking, crucial for long-lived particles like K_S , Λ
- Silicon strip detectors
 - Four layers (0°, +5°, -5°, 0°)
 - Four different sensor types depending on region

Sensor	Туре	Pitch, µm	Length, mm	Strips	Sensor #
А	p-in-n	187.5	98	512	888
В	n-in-p	93.5	98	1024	48
С	n-in-p	93.5	49	1024	16
D	n-in-p	93.5	49	1024	16

Yiming Li: LHCb upgrades @ HFQCD2024

Chinese contribution in UT

- Played a key role in UT installation, FE verification and commissioning \Box
 - Verifying irradiation performance of SALT Frontend chip using Chinese facilities
 - Control software (ECS) and detector safety software
 - Installation of UT from the very first stave to completion despite pandemic

Completion of UT A-/C-side

Irradiation test at CIAE and CSNS

Yiming Li: LHCb upgrades @ HFQCD2024

by IHEP

SciFi

Chinese contribution to SciFi

- Development and production of FE electronics boards (> 2,500 PCB)
 - Installed and working in SciFi
- Development of quality assurance system used in all SciFi assembly sites
- Study of radiation damage on SiPM

2024 / 04 / 20

Upgraded PID systems

2024 / 04 / 20

Run 3 ongoing!

- Completion of installation in Mar 2023, commissioning since 2022
- Vacuum incident in VELO caused delay of physics data taking in 2023; RF foil replaced now
- **50** fb⁻¹ by end of Run 4: > 5 times of data now

Upgrade II

- Upgrade II to fully exploit potential in HL-LHC
- Target luminosity:
 - $1.0 \sim 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - 300~350 fb⁻¹
- High-lumi operation challenges:
 - Pile-up: $\mu \sim 1 \rightarrow 5$ (UI) $\rightarrow 40$ (UII),
 - High multiplicity (→ occupancy)
 - Severe radiation damage
 - High data rates (200 Tb/s)

LHCb in Upgrade II

Expression of interest CERN-LHCC-2017-003

Physics case CERN-LHCC-2018-027

Framework TDR CERN-LHCC-2021-012

Currently working towards Scoping Document

The ultimate flavour physics experiment at the HL-LHC

UT

Proposal for a new UT using CMOS MAPS technology

NIM A 1032 (2022) 166629

- Higher granularity for high multiplicity
- Better radiation tolerance
- R&D collaboration (U2UT) formed mainly by Chinese and French institutes

Material scan

ECAL

Inner part using SpaCal and outer keeps Shashlik technology

CERN-LHCC-2023-005

Timing of O(10) ps expected

- Chinese groups active in the R&D:
 - Simulation and optimization
 - 3D-printed tungsten absorber
 - Test of GAGG crystal fibre

----> Beam direction

Yiming Li: LHCb upgrades @ HFQCD2024

GAGG test platform

Physics Prospects

- Statistics is powerful
- Some gain can be expected

	LHCb	LHCb	LHCb
Observable	current	(23 fb^{-1})	(300 fb^{-1})
CKM tests			
γ (all modes)	4° [784, 931]	1.5°	0.35°
$\gamma \ (B_s^0 \rightarrow D_s^+ K^-)$	$(^{+17}_{-22})^{\circ}$	4°	1°
$\sin 2eta$	0.04 [932]	0.011	0.003
$\phi_s \; (B_s^0 {\rightarrow} J/\psi \phi)$	49 mrad [933]	14 mrad	4 mrad
$\phi_s \ (B^0_s {\rightarrow} D^+_s D^s)$	170 mrad [825]	$35 \mathrm{~mrad}$	9 mrad
$\phi_s^{s\overline{s}s} (B_s^0 \rightarrow \phi \phi)$	154 mrad [936]	$39 \mathrm{\ mrad}$	$11 \mathrm{mrad}$
a^s_{sl}	33×10^{-4} [938]	$10 imes 10^{-4}$	$3 imes 10^{-4}$
$\left V_{ub} ight /\left V_{cb} ight $	$6\% \ [847]$	3%	1%
Charm			
$\Delta \mathcal{R}^{CP}$	2.9×10^{-4} [790]	1.7×10^{-4}	3.0×10^{-5}
A_{Γ}	1.3×10^{-4} [877]	4.2×10^{-5}	$1.0 imes 10^{-5}$
$B^0_{(s)} \rightarrow \mu^+ \mu^-$			
$rac{\mathcal{B}(B^0 o \mu^+ \mu^-)}{\mathcal{B}(B^0_s o \mu^+ \mu^-)}$	$71\% \ [661, \ 662]$	34%	10%
$ au_{B^0_s o \mu^+ \mu^-}$	$14\% \ [661, \ 662]$	8%	2%
EW penguins			
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044 [703]	0.025	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.10 [709]	0.031	0.008
$\mathbf{LFU} \ \mathbf{tests}$			
$R_{D^*} (B^0 \rightarrow D^{*-} \ell^+ \nu)$	0.026 [941, 942]	0.007	0.002
$R_{J/\psi} \left(B_c^+ \rightarrow J/\psi \ell^+ \nu \right)$	0.24 [943]	0.07	0.02

Some not

Physics case for Upgrade II, CERN-LHCC-2018-027, arXiv:1808.08865 Chen et al, Frontiers of Physics 18 (2023) 44601

https://www.nikhef.nl/%7Epkoppenb/particles.html

Summary

- LHCb upgrade I is completed and expected to take physics data this year
- R&D ongoing for Upgrade II, Chinese groups are key players in UT and ECAL
- A lot more data and potential for physics output, interplay with theory community more important than ever

Thank you for your time!

liyiming@ihep.ac.cn