NLO calculation in CGC

魏双一＠山东大学
shuyi＠sdu．edu．cn

Y．Shi，L．Wang，S．Y．Wei，B．W．Xiao，PRL 128， 202302 （2022）

E．Iancu，A．H．Mueller，D．N．Trantafyllopoulos，S．Y．Wei，JHEP 10， 103 （2022）
E．Iancu，A．H．Mueller，D．N．Trantafyllopoulos，S．Y．Wei，EPJC 83， 1078 （2023） S．Hauksson，E．Iancu，A．H．Mueller，D．N．Trantafyllopoulos，S．Y．Wei，arXiv：2402．14748

Contents

『 Introduction

- Threshold Resummation
\square Diffractive Dijet in UPC
- Summary

Introduction

Particles produced in the forward rapidity

dilute-dense-system; gluon saturation; non-linear evolution; CGC
p

$$
\mathscr{F}\left(k_{T}\right)=\mathrm{FT}\left[S\left(r_{\perp}\right)\right]
$$

dipole scattering amplitude

Introduction

Life is simple at LO

Albacete and Marquet, PLB 2010
\square Large theoretical uncertainties
Dumitru and Jalilian-Marian, PRI 2002
Albacete and Marquet, PLB 2010
Levin and Rezaeian, PRD 2010

Introduction

An Odyssey of NLO

BRAHMS $\eta=2.2,3.2$

\square NLO cross section turns negative at high p_{T}.

Dumitru, Hayashigakia and Jalilian-MIarian, NPA, 2006
Altinoluk and Kovner, PRD, 2011
Chirilli, Xiao and Yuan, PRL, 2012
Chirilli, Xiao and Yuan, PRD, 2012
Watanabe, Xiao, Yuan and Zaslavsky, PRD, 2015

Proposals to fix this problem:

Kang, Vitev, Xing, PRL, 2014
Altinoluk, et al, PRD, 2015
Iancu, et al, JHEP, 2016
Ducloué, Lappi, Zhu, PRD, 2016, 2017
Ducloué, et al, PRD, 2018
Xiao, Yuan, PLB, 2019
Liu, MLa, Chao, PRD, 2019
Liu, Kang, Liu, PRD, 2020
Liu, Liu, Shi, Zheng, Zhou, 202Z
factorisation scheme; kinematic constraint; running coupling effect; resummation...

Introduction

Classical examples

Perturbative Expansion	Resummation
	$\sigma_{0} \sum_{i=0}^{n}\left(\left(\alpha_{s} \log \right)^{i}\right)$
$\sigma_{0} \sum_{i=0}^{n}\left(\left(\alpha_{s} \log \right)^{i}+\alpha_{s}^{i} C_{i}\right)$	$+\sigma_{0} \sum_{n+1}^{\infty}\left(\left(\alpha_{s} \log \right)^{i}\right)$

dijet azimuthal angle correlation

■ Perturbative Expansion: α_{s} is small [Resummation: large logs

Threshold Resummation

Threshold resummation

$$
\begin{gathered}
\tau=x z \xi=p_{T} e^{y} / \sqrt{s} \\
P_{q q}(\xi)=\frac{1+\xi^{2}}{(1-\xi)_{+}}+\frac{3}{2} \delta(1-\xi) \\
\begin{array}{r}
\int_{\tau}^{1} \frac{d \xi}{(1-\xi)_{+}} f(\xi)=\int_{\tau}^{1} d \xi \frac{f(\xi)-f(1)}{1-\xi} \\
+f(1) \ln (1-\tau)
\end{array}
\end{gathered}
$$

I- At higher p_{T} region, more contribution comes from $\xi \rightarrow 1$.

Shi, Wang, SYW, Xiao, PRL 20ఙఙ

Threshold Resummation

1. cross section in the coordinate space

$$
\begin{aligned}
& \frac{d \sigma}{d \mathcal{P} . \mathcal{S} .} \propto \int \frac{d^{2} r_{\perp}}{(2 \pi)^{2}} \exp \left[-i \vec{k}_{T} \cdot \vec{r}_{\perp}\right] \quad \text { numerical FT becomes unstable at large } k_{T} \\
& P(\xi) \otimes \ln \frac{\mu^{2}}{\mu_{r}^{2}} \quad \sigma_{0} \otimes \ln \frac{k_{T}^{2}}{\mu_{r}^{2}} \quad \sigma_{0} \otimes \ln ^{2} \frac{k_{T}^{2}}{\mu_{r}^{2}} \quad \mu_{r} \equiv c_{0} / r_{\perp} \\
& \int \frac{\mathrm{d}^{2} r_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot r_{\perp}} S^{(2)}\left(r_{\perp}\right) \ln \frac{c_{0}^{2}}{r_{\perp}^{2} \mu^{2}}=\frac{1}{\pi} \int \frac{\mathrm{~d}^{2} l_{\perp}}{l_{\perp}^{2}}\left[F\left(k_{\perp}-l_{\perp}\right)-J_{0}\left(\frac{c_{0}}{\mu}\left|l_{\perp}\right|\right) F\left(k_{\perp}\right)\right] \\
&=\frac{1}{\pi} \int \frac{\mathrm{~d}^{2} l_{\perp}}{l_{\perp}^{2}}\left[F\left(k_{\perp}-l_{\perp}\right)-\frac{\Lambda^{2}}{\Lambda^{2}+l_{\perp}^{2}} F\left(k_{\perp}\right)\right]+F\left(k_{\perp}\right) \ln \frac{\Lambda^{2}}{\mu^{2}}
\end{aligned}
$$

2. cross section in the momentum space

$$
P(\xi) \otimes\left[\ln \frac{\mu^{2}}{\Lambda^{2}}+I_{1}(\Lambda)\right] \quad \sigma_{0} \otimes\left[\ln \frac{k_{T}^{2}}{\Lambda^{2}}+I_{1}(\Lambda)\right] \quad \sigma_{0} \otimes\left[\ln ^{2} \frac{k_{T}^{2}}{\Lambda^{2}}+I_{2}(\Lambda)\right]
$$

Threshold Resummation

Resummation of the collinear logarithm

1. reverse-evolution approach

$$
\left[\begin{array}{l}
q\left(x_{p}, \mu\right) \\
g\left(x_{p}, \mu\right)
\end{array}\right]+\frac{\alpha_{s}}{2 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}} \int_{x_{p}}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[\begin{array}{ll}
C_{F} \mathcal{P}_{q q}(\xi) & T_{R} \mathcal{P}_{q g}(\xi) \\
C_{F} \mathcal{P}_{g q}(\xi) & N_{C} \mathcal{P}_{g g}(\xi)
\end{array}\right]\left[\begin{array}{l}
q\left(x_{p} / \xi, \mu\right) \\
g\left(x_{p} / \xi, \mu\right)
\end{array}\right] \Rightarrow\left[\begin{array}{l}
q\left(x_{p}, \Lambda\right) \\
g\left(x_{p}, \Lambda\right)
\end{array}\right]
$$

2. renormalization group equation approach

$$
\begin{aligned}
& \mathcal{P}_{q q}(N)=-2 \gamma_{E}-2 \psi(N)+\frac{3}{2}-\frac{1}{N}-\frac{1}{N+1}=-2 \gamma_{E}-2 \ln N+\frac{3}{2}+\mathcal{O}\left(\frac{1}{N}\right) \\
& q^{\mathrm{res}}\left(x_{p}, \Lambda^{2}, \mu^{2}\right)=\int_{x_{p}}^{1} \frac{\mathrm{~d} x}{x} q\left(x, \mu^{2}\right) \Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega=\ln \frac{x}{x_{p}}\right) \\
& \frac{\mathrm{d} \Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)}{\mathrm{d} \ln \mu^{2}}=-\frac{\alpha_{s} C_{F}}{\pi}\left[\ln \omega+\frac{3}{4}\right] \Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)+\frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{\omega} \mathrm{d} \omega^{\prime} \frac{\Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)-\Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega^{\prime}\right)}{\omega-\omega^{\prime}}
\end{aligned}
$$

Analogous to
Shi, Wang, SYW, Xiao, PRI 202ఙ

Threshold Resummation

Resummation of the soft logarithms

Sudakov resummation / Sudakov factor

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{d} y \mathrm{~d}^{2} p_{T}}=S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x_{p} q\left(x_{p}, \Lambda^{2}\right) D_{h / q}\left(z, \Lambda^{2}\right) F\left(k_{\perp}\right) e^{-S_{\text {Sud }}^{q q}} \\
& S_{\text {Sud }}^{q q}=C_{F} \int_{\Lambda^{2}}^{k_{\perp}^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi} \ln \frac{k_{\perp}^{2}}{\mu^{2}}-3 C_{F} \int_{\Lambda^{2}}^{k_{\perp}^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} \frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}
\end{aligned}
$$

Final formula

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} y \mathrm{~d}^{2} p_{T}}=\frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{d} y \mathrm{~d}^{2} p_{T}}+\frac{\mathrm{d} \sigma_{\mathrm{NLO} \text { matching }}}{\mathrm{d} y \mathrm{~d}^{2} p_{T}}+\frac{\mathrm{d} \sigma_{\text {Sud matching }}}{\mathrm{d} y \mathrm{~d}^{2} p_{T}}
$$

Threshold Resummation

Determining the semi-hard scale Λ : saddle point approximation

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\mathrm{resummed}}^{q q}}{\mathrm{~d} y \mathrm{~d}^{2} p_{T}}= & S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} \int \frac{\mathrm{~d}^{2} r_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot r_{\perp}} S^{(2)}\left(r_{\perp}\right) e^{-S_{\mathrm{Sud}}^{q q}} \int_{x_{p}}^{1} \frac{\mathrm{~d} x}{x} q(x, \mu) \frac{e^{\left(3 / 4-\gamma_{E}\right) \gamma_{\mu_{r}, \mu}^{q}}}{\Gamma\left(\gamma_{\mu_{r}, \mu}^{q}\right)}\left[\ln \frac{x}{x_{p}}\right]_{*}^{\gamma_{\mu_{r}, \mu}^{q}-1} \\
& \times \int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}} D_{h / q}\left(z^{\prime}\right) \frac{e^{\left(3 / 4-\gamma_{E}\right) \gamma_{\mu_{r}, \mu}^{q}}}{\Gamma\left(\gamma_{\mu_{r}, \mu}^{q}\right)}\left[\ln \frac{z^{\prime}}{z}\right]_{*}^{\gamma_{\mu_{r}, \mu}^{q}-1}
\end{aligned}
$$

$$
\begin{aligned}
& P(\xi) \otimes \ln \frac{\mu^{2}}{\mu_{r}^{2}} \\
& P(\xi) \otimes\left[\ln \frac{\mu^{2}}{\Lambda^{2}}+I_{1}(\Lambda)\right]
\end{aligned}
$$

saddle point approximation

$$
\Lambda \sim \mu_{r}=\frac{c_{0}}{r_{\perp}}
$$

$$
\Lambda^{2} \approx \max \left\{\Lambda_{\mathrm{QCD}}^{2}\left[\frac{k_{\perp}^{2}(1-\xi)}{\Lambda_{\mathrm{QCD}}^{2}}\right]^{\frac{C_{F_{F}}^{\sigma_{F}+\sigma_{c} \beta_{0}}}{}}, Q_{s}^{2}\right\}
$$

Shi, Wang, SYW, Xiao, PRL 20ఓఙ

Threshold Resummation

Numerical Results

\square Threshold resummation solves the "negativity" problem.
(T) Numerical results can universally describe the experimental data from RHIC and the LHC.

Shi, Wang, SYW, Xiao, PRL 20んఙ

Diffractive Dijet in UPC

Diffractive Process in UPC

Iancu, Mueller, Triantafyllopoulos, SYW, JHEP 20\&2, EPJC 2023 Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:Z402. 14748

Diffractive Dijet in UPC

"LO" Exclusive Process

$$
\frac{d \sigma}{d^{2} P_{\perp}} \propto \frac{1}{P_{\perp}^{6}}
$$

"NLO" 2+1 Process

$$
\frac{d \sigma}{d^{2} P_{\perp}} \propto \frac{1}{P_{\perp}^{4}}
$$

Iancu, Mueller, Triantafyllopoulos, SYW, JHEP 20\&ะ, 円PJC 2023 Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:Z402.14748

Diffractive Dijet in UPC

"LO" Exclusive Process

"NLO" 2+1 Process

$\mathcal{R} \equiv \frac{\sigma_{\text {exclusive }}}{\sigma_{2+1}}$

Iancu, Mueller, Triantafyllopoulos, SYW, JHEP 202\%, FPJC 2023 Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:Z402.14748

Diffractive Dijet in UPC

TMD factorisation of $2+1$ Process

$$
\frac{d \sigma}{d \eta_{1} d \eta_{2} d^{2} \boldsymbol{P} d^{2} \boldsymbol{K} d Y_{\mathbb{P}}}=x_{\gamma} f_{\gamma}\left(x_{\gamma}\right) \frac{1}{\pi} \frac{d \hat{\sigma}^{\gamma g \rightarrow q \bar{q}}}{d \hat{t}} \frac{d x G_{\mathbb{P}}\left(x, Y_{\mathbb{P}}, K_{\perp}^{2}\right)}{d^{2} \boldsymbol{K}}
$$

Gluon distribution of Pomeron

$$
\begin{aligned}
\frac{d x G_{\mathbb{P}}\left(x, Y_{\mathbb{P}}, K_{\perp}^{2}\right)}{d^{2} \boldsymbol{K}} & =\frac{S_{\perp}\left(N_{c}^{2}-1\right)}{4 \pi^{3}} \frac{1}{2 \pi(1-x)} \\
& \times\left[\mathscr{M}^{2} \int d R R J_{2}\left(K_{\perp} R\right) K_{2}(\mathscr{M} R) \mathscr{T}_{g}\left(R, Y_{\mathbb{P}}\right)\right]^{2}
\end{aligned}
$$

Probability of finding gluon with momentum fraction x inside a pomeron with momentum fractuon $x_{\mathbb{P}}$

Iancu, Miueller, Triantafyllopoulos, SYW, JHEP 20\&ะ, 玉PJC 2023 Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:Z402.14748

T Threshold resummation solves the "negativity" problem in the single inclusive hadron cross section at the NLO.
\square The $2+1$ process dominates in the diffractive dijet production in UPC and the diffractive TMD factorisation naturally arise in the CGC effective theory.

The End

Our approach

Resummation of the collinear logarithm

- Two approaches are numerically equivalent.

Our approach

Determining the semi-hard scale Λ : saddle point approximation

