

Recent results of hadrons at Belle (II)

贾森 (东南大学) on behalf of the Belle and Belle II Collaboration

第六届重味物理与量子色动力学研讨会 2024年4月19-23日,青岛

Outline

- Search for $P_c^+ \rightarrow pJ/\psi$ in Y(1S, 2S) decays [arXiv:2403.04340]
- Search for $T_{cc}(3875)^+ \rightarrow D^0 D^{*+}$ [Preliminary results]
- Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ [Preliminary results]
- $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$ (n = 1, 2, 3) [arXiv: 2401.12021]
- $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$) [Preliminary results]

Search for $P_c^+ \rightarrow pJ/\psi$

Motivation

- LHCb discovered $P_c(4312)^+$, $P_c(4440)^+$, and $P_c(4457)^+$ decaying into pJ/ ψ in the process $\Lambda_b^+ \rightarrow \text{KpJ}/\psi$ [PRL 122, 222001 (2019)].
- The Y(1S, 2S, 3S) decay into three gluons (ggg) or two gluons plus a photon (γgg) with large branching fractions, providing an entry to many potential final states, including glueballs, light Higgs bosons, and states made of light quarks.
 Y(1S,2S,3S) datasets at e⁺e⁻ colliders:

Experiment	$\Upsilon(1S)$		$\Upsilon(2S)$		$\Upsilon(3S)$	
	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}
CLEO	1.2	21	1.2	10	1.2	5
BaBar			14	99	30	122
Belle	6	102	25	158	3	12

Search for $P_c^+ \rightarrow pJ/\psi$

4.9

5.3

7.2

6.8

4.5

 $(\times 10^{-6})$

at 90% C.L.

2.4

Search for $T_{cc}(3875)^+ \rightarrow D^0D^{*+}$

Motivation:

The $T_{cc}(3875)^+ \rightarrow D^0 D^0 \pi^+$ was first observed by LHCb [Nature Phys. 18 (2022) 7, 751-754].

Analysis strategy:

Partially reconstruction using two $D^0 \rightarrow K^-\pi^+$ to increase the efficiency and improve signal resolution

Results:

 $N^{obs} = 9$ and $N^{bkg} = 9.38^{+0.58}_{-0.44}$

$$\begin{split} \sigma(e^+e^- \to T_{cc}(3875)^+ \ + \\ anything) \mathcal{B}(T_{cc}(3875)^+ \to D^0 D^{*+}) < 38.7 \ fb \\ at \ 90\% \ C.L. \end{split}$$

[Preliminary results]

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

Motivation:

Based on the QCD multipole expansion [NPB 154, 365 (1979)], $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay is of great interest as its rate is suppressed by the heavy quark spin symmetry.

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ [Preliminary results]

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ [Preliminary results]

Discovery of Y(10753)

Measurement of $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$ at Belle II

- The full reconstruction: $e^+e^- \rightarrow [\Upsilon(nS) \rightarrow \mu^+\mu^-]\pi^+\pi^-$
- $\Delta M = M(\mu^+\mu^-\pi^+\pi^-) M(\mu^+\mu^-)$

ISR $\Upsilon(2S, 3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ Signal: $e^+e^- \rightarrow [\Upsilon(nS) \rightarrow \mu^+\mu^-]\pi^+\pi^-$

If we require $p^*(\pi^+\pi^-\mu^+\mu^-) < 100 \text{ MeV/c}$, the background from non-prompt production of the $\Upsilon(10753)$ is suppressed.

[arXiv: 2401.12021]

submitted to JHEP

Measurement of $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$ at Belle II

[arXiv: 2401.12021] submitted to JHEP

- New measurement confirms previous Belle result.
- Fit: Use coherent sum of Breit-Wigner amplitudes, convolve with a Gaussian to account for energy spread.

Mass	(10756.3±2.7±0.6) MeV/c ²
Width	(29.7±8.5±1.1) MeV
$\boldsymbol{\mathcal{R}}_{\sigma(1S/2S)}^{\boldsymbol{\Upsilon}(10753)}$	$0.46\substack{+0.15\\-0.12}$
$\boldsymbol{\mathcal{R}}_{\sigma(3S/2S)}^{\boldsymbol{\Upsilon}(10753)}$	$0.10^{+0.05}_{-0.04}$

Measurement of $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$ at Belle II

Dataset and charmed baryon production at Belle (II)

- In B-factories, e^+e^- collider at 10.58 GeV to make $\Upsilon(4S)$ resonance decaying into $B^0\overline{B}^0$ and B^+B^- in 96% of the time.
- Meanwhile, a large cross section for continuum processes $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$.

Datasets	Luminosity
Belle	980 fb ⁻¹
Belle II	426 fb ⁻¹

Study of $\Xi_c^0\to \Xi^0 h^0~(h^0=\pi^0,\eta,\eta')$

Motivation:

• Nonfactorizable amplitudes arising from internal *W*-emission and *W*-exchange lead to the difficulties for theoretical predictions in hadronic weak decay of charmed baryons.

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Cheng, Tseng [8]	\mathbf{CA}	17.1	-	-	0.54
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Sharma, Verma [11]	\mathbf{CA}	-	-	-	-0.8
Geng et al. $[12]$	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng et al. [13]	${ m SU}(3)_{ m F}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
Zhao <i>et al.</i> [14]	${ m SU}(3)_{ m F}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Zou et al. [10]	pole	18.2	26.7	-	-0.77
Huang et al. [15]	${ m SU}(3)_{ m F}$	$2.56 {\pm} 0.93$	-	-	-0.23 ± 0.60
Hsiao et al. [16]	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	$SU(3)_{F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
Zhong et al. [17]	${ m SU}(3)_{ m F}$	$1.13^{+0.59}_{-0.49}$	$1.56 {\pm} 1.92$	$0.683^{+3.272}_{-3.268}$	$0.50\substack{+0.37\\-0.35}$
Zhong et al. [17]	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63\substack{+5.09\\-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing et al. [18]	${ m SU}(3)_{ m F}$	$1.30{\pm}0.51$	-	-	-0.28 ± 0.18

14

[5] Z. Phys. C 55 (1992) 659 [6] PRD 57 (1998) 6532 [7] PRD 46 (1992) 053004 [8] PRD 48 (1993) 4188 [9] PRD 50 (1994) 5787 [10] PRD 101 (2020) 014011 [11] EPJC 7 (1999) 217 [12] PRD 97 (2018) 073006 [13] PLB 794 (2019) 19 [14] JHEP 02 (2020) 165 [15] JHEP 03 (2022) 143 [16] JHEP 09 (2022) 35 [17] JHEP 02 (2023) 235 [18] PRD 108 (2023) 053004

Reference mode of $\Xi_c^0 \to \Xi^- \pi^+$

First Belle + Belle II combined charm measurement.

Datasets	Signal yield
Belle	36340±348
Belle II	13719±184

Branching fractions for $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$)

2.55

Signal yield:

Channel	Belle	Belle II
$\Xi_c^0\to\Xi^0\pi^0$	1315 ± 66	869±46
$\Xi_c^0\to\Xi^0\eta$	81±15	60±11
$\Xi_c^0\to\Xi^0\eta'$	23±6	8±4

Preliminary results, will be submitted to JHEP

First measurement of the following BRs:

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\text{stat.}) \pm 0.2 (\text{syst.}) \pm 0.4 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\text{stat.}) \pm 0.1 (\text{syst.}) \pm 0.3 (\text{norm.})) \times 10^{-3}$

They are compatible with theoretical prediction based on SU(3)_F-breaking [JHEP 02, 235 (2023)].

Asymmetry parameter for $\Xi_c^0\to \Xi^0\pi^0$

The asymmetry parameter, related to P-violation, is measured through the differential decay rate: [Preliminary results]

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

The $\cos\theta_{\Xi^0}$ is the angle between the Λ momentum vector and the opposite of the Ξ_c^0 momentum vector in the Ξ^0 rest frame.

The $\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$, which is consistent with predictions based on the pole model [PRD 48 (1993) 4188, PRD 101 (2020) 014011], CA [EPJC 7 (1999) 217], and SU(3)_F flavor symmetry [PLB 794 (2019) 19] approaches.

- **D**Neither $P_c^+ \rightarrow pJ/\psi$ nor $T_{cc}(3875)^+ \rightarrow D^0D^{*+}$ signals are found.
- **□** First evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$.
- □ Updated measurement of $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$ with improved precision. □ First observation of $\Xi_c^0 \rightarrow \Xi^0 \pi^0 / \Xi^0 \eta / \Xi^0 \eta'$ with combined Belle and Belle II data.

Thanks for your attentions!