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Particles produced in the forward rapidity

dilute-dense-system; gluon saturation; 
non-linear evolution; CGC
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Introduction

Life is simple at LO

Dumitru and Jalilian-Marian,  PRL 2002

Albacete and Marquet, PLB 2010


Levin and Rezaeian, PRD 2010
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Figure 1: Negatively charged hadron and π0 yields in proton-proton (at pseudo-rapidities (2.2,
3.2) and (3.3, 3.8 and 4)) and deuteron-gold (at pseudo-rapidities (2.2, 3.2) and 4) collisions at√
sNN = 200 GeV. Data by the BRAHMS and STAR collaborations.

Following [31], we regulate the running coupling in Eqs. (3) and (4) by freezing it to a constant
value αfr

s = 0.7 in the infrared. A detailed discussion about the different prescriptions proposed
to define the running coupling kernel and of the numerical method to solve the rcBK equation can
be found in [29]. The only piece of information left to fully complete all the ingredients in Eq. (1)
are the initial conditions for the evolution of the dipole-nucleus(proton) amplitude. Similar to
previous works, we take them from the McLerran-Venugopalan (MV) model [39]:

NF (r, Y = 0) = 1− exp

[

−r2Q2
s0

4
ln

(

1

Λ r
+ e

)]

, (5)

where Q2
s0 is the initial saturation scale (probed by quarks), and we take Λ = 0.241 GeV. Contrary

to studies of e+p data, we have discarded initial conditions a la Golec-Biernat-Wüsthoff [40], since
their Fourier transform result in an unphysical exponential fall-off of the ugd, and therefore of the
hadron spectra as well, at large transverse momenta. Finally, in the large-Nc limit which we have
implicitly assumed in order to use the rcBK equation, the gluon dipole scattering amplitude can
be expressed in terms of the quark amplitude as

NA(r, Y ) = 2NF (r, Y )−N 2
F (r, Y ) . (6)

With this setup, we obtain a very good description of RHIC data. Fig. 1 shows the comparison
of our results with data for the invariant yield of different hadron species in p+p and d+Au
collisions at

√
sNN = 200 GeV and rapidities yh = 2.2 and 3.2 for negative-charge hadrons (data

by the BRAHMS collaboration [1]) and yh = 3.3, 3.8 and 4 for neutral pions (data by the STAR
collaboration [2]). The only free parameters adjusted to the d+Au data are x0, the value of x
which indicates the start of the small−x evolution, and Qs0, the value of the saturation scale at
x = x0. For the gold nucleus we obtain a quark saturation scale Q2

s0 = 0.4 GeV2 at x0 = 0.02.
Values of x0 between 0.015 and 0.025 are allowed within error bands, they are used to generate
the yellow uncertainty band in Fig. 1. A few comments are in order. First, the parameters
Qs0 and x0 are obtained from minimum-bias data, and therefore Q2

s0 should be considered as an

4

Albacete and Marquet, PLB 2010

 Large theoretical uncertainties
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An Odyssey of NLO 
Dumitru, Hayashigakia and Jalilian-Marian, NPA, 2006


Altinoluk and Kovner, PRD, 2011

Chirilli, Xiao and Yuan, PRL, 2012

Chirilli, Xiao and Yuan, PRD, 2012


Watanabe, Xiao, Yuan and Zaslavsky, PRD, 2015

are fixed by comparing with RHIC data. Then we perform
a Hankel-Fourier transform to convert the solution into
momentum space in order to obtain the expression for
F xgðk⊥Þ. The running coupling BK equation (rcBK) has
been solved in many works, for example, Refs. [32–34],
and it was found that the inclusion of the running coupling
slows down the evolution significantly, compared to the
pure LL with fixed coupling, and reduces the value of
the saturation scale.
Results.—Figure 1 shows the single inclusive hadron

production yields in dAu collisions measured by
BRAHMS [8] and STAR [9] and the corresponding curves
generated by SOLO using the rcBK solution as the gluon
distribution. Without use of K factors, we find generally
decent agreement between our NLO calculation and the
data for relatively low momenta p⊥ < QsðxgÞ, as shown
in Figs. 1 and 3. The limit QsðxgÞ increases with forward
rapidity η. Therefore, this calculation becomes more robust
in the forward rapidity region.
A notable feature of the present calculation is that the

NLO correction becomes negative at higher p⊥ and, in fact,
dominates over the leading-order result for some values
of p⊥. Similar behavior is also seen in Ref. [23], which
incorporated only part of the NLO corrections. The critical
value of p⊥ at which the overall LOþ NLO cross section
becomes negative increases with rapidity, as can be seen
from Fig. 1. Once the hadron transverse momentum p⊥
is larger than QsðxgÞ, the NLO correction starts to become
very large and negative.
It is possible that higher-order corrections, either from

the hard factors beyond NLO or from the NLL BK evolu-
tion, will mitigate the negativity. Determining whether
either of these corrections fixes the issue is an important

problem, but it lies outside the scope of the current work
and we will leave this to future study.
We have also run SOLOwith three other choices of dipole

gluon distribution: the Golec-Biernat and Wusthoff (GBW)
model [35], the McLerran-Venugopalan (MV) model [4],
and the solution to the fixed coupling BK equation.
As shown in Fig. 2, all four parametrizations give similar

results and agree with the BRAHMS data in the p⊥ < Qs

FIG. 1 (color online). Comparisons of BRAHMS [8] (h−) and STAR [9] (π0) yields in dAu collisions to results of the numerical
calculation with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed by using μ2 ¼ 10–50 GeV2.

FIG. 2 (color online). Comparisons of BRAHMS data [8] at
η ¼ 3.2 with the theoretical results for four choices of gluon dis-
tribution: GBW, MVwith Λ ¼ 0.24 GeV, BK solution with fixed
coupling at αs ¼ 0.1, and rcBK with ΛQCD ¼ 0.1 GeV. The
edges of the solid bands show results for μ2 ¼ 10–50 GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

PRL 112, 012302 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 JANUARY 2014

012302-3

 NLO cross section turns negative at high pT.

Proposals to fix this problem:

Kang, Vitev, Xing, PRL, 2014

Altinoluk, et al, PRD, 2015

Iancu, et al, JHEP, 2016

Ducloué, Lappi, Zhu, PRD, 2016, 2017

Ducloué, et al, PRD, 2018

Xiao, Yuan, PLB, 2019

Liu, Ma, Chao, PRD, 2019

Liu, Kang, Liu, PRD, 2020

Liu, Liu, Shi, Zheng, Zhou, 2022

factorisation scheme; 
kinematic constraint; 

running coupling effect; 
resummation…
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Classical examples
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Perturbative Expansion Resummation
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Threshold Resummation

Threshold resummation

τ = xzξ = pTey / s

 At higher pT region, more contribution comes from .ξ → 1

Pqq(ξ) =
1 + ξ2

(1 − ξ)+
+

3
2

δ(1 − ξ)

∫
1
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dξ
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+f(1)ln(1 − τ)
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Shi, Wang, SYW, Xiao, PRL 2022
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Threshold Resummation

1. cross section in the coordinate space
<latexit sha1_base64="vLyrWwQ4wN5SfE5Pf/F0FfTospg="></latexit>

d�

dP.S. /
Z

d2r?
(2⇡)2

exp[�i~kT · ~r?]

<latexit sha1_base64="lDEzWHYwmG5Zk7PYiWFIufFpLAU=">AAACEnicbVC7TsMwFHXKq5RXgJHFokJqlyqpEDBWsDAWiT6kJlSO67RWHTuyHUQV9RtY+BUWBhBiZWLjb3DaDNByJMtH59yre+8JYkaVdpxvq7Cyura+UdwsbW3v7O7Z+wdtJRKJSQsLJmQ3QIowyklLU81IN5YERQEjnWB8lfmdeyIVFfxWT2LiR2jIaUgx0kbq29UmrHgPtAo9oWlEFPQYh14oEU69KLmrT7OvLw3p22Wn5swAl4mbkzLI0ezbX95A4CQiXGOGlOq5Tqz9FElNMSPTkpcoEiM8RkPSM5QjM95PZydN4YlRBjAU0jyu4Uz93ZGiSKlJFJjKCOmRWvQy8T+vl+jwwk8pjxNNOJ4PChMGtYBZPnBAJcGaTQxBWFKzK8QjZPLQJsWSCcFdPHmZtOs196zm3pyWG5d5HEVwBI5BBbjgHDTANWiCFsDgETyDV/BmPVkv1rv1MS8tWHnPIfgD6/MHDJ2dIQ==</latexit>

P (⇠)⌦ ln
µ2

µ2
r

<latexit sha1_base64="6O84hy0YoYtpwrtl5nM6At5Da3g=">AAACE3icbZC7SgNBFIZn4y3G26qlzWAQxCLsBlHLoI1lhNwgG5fZyWwyZC7LzKwQlryDja9iY6GIrY2db+Mk2UITfxj4+M85nDl/lDCqjed9O4WV1bX1jeJmaWt7Z3fP3T9oaZkqTJpYMqk6EdKEUUGahhpGOokiiEeMtKPRzbTefiBKUykaZpyQHkcDQWOKkbFW6J4Fmg44Cj0YSEM50TBgAgaxQjgbhY376iQLeBoqC6Fb9ireTHAZ/BzKIFc9dL+CvsQpJ8JghrTu+l5iehlShmJGJqUg1SRBeIQGpGtRILu+l81umsAT6/RhLJV9wsCZ+3siQ1zrMY9sJ0dmqBdrU/O/Wjc18VUvoyJJDRF4vihOGTQSTgOCfaoINmxsAWFF7V8hHiKbh7ExlmwI/uLJy9CqVvyLin93Xq5d53EUwRE4BqfAB5egBm5BHTQBBo/gGbyCN+fJeXHenY95a8HJZw7BHzmfP6h9ngk=</latexit>

�0 ⌦ ln
k2T
µ2
r

<latexit sha1_base64="w5Y+vfvaVntp+nHAfVm/yt30QhE=">AAACFXicbZDLSgMxFIYzXmu9jbp0EyyCCykzRdRl0Y3LCr1Bpx0yaaYNzWVIMkIZ+hJufBU3LhRxK7jzbUzbWWjrD4GP/5xDzvmjhFFtPO/bWVldW9/YLGwVt3d29/bdg8OmlqnCpIElk6odIU0YFaRhqGGknSiCeMRIKxrdTuutB6I0laJuxgnpcjQQNKYYGWuF7nmg6YCj0IOBNJQTDQMmehUYxArhbBTWe5VJFvA0VBZCt+SVvZngMvg5lECuWuh+BX2JU06EwQxp3fG9xHQzpAzFjEyKQapJgvAIDUjHokB2gW42u2oCT63Th7FU9gkDZ+7viQxxrcc8sp0cmaFerE3N/2qd1MTX3YyKJDVE4PlHccqgkXAaEexTRbBhYwsIK2p3hXiIbB7GBlm0IfiLJy9Ds1L2L8v+/UWpepPHUQDH4AScAR9cgSq4AzXQABg8gmfwCt6cJ+fFeXc+5q0rTj5zBP7I+fwB6PSerQ==</latexit>

�0 ⌦ ln2
k2T
µ2
r

<latexit sha1_base64="zxve7P26baDtmhaR+1ae9+0rkOg=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgETzURUY9FLx4r2A9oQthsJ+3SzSbubgqlFLz4V7x4UMSrf8Kb/8Ztm4O2Phh4vDfDzLww5Uxpx/m2CkvLK6trxfXSxubW9o69u9dQSSYp1GnCE9kKiQLOBNQ10xxaqQQShxyaYf9m4jcHIBVLxL0epuDHpCtYxCjRRgrsAy/OAok9eMjYANPAwadYBl4KMg3sslNxpsCLxM1JGeWoBfaX10loFoPQlBOl2q6Tan9EpGaUw7jkZQpSQvukC21DBYlB+aPpD2N8bJQOjhJpSmg8VX9PjEis1DAOTWdMdE/NexPxP6+d6ejKHzGRZhoEnS2KMo51gieB4A6TQDUfGkKoZOZWTHtEEqpNbCUTgjv/8iJpnFXci4p7d16uXudxFNEhOkInyEWXqIpuUQ3VEUWP6Bm9ojfryXqx3q2PWWvBymf20R9Ynz+HtpbP</latexit>

µr ⌘ c0/r?

2. cross section in the momentum space
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auxiliary semi-hard scale Λ
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
qq

dyd2pT
=
↵s

2⇡
S?CF

Z
1

⌧

dz

z2

Z
1

⌧/z
d⇠xq(x, µ2)Dh/q(z, µ

2)
1 + ⇠2

(1� ⇠)+

Z
d2r?
(2⇡)2

ln
c2
0

r2?µ
2

⇥
✓
e�ik?·r? +

1

⇠2
e�i 1

⇠ k?·r?
◆
S(2)(r?)

+3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
. (16)

We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution

3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
k2?
µ2

. (17)

The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
=
1

⇡

Z
d2l?
l2?


F (k? � l?)� J0

✓
c0
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|l?|
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F (k?)

�
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
F (k? � l?)�

⇤2

⇤2 + l2?
F (k?)

�
+ F (k?) ln

⇤2

µ2
, (18)

-independentΛ

numerical FT becomes unstable at large kT

Shi, Wang, SYW, Xiao, PRL 2022
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Threshold Resummation

Resummation of the collinear logarithm

1. reverse-evolution approach

2. renormalization group equation approach

23

1. Mellin Transform

Let us use the q ! q channel as an example to demonstrate how to perform Mellin transform and carry out
resummation in the Mellin space. The derivation for the g ! g channel is similar. Due to the existence of the
endpoint singularity in the splitting functions Pqq and Pgg when ⇠ ! 1, the Mellin transform integral is dominated
by the endpoint for su�ciently large N . In contrast, the o↵-diagonal splitting functions contain no plus-functions or �
functions. Therefore, the threshold e↵ects from the o↵-diagonal channels are much smaller than those in the diagonal
channels.

The Mellin transform and the inverse Mellin transform are usually defined as

f(N) =

Z
1

0

dxxN�1f(x), (97)

f(x) =
1

2⇡i

Z

C
dNx�Nf(N), (98)

where C stands for the proper contour which puts all the poles to its left.
Following the same strategy developed in the last subsection, we resum the collinear logarithms associated with

PDFs and FFs seperately. For the first term of �1
qq, we carry out the Mellin transform as follows
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where q(N) ⌘
R
1

0
dxxN�1q(x) and Pqq(N) ⌘

R
1

0
d⇠⇠N�1Pqq(⇠). Similarly, for the second term in �1

qq, we obtain
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⇠
)Pqq(⇠) = Pqq(N)Dh/q(N), (100)

with Dh/q(N) ⌘
R
1

0
dzzN�1Dh/q(z). Furthermore, we can evaluate Pqq(N) and find

Pqq(N) = �2�E � 2 (N) +
3

2
� 1

N
� 1

N + 1
= �2�E � 2 lnN +

3

2
+O(

1

N
), (101)

where  (N) = lnN +O( 1

N ) is the polygamma function. We have taken the large-N limit in the last step.
In the threshold limit, the resummation of the collinear logarithm in the �1

qq term in the Mellin space results in
an exponential [83–90]. It is worth mentioning that the corresponding contribution from the o↵-diagonal channels is
suppressed in the large-N limit. The resummed quark PDFs and FFs in the Mellin space can be cast into

qres(N) = q(N) exp
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, (102)
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Then we perform the inverse Mellin transform with respect to qres(N) and get
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Using the following identity
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with �q
⇤,µ = ↵s

⇡ CF ln ⇤
2

µ2 , we reach the resummed expression for the quark distribution
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Similarly, for the collinear threshold logarithm associated with the quark FF, we have
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In the running coupling case, the anomalous dimension �q
⇤,µ reads

�q
⇤,µ = CF

Z
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dµ02

µ02
↵s(µ02)

⇡
. (108)

For the g ! g channel, the color factor and the splitting function are di↵erent from those in the q ! q channel.
The Mellin transform of Pgg(⇠) is given by
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), (109)

where �0 = 11

12
� nf

6Nc
and we have taken large-N limit in the last step. Therefore, for the gluon case, we obtain the

following expressions for the resummed gluon PDF and FF
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where the gluon channel anomalous dimension reads
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⇤,µ = Nc
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⇡
. (112)

2. The forward threshold jet function

Analogous to the jet function defined in Refs. [89, 90], we can also define the so-called forward threshold jet functions
�q(⇤2, µ2,!) and �g(⇤2, µ2,!) in the quark and gluon channels, respectively. These two functions can be written as
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with ! ⌘ ln 1

⇠ . Here the splitting fraction of the longitudinal momentum ⇠ is xp

x for the initial state gluon emission
and it should be identified as z

z0 in the case of final state gluon emission. The resummed PDFs and FFs derived in
the last section can then be written as
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Dres

h/q(z,⇤
2, µ2) =

Z
1

z

dz0

z0
Dh/q(z

0, µ2)�q(⇤2, µ2,! = ln
z

z0
), (117)
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To connect and compare with the renormalization group approach in Refs. [89, 90], we di↵erentiate Eqs. (113-114)
with respect to lnµ2 and find
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Due to the scale dependence in the anomalous dimensions, the flow directions of the renormalization group equation
for the µ and ⇤ scales are opposite to each other. Employing the identity of the digamma function  (�) = ��E +R
1

0
du 1�u��1

1�u , we can show that the collinear jet threshold functions �q and �g defined above satisfy the following
integro-di↵erential equations
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respectively. In deriving the above result, we have used �q/g(⇤2, µ2,!) / !�q/g
⇤,µ�1 together with the identity
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In the threshold limit which gives rise to the approximation ln 1

⇠ |⇠!1 ⇡ 1�⇠, the above evolution equation for the jet

function �q(⇤2, µ2,!) looks rather similar to that developed in Refs. [89, 90] within the SCET framework. The only
di↵erence lies in the absence of the Sudakov double logarithm (�↵sCF

2⇡ L2) and the single logarithm ( 3
2

↵sCF
⇡ L) with

L = ln k2?/⇤
2. To simplify the theoretical derivations presented in this paper, we choose to first resum the collinear

logarithms using the renormalization group equations given by Eqs. (121-122). Then, we deal with the resummation
of the single and double soft logarithms separately through the Sudakov factor in Sec. IV. The bottom line is that the
threshold implemented in our calculation is consistent with the systematic renormalization group equation approach
discussed in Refs. [89, 90].

3. Analytic Continuation

The resummed results obtained above are well-defined in the Re[�q/g
⇤,µ] > 0 region. However, they become singular

at ⇠ = 1 (or equivlently speaking, x = xp or z = z0) when Re[�q/g
⇤,µ]  0. This is simply due to the fact that Eq. (105)

requires Re[�q/g
⇤,µ] > 0 in order to close the integral contour to the left. Similar to the analytic continuation of the

gamma function1, the identity shown in Eq. (105) can be extended to the entire complex plane. For example, we

can analytically continue the resummed results to the region where �1 < Re[�q/g
⇤,µ]  0 in the complex plane by

reconsidering the following inverse Mellin transform
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. (124)

1 To understand this point better, we briefly recall the analytic
continuation of the gamma function �(z). Conventionally, �(z) is
defined via the integral, �(z) =

R1
0 dxxz�1e�x, when Re[z] > 0.

This integral is divergent at Re[z]  0 and therefore �(z) is not
properly defined with this expression in this region. The relation

�(z) = 1
z�(z+1) can be employed to uniquely extend the gamma

function to the �1 < Re[z]  0 region. Furthermore, using
the above relation repeatedly, we can further extend �(z) to the
entire negative half plane except zero and negative integers.

large-N
 lim

it

threshold jet function
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III. THE RESUMMATION OF THE COLLINEAR LOGARITHMS

As mentioned previously in the main text, there are two types of threshold logarithms. The first type is proportional
to the logarithm ↵s ln⇤2/µ2 and the corresponding partonic splitting function as shown in the above-mentioned NLO
corrections (see �1

qq, �
1
gg, �

1
gq and �1

qg), and it is associated with the collinear branching of partons. The second type

is proportional to either ↵s ln k2?/⇤
2 or ↵s ln

2 k2?/⇤
2, and this type originates from the soft emission of gluons near

the kinematic threshold. We first address the issue of the resummation of the collinear part in this section, and then
take care of the soft logarithms via the Sudakov factor in the next section.

A. Resummation of the collinear logarithms via the DGLAP evolution

Following the same idea proposed in Ref. [62], we can resum the collinear part of the threshold logarithms [88–90]
with the help of the DGLAP evolution, by setting the factorization scale µ to be ⇤. To deal with the first term of
�1
qq, the first term of �1

gg, �
1
gq and �1

qg, we apply the following replacement


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g (xp, µ)
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q (xp,⇤)
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�
. (93)

Upon the above replacement, the threshold logarithm ln ⇤
2

µ2 combined with the corresponding splitting function e↵ec-

tively evolves the factorization scale of the PDFs in the LO cross-section from µ2 back to ⇤2.
The same procedure also can be applied to the FF part. To see this more clearly, we need to rewrite �LO

qq and the
second term of �1

qq as
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The first line of Eq. (95) is exactly the same as the second term of Eq. (38), albeit in a slightly di↵erent form. From
the first line of Eq. (95) to the second line, we changed the variable z to z0⇠. It is then apparent that we can resum
the second term of �1

qq, the second term of �1
gg, �

2
gq and �2

qg through the DGLAP evolution of the FFs through the
following replacement


Dh/q (z, µ)
Dh/g (z, µ)
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�
. (96)

To conclude, we have taken care of the resummation of the collinear threshold logarithms in the following NLO
correction terms �1

qq, �
1
gg, �

1
gq, �

2
gq, �

1
qg and �2

qg by setting the factorization scales in �LO
qq and �LO

gg to be ⇤2. Since
⇤2 is usually smaller than µ2, we refer to this appoach as the reverse-evolution method in this paper.

B. An alternative formulation of the threshold reummation

Alternatively, there is another analytical approach to resum the above mentioned collinear logarithms (↵s ln
µ2

⇤2 ) in
the threshold limit. This approach is similar to the renormalization-group method first developed in Refs. [89, 90] for
DIS within the SCET framework. Our strategy is laid out as follows. First, we transform the terms which contain

large logarithms of ln µ2

⇤2 into the Mellin space. Second, we resum the corresponding large logarithms in the Mellin
space in the large-N limit. In the end, we perform the inverse Mellin transform back to the momentum space.

As a matter of fact, the analytical results obtained in this subsection are consistent with those in the SCET approach.
Furthermore, we have checked that this alternative approach numerically also agrees well with the resummation
method mentioned in the above subsection.

Shi, Wang, SYW, Xiao, PRL 2022
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developed in the last subsection, we show the ratio of the up quark distributions in Fig. 7. Here the up quark
distributions qresu (xp,⇤2, µ2) and qu(xp,⇤2) are computed from the renormalization group approach and the reverse
DGLAP approach, respectively. As shown in Fig. 7, the ratio is close to 1 in the intermediate and large xp regions
and it indicates that the numerical di↵erence between these two approaches is small.

The reverse-evolution approach developed in Sec. IIIA does not rely on the large-N and ⇠ ! 1 approximations,
which are vital in the renormalization group equation approach discussed in this subsection. Furthermore, it automat-
ically takes care of the o↵-diagonal channels. Therefore, we employ the first approach in our numerical evaluations.
Nonetheless, the fact that the ratio of qresu (xp,⇤2, µ2) and qu(xp,⇤2) is rather close to 1 for various values of µ2

suggests these two approaches are numerically equivalent.

IV. THE RESUMMATION OF THE SOFT LOGARITHMS

Let us discuss the resummation of the soft part of the threshold logarithms via the Sudakov factor in this section.
Soft logarithms only appear in the q ! q and g ! g channels. Conventionally, these double and single logarithms
can be resummed through the Sudakov factors. For the q ! q channel, we have the following logarithms from the
�5a
qq and �2

qq terms,

�↵s

2⇡
CF ln2

k2?
⇤2

+ 3
↵s

2⇡
CF ln

k2?
⇤2

. (130)

The first term is the double logarithm term and the second one is the single logarithm term derived with the fixed
strong coupling. As the common practice, we need to convert the above expression from the fixed coupling one to the
running coupling one in phenomenology. Therefore, in the threshold resummation, we employ the following Sudakov
factor

Sqq
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= CF

Z k2
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. (131)

The resummation of soft logarithms becomes an exponential of the Sudakov factor. The extraction of the double
logarithms is quite challenging in the running coupling case. Alternatively, we first extract those soft logarithms with
the fixed coupling and then compute the mismatch term to take into account the di↵erence. The di↵erence between
the running coupling Sudakov factor and the fixed coupling NLO correction is cast into the following matching term,

Sqq
Sud
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The discussion for the g ! g channel also follows suit. At the end of the day, the resummed formula reads
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where Sqq
Sud

and Sgg
Sud

are Sudakov factors for q ! q and g ! g channels which are given by
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The Sudakov factor follows the counting rule which is given in Refs. [81, 82]. As discussed in the last section, the
factorization scale in Eq. (133) is set to be ⇤ as a result of the resummation of collinear logarithms.

Thus, the Sudakov matching term, which is treated as part of the NLO correction, is given by
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The first term is the double logarithm term and the second one is the single logarithm term derived with the fixed
strong coupling. As the common practice, we need to convert the above expression from the fixed coupling one to the
running coupling one in phenomenology. Therefore, in the threshold resummation, we employ the following Sudakov
factor

Sqq
Sud

= CF

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

⇡
ln

k2?
µ2

� 3CF

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

2⇡
. (131)

The resummation of soft logarithms becomes an exponential of the Sudakov factor. The extraction of the double
logarithms is quite challenging in the running coupling case. Alternatively, we first extract those soft logarithms with
the fixed coupling and then compute the mismatch term to take into account the di↵erence. The di↵erence between
the running coupling Sudakov factor and the fixed coupling NLO correction is cast into the following matching term,

Sqq
Sud

� CF
↵s

2⇡

✓
ln2

k2?
⇤2

� 3 ln
k2?
⇤2

◆
. (132)

The discussion for the g ! g channel also follows suit. At the end of the day, the resummed formula reads

d�resummed

dyd2pT
=S?

Z
1

⌧

dz

z2
xpq(xp,⇤

2)Dh/q(z,⇤
2)F (k?)e

�Sqq
Sud

+ S?

Z
1

⌧

dz

z2
xpg(xp,⇤
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Z
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Sud , (133)

where Sqq
Sud

and Sgg
Sud

are Sudakov factors for q ! q and g ! g channels which are given by

Sqq
Sud

= CF

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

⇡
ln

k2?
µ2

� 3CF

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

2⇡
, (134)

Sgg
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. (135)

The Sudakov factor follows the counting rule which is given in Refs. [81, 82]. As discussed in the last section, the
factorization scale in Eq. (133) is set to be ⇤ as a result of the resummation of collinear logarithms.

Thus, the Sudakov matching term, which is treated as part of the NLO correction, is given by
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. (136)

Sudakov resummation / Sudakov factor 28

V. SUMMARY OF THE FULL THRESHOLD RESUMMED RESULTS

To make the resummed results more accessible to the interested readers, we provide a thorough summary of the
full NLO cross-section after the threshold resummation in the large Nc limit, which have been numerically evaluated
and referred to as the “Resummed” results in the plots throughout the paper.

First, the resummation of the collinear logarithms in �1
qq, �

1
gg, �

1
gq, �

2
gq, �

1
qg and �2

qg terms sets the factorization
scales in �LO

qq and �LO
gg to be ⇤2. Second, the resummation of the soft logarithms in �5a

qq , �
2
qq, �

6a
gg and �2

gg terms yields
the exponential expression of the Sudakov factor. The rest of the NLO corrections together with the matching terms
do not contain apparent large logarithms and they are numerically small. Therefore, we treat them as the new NLO
hard factors after the subtraction of logarithms. The resummation improved NLO cross-section is then given by

d�

dyd2pT
=

d�resummed
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+
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, (137)

where
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d�Sud matching
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d�NLO matching
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The Sudakov factors are
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Sgg
Sud

= Nc

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

⇡
ln

k2?
µ2

� 11Nc � 2nf

3

Z k2
?

⇤2

dµ2

µ2

↵s(µ2)

2⇡
. (142)

For the reader’s convenience, we list all the updated NLO matching terms in the following
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Final formula
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Determining the semi-hard scale : saddle point approximationΛ

31

It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
k2
?

with finite longitudinal momentum q�, one gets Sudakov logarithm ln k2
?

q2?
corresponding to the real gluon emission.

On the other hand, q� ! 1 in the region 1� q2?
k2
?

< ⇠ < 1� q2?
k2
?
xg, then one gets ln 1

xg
which corresponds to part of

the small-x evolution. For virtual gluon, there is no such requirement.
If we introduce the semi-hard scale ⇤2 to represent the typical transverse momentum associated with the Sudakov

real gluon emission, then we can find that the real and virtual contributions would cancel each other in the region
q2?  ⇤2. When the saturation momentum is not large, this scale is estimated to be (1� ⇠)k2? ⇠ (1� ⌧)k2? since the

real gluon emission requires ⇠ < 1� q2?
k2
?
. On the other hand, when the saturation e↵ect is dominant, we expect that

the real and virtual contributions cancel up to the saturation momentum Q2
s. With these overall considerations, we

choose this semi-hard scale ⇤2 to be

⇤2

fixed
' max

⇥
(1� ⌧)k2?, Q

2

s

⇤
� ⇤2

QCD
, (160)

where the subscript “fixed” indicates that this expression for the auxiliary scale is derived with fixed coupling.
The auxiliary scale ⇤2 in our calculation is similar to the intermediate scale µ2

i in SCET [89, 90]. In the region
⇤2 < q2? < k2?, the remaining virtual contribution is found to be

�
Z k2

?

⇤2

dq2?
q2?

ln
k2?
q2?

) �1

2
ln2

k2?
⇤2

, (161)

which can be identified as the Sudakov double logarithmic contribution. The above intuitive discussion of the scale
choice is based on the separation of the kinematic region, and a more rigorous derivation using the saddle point
approximation is provided in the next subsection. It is important to note that the ⇤2 scale can also be determined
from the scale µ2

r ⌘ c2
0
/r2? with r? being the typical scale in the coordinate space. There are two competing

mechanisms: the threshold soft gluon emission and the saturation e↵ects when we try to locate the region where the
dominant contribution arises. In addition, for convenience, we use a fixed estimated value of ⇤2 in the numerical
evaluation for a given kinematic region.

B. Saddle Point Approximation

In addition to the above intuitive derivation, we can analytically study the choice of ⇤2 via the saddle point
approximation. The saddle point approximation method, also known as the method of steepest descent, allows one
to locate the region where the most important contribution arises in the resummed results and therefore identify the
natural choice of ⇤2. Similar ideas have also been used in Refs. [91–93].

To determine the value of the auxiliary scale ⇤2 in the resumed expression in Eq. (137), let us first consider the
corresponding results for the q ! q channel in the coordinate space
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with µr = c0/r?, c0 = 2e��E and �q
µr,µ = CF

R µ2
r
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02
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⇡ . The Sudakov factor Sqq
Sud
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The saddle point of the above r? integral depends on both the strength of the saturation e↵ect (given by the dipole
amplitude S(2)(r?)) and the threshold resummation. To identify the corresponding saddle point of each contribution,
it is convenient to rewrite above formula in terms of the convolution of the dipole gluon distribution and the threshold
Sudakov factor in the momentum space as follows

d�qq
resummed
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33

Next, let us study F (k? � q?) in the second region where q? ⇠ k?, and find the saddle point in the r? integral
involving the dipole gluon distribution. In this case with q? ⇠ k?, the phase factor e�i(k?�q?)·r? or the Bessel
function J0(|k? � q?||r?|) can set to 1. The integral of interest becomes
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dr2?S
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Z 1
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4
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, (173)

where S(2)(r?) is approximately equal to exp
⇥
� 1

4
Q2

sr
2

?
⇤
as suggested in the GBW model for the dipole scattering

amplitude with Qs the saturation momentum. It is clear that the saddle point of this integral locates at 1

r2sp
= Q2

s
4
.

In the low momentum region where q? ⇠ k?, the GBW model usually provides a good description of the transverse
momentum distribution for F (k? � q?), while it does not have the power law tail in the high q? region.

To summarize, the semi-hard auxiliary scale ⇤2 in Eq. (137) is determined by the dominant region of r?-integral
in Eq. (162). Physically speaking, there are two competing mechanisms which controls the r? integral in Eq. (162).
When the final state jet transverse momentum k? mainly comes from the dipole gluon distribution, we find that the
semi-hard scale is given by Eq. (172). On the other hand, when the saturation e↵ect is strong, we can see that the
typical semi-hard scale should be of the order Q2

s. Near the kinematic threshold when k? is large, we need to minimize
the typical r? in Eq. (162) to avoid strong cancellation caused by the oscillation phase factor. Thus, the dominant
contribution to the whole integral in Eq. (162) comes from the larger scale of these two, or equivalently speaking, the
smaller rsp. Therefore, we arrive at the following quantitative prescription for the choice of ⇤2

⇤2 ⇡ max

8
<

:⇤2

QCD

"
k2?(1� ⇠)

⇤2

QCD

# CF
CF +Nc�0

, Q2

s

9
=

; . (174)

To get the result for the g ! g channel, we only need to replace the color factor CF with Nc.

p
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2
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Q
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2
]

y = 4
y = 3.2
y = 2.2

FIG. 9. Saturation momentum square Q2
sA = 5Q2

sp(xg) as a function of k? at di↵erent rapidities in the GBW model.

It is time to use Eq. (174) to estimate the natural choices of the auxiliary scale ⇤2 in various kinematic regions. At
the RHIC energy, one can take the typical k? ⇠ 10 GeV. Assuming 1� ⇠ ⇠ 0.5, the saddle point of the first region is
µ2
sp

⇠ 0.7 GeV2 for the q ! q channel. To obtain the above numbers, we have used nf = 4 and ⇤QCD = 0.15 GeV.
For the g ! g channel, the value becomes 2 GeV2, which is not large either. In the large-x region, the cross-section
is dominated by the quark channel since the quark density is much larger than the gluon density. Therefore, the
scale ⇤2 at the RHIC energy is mainly determined by the saturation momentum in dAu collisions. In our numerical
evaluation, we employ the GBW model to estimate the saturation momentum, which is given by[96]

Q2

sp(xg) = Q2

0

✓
x0

xg

◆�

, (175)

where xg = k?p
sNN

e�y, x0 = 3.04 ⇥ 10�4, � = 0.288 and Q2
0
= 1 GeV2. For the gold nucleus target, we use

Q2

sA(xg) = 5Q2
sp(xg) and show the saturation momentum as a function of k? at di↵erent rapidities in Fig. 9. The

corresponding saturation momentum for the proton target in pp collisions is only 1/5 of the values shown in Fig. 9.

Λ ∼ μr =
c0

r⊥

saddle point approximation
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Numerical Results
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Threshold resummation solves the “negativity” 
problem.
Numerical results can universally describe the 
experimental data from RHIC and the LHC.
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Diffractive Dijet in UPC

γ

ℙ

Diffractive Process in UPC

Iancu, Mueller, Triantafyllopoulos, SYW, JHEP 2022, EPJC 2023

Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:2402.14748

Golden channel to 
study 

gluon saturation



 

Shu-Yi Wei              NLO in CGC  14

Diffractive Dijet in UPC

“LO” Exclusive Process
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Diffractive Dijet in UPC

“LO” Exclusive Process “NLO” 2+1 Process
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Diffractive Dijet in UPC

TMD factorisation of 2+1 Process

dσ
dη1dη2d2Pd2KdYℙ

= xγ fγ(xγ)
1
π

d ̂σγg→qq̄

d ̂t
dxGℙ(x, Yℙ, K2

⊥)
d2K

Gluon distribution of Pomeron

dxGℙ(x, Yℙ, K2
⊥)

d2K
=

S⊥(N2
c − 1)

4π3

1
2π(1 − x)

× [ℳ2 ∫ dRRJ2(K⊥R)K2(ℳR)𝒯g(R, Yℙ)]
2

ℳ
2

=
x1 −

x K 2⊥

Probability of finding gluon with 
momentum fraction  inside a pomeron 

with momentum fractuon 
x

xℙ

Resummation: Shao, Shi, Zhang, 
Zhou, Zhou; arXiv:2402.05465

Iancu, Mueller, Triantafyllopoulos, SYW, JHEP 2022, EPJC 2023

Hauksson, Iancu, Mueller, Triantafyllopoulos, SYW, arXiv:2402.14748
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Summary

Thank
s for

 you
r at

tenti
on!

Threshold resummation solves the “negativity” problem in the single 
inclusive hadron cross section at the NLO.

The 2+1 process dominates in the diffractive dijet production in UPC 
and the diffractive TMD factorisation naturally arise in the CGC 
effective theory.



The End
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Our approach

Resummation of the collinear logarithm

MSTW PDFs

⇤2 = 25 GeV2
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 Two approaches are numerically equivalent. 
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Our approach

Determining the semi-hard scale : saddle point approximationΛ

dAu,
p
sNN = 200 GeV, y = 3.2

µ2 = ↵2(µ2
min + p2?), ↵ = 4
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pPb,
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sNN = 5.02 TeV, y = 3.75

µ2 = ↵2(µ2
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