Precision Calculations of *B*-Meson Decay Form Factors

魏焰冰

北京工业大学

青岛 · 2024.4.21
第六届重味物理与量子色动力学研讨会

Y.B. Wei (BJUT)

B Decay Form Factors

Apr. 21 2024

1/11

- * *B*-meson decay form factors
- * Power corrections to the form factors
- * Numerical applications

Image: A match a ma

э

B Physics

New physics beyond the SM

- Direct search: new particles
- Indirect search: flavour physics CPV, $R(D^{(*)})$, $|V_{ub}|$, $|V_{cb}|$, \cdots

- BaBar, Belle
- LHC, Belle-II
- HL-LHC

< □ > < □ > < □ > < □ > < □ > < □ >

B-meson decay form factors

Important in: $B \to M \ell \bar{\nu}_{\ell}, \ B \to \gamma \ell \bar{\nu}_{\ell}, \ B \to M_1 M_2$

$$\langle M(p) | \bar{q} \sigma_{\mu\nu} q^{\nu} b | \bar{B}(p+q) \rangle = i \frac{f_{B \to M}^{T}(q^{2})}{m_{B} + m_{M}} \left[q^{2} (2p+q)_{\mu} - (m_{B}^{2} - m_{M}^{2}) q_{\mu} \right]$$

* At large q^2 region:

- LQCD: 2+1 flavor [MILC 15'], [HPQCD 15'], [JLQCD 19']
- HQET: 1/m_b corrections [Bernlochner, Ligeti et al. 17'], [Bigi et al. 17']

- * At small q^2 region:
 - QCDF, SCET: NNLO [Beneke and Feldmann, 03'], [Bell et al. 10']
 - PQCD: NLO [Fan et al. 13'], [Fan et al. 15'], [Hu et al. 19']
 - LCSR: [Zhang et al. 17'], [Gubernari et al. 18'], [Gao, Huber, Ji, Wang, Wang and YBW, 21'], [Cui, Huang, Shen, Wang and Wang, 22'], [Cui, Huang, Wang and Zhao, 23'], [Gubernari et al. 23']

Y.B. Wei (BJUT)

B Decay Form Factors

Apr. 21 2024

Form factors in SCET

Since there are two large scales, we need two-step matching

From QCD to SCET: factorization formula @ LP

 $f_{B\to M}(E) = C(E)\xi_a(E) + C^{(B1)}(\tau) \otimes J^{B1}(\tau,\omega) \otimes \phi_M(\tau) \otimes \phi_B(\omega)$

Y.B. Wei (BJUT)

→

Form factors in LCSR

Two-point correlation function [Colangelo and Khodjamirian, 00'], [Shen and **YBW**, 21'], [Khodjamirian, Melić and Wang, 23']

$$\Pi = i \int d^4x \, e^{i p \cdot x} \langle 0 \, | \, T\{ \overline{q}(x) \not h \gamma_5 c(x) \, , \, \overline{c}(0) \gamma_\mu \, b(0) \} | \, \overline{B}(p_B)
angle$$

- Dispersion relation
- Borel transformation to avoid the endpoint divergence
- Parton-hadron duality

Subleading power corrections

Power corrections are numerically important in B decays, $\lambda = \Lambda/m_b$

 $\lambda \sim \alpha_s(\mu) \sim 20\% \Rightarrow \text{NLP@LO} \sim \text{LP@NLO}$

- * Higher Fock states of the B meson: $|B\rangle \Rightarrow |b \bar{q} g\rangle$
- * Quark-propagator expansion: $p \sim hc$ and $k \sim s$

$$\frac{(\not p - \not k)}{(p-k)^2} = \frac{1}{\bar{n} \cdot \hat{p}} \left\{ \frac{\not n}{2} + \underbrace{\frac{\bar{n} \cdot p}{n \cdot p}}_{\mathcal{O}(\lambda)} \left[\frac{\not n}{2} + \cdots \right] + \cdots \right\}$$

* Heavy-quark expansion: $QCD \rightarrow HQET$

$$b = h_v + rac{i D_\perp}{2m_b} h_v + \cdots, \qquad i D_\perp / m_b \sim \mathcal{O}(\lambda)$$

Collider physics: refactorization of endpoint divergence

- $H \rightarrow \gamma \gamma$: [Liu et al., 19'], [Liu et al., 20']
- DIS, DY: [Beneke et al., 22']

Y.B. Wei (BJUT)

$B \to \pi$ form factors

Precision + Accuracy

[Cui, Huang, Shen, Wang and Wang, 22']

		日本本語を本語を注意を言い	৽৽৽৽
Y.B. Wei (BJUT)	B Decay Form Factors	Apr. 21 2024	8/11

$B \to \gamma \ell \nu$ decay: $B \to \gamma$ form factors

Determine the most important non-perturbative parameter in B-meson LCDA: λ_B

$$R(D^{(*)}): B_{(s)} \to D^{(*)}_{(s)}$$
 form factors
 $\bar{B}_{(s)} \to D^{(*)}_{(s)} \ell \bar{\nu}_{\ell}$ decays+LQCD results: $3.2\sigma \to 2.5\sigma$

(s)

Summary

- * Introduction to the *B*-meson decay form factors
- $* B \rightarrow M$ form factors with LCSR: NLP power corrections
 - B-meson higher Fock states
 - Quark-propagator expansion
 - Heavy-quark expansion
- * Numerical applications
 - $B \rightarrow \gamma \ell \nu$ decay: extract λ_B
 - Determine $R(D^{(*)})$

Thank you!

Y.B. Wei (BJUT)