Based on arXiv: 2403.07499 Wen-Fei Wang, Li-Fei Yang, Ai-Jun Ma, Angels Ramos

The low-mass enhancement of kaon pair in the decays $B^+ \rightarrow \overline{D}^{(*)0} K^+ \overline{K}^0$ and $B^0 \rightarrow D^{(*)-} K^+ \overline{K}^0$

王文飞 (山西大学)

第六届重味物理与量子色动力学研讨会 中国海洋大学 2024-04-21

3-body B meson decays and the virtual contribution

- > Kaon pair in $B^+ \to \overline{D}^{(*)0} K^+ \overline{K}^0$ and $B^0 \to D^{(*)-} K^+ \overline{K}^0$ decays
- Results and discussions

Conclusions

3-body B meson decays and the virtual contribution

The weak effective Hamiltonian:

L.
$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub} V_{uq}^* [C_1(\mu) Q_1^u(\mu) + C_2(\mu) Q_2^u(\mu)] - V_{tb} V_{tq}^* \left[\sum_{i=3}^{10} C_i(\mu) Q_i(\mu) \right] \right\} + \text{H.c.}, \quad (2)$$
where $q = d$, s. The functions Q_i $(i = 1, ..., 10)$ are the local four-quark operators:

The total amplitude within isobar approach:

2.
$$\mathcal{A}_{total} = \sum_{i} \mathcal{A}_{NR}^{i} + \sum_{j} \mathcal{A}_{R}^{j}$$

3-body B meson decays and the virtual contribution

3-body B meson decays and the virtual contribution

PHYSICAL REVIEW DVOLUME 15, NUMBER 111 JUNE 1977High-statistics study of the reactions $\pi^- p \rightarrow K^- K^+ n$ and $\pi^+ n \rightarrow K^- K^+ p$ at 6 GeV/c*A. J. Pawlicki, D. S. Ayres, D. Cohen, R. Diebold, S. L. Kramer, and A. B. Wicklund
Argonne National Laboratory, Argonne, Illinois 60439
(Received 23 December 1976; revised manuscript received 15 March 1977)

ambiguities. As discussed above, the *P* wave is consistent with the tail of the ρ^0 decaying into K^-K^+ , with a ρKK coupling that agrees with SU(3), including the sign. Only one of the ambiguous sol-

MOTIVATION:

$$\begin{aligned} \mathcal{B}(B^- \to D^0 K^- K_S^0) =& (1.89 \pm 0.16 \pm 0.10) \times 10^{-4}, \\ \mathcal{B}(\overline{B}{}^0 \to D^+ K^- K_S^0) =& (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}, \\ \mathcal{B}(B^- \to D^{*0} K^- K_S^0) =& (1.57 \pm 0.27 \pm 0.12) \times 10^{-4}, \\ \mathcal{B}(\overline{B}{}^0 \to D^{*+} K^- K_S^0) =& (0.96 \pm 0.18 \pm 0.06) \times 10^{-4}, \end{aligned}$$

MOTIVATION:

MOTIVATION:

Isospin $I = 1 \ K^+ \overline{K}^0$ $A_0(980)^+ \& a_0(1450)^+ \& \rho(1700)^+ \\ a_2(1320)^+ \& a_2(1700)^+$

Isospin
$$I = 1 \ K^+ \overline{K}^0$$

$$\begin{cases} \rho(770)^+ & \rho(1450)^+ & \frac{1}{2} \rho(1700)^+ \\ a_0(980)^+ & a_0(1450)^+ \\ a_2(1320)^+ & \frac{1}{2} a_2(1700)^+ \end{cases}$$

$$\mathcal{A} = \langle (\omega \pi)_{P\text{-wave}} D^{(*)} | \mathcal{H}_{\text{eff}} | B \rangle$$
$$= \phi_B \otimes \mathcal{H} \otimes \phi_{\omega \pi}^{P\text{-wave}} \otimes \phi_{D^{(*)}}$$

TABLE II: PQCD results for the branching fractions of the quasi-two-body decays $B^+ \to \bar{D}^{(*)0}[\rho(770)^+ \to]\pi^+\pi^0$ and $B^0 \to D^{(*)-}[\rho(770)^+ \to]\pi^+\pi^0$.

Decay modes	Units	PQCD
$B^+ \to \bar{D}^0[\rho(770)^+ \to] \pi^+ \pi^0$	%	$1.21\substack{+0.16+0.10+0.05\\-0.16-0.12-0.06}$
$B^0 \to D^-[\rho(770)^+ \to] \pi^+ \pi^0$	10^{-3}	$7.63\substack{+0.58+0.97+0.34\\-0.58-0.73-0.21}$
$B^+ \to \bar{D}^{*0}[\rho(770)^+ \to] \pi^+ \pi^0$	10^{-3}	$9.03\substack{+1.55+0.73+0.51\\-1.55-0.64-0.46}$
$B^0 \to D^{*-}[\rho(770)^+ \to] \pi^+ \pi^0$	10^{-3}	$8.15^{+1.31+0.64+0.03}_{-1.31-0.62-0.07}$

$$\begin{split} \mathcal{B}(B^+ \to \bar{D}^0 \rho(770)^+) &= (1.34 \pm 0.18)\%, \\ \mathcal{B}(B^0 \to D^- \rho(770)^+) &= (7.6 \pm 1.2) \times 10^{-3}, \\ \mathcal{B}(B^+ \to \bar{D}^{*0} \rho(770)^+) &= (9.8 \pm 1.7) \times 10^{-3}, \\ \mathcal{B}(B^0 \to D^{*-} \rho(770)^+) &= (6.8 \pm 0.9) \times 10^{-3}, \end{split}$$

TABLE III: PQCD predictions for the branching fractions of the concerned quasi-two-body decays with the subprocess $\rho^+ \to K^+ \bar{K}^0$, here $\rho^+ = \rho(770)^+ + \rho(1450)^+$.

Mode	Unit	B
$B^+ ightarrow ar{D}^0[ho^+ ightarrow]K^+ ar{K}^0$	10^{-4}	$1.68\substack{+0.20+0.17+0.12\\-0.20-0.15-0.12}$
$B^0 \rightarrow D^-[ho^+ \rightarrow] K^+ \bar{K}^0$	10^{-4}	$0.98\substack{+0.06+0.13+0.06\\-0.06-0.12-0.06}$
$B^+ \rightarrow \bar{D}^{*0}[\rho^+ \rightarrow] K^+ \bar{K}^0$	10^{-4}	$1.33\substack{+0.21+0.11+0.05\\-0.21-0.11-0.07}$
$B^0 \to D^{*-}[\rho^+ \to] K^+ \bar{K}^0$	10^{-4}	$1.16\substack{+0.19+0.08+0.02\\-0.19-0.09-0.02}$

Belle-II arXiv:2305.01321

 $\begin{aligned} \mathcal{B}(B^- \to D^0 K^- K_S^0) =& (1.89 \pm 0.16 \pm 0.10) \times 10^{-4}, \\ \mathcal{B}(\overline{B}{}^0 \to D^+ K^- K_S^0) =& (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}, \\ \mathcal{B}(B^- \to D^{*0} K^- K_S^0) =& (1.57 \pm 0.27 \pm 0.12) \times 10^{-4}, \\ \mathcal{B}(\overline{B}{}^0 \to D^{*+} K^- K_S^0) =& (0.96 \pm 0.18 \pm 0.06) \times 10^{-4}, \end{aligned}$

 $a_0(980)^+$ & $a_0(1450)^+$

CONTRIBUTIONS:

 $\langle K^+ \bar{K}^0 | (\bar{u}d)_{V-A} | 0 \rangle \longrightarrow f_{a_0(980)} \approx 1.1 \text{MeV}$

$$\mu_S f_S = \bar{f}_S$$
, with $\mu_S = \frac{m_S}{m_2(\mu) - m_1(\mu)}$
 $\bar{f}_{a_0}(1 \text{ GeV}) \approx 385 \text{ MeV}$ PRD73-014017

$$\mathcal{B}(B^0 \to D_s^+ a_0(980)^-) = 1.93 \times 10^{-5}$$

upper limit 1.9×10^{-5} at 90% C.L. presented by the $BABAR \longrightarrow 2.24 \times 10^{-5}$
PRD73-071103

$$\mathcal{B} = 0.72 \times 10^{-5} \text{ for } B^+ \to \bar{D}^0 a_0 (1450)^+ \to \bar{D}^0 K^+ \bar{K}^0$$
$$\mathcal{B} = 1.56 \times 10^{-5} \qquad B^+ \to \bar{D}^0 a_0 (980)^+ \to \bar{D}^0 K^+ \bar{K}^0$$

CONTRIBUTIONS:

 $a_2(1320)^+$ & $a_2(1700)^+$

a_2 (1700) Mass $m = 1698 \pm 4$ Full width Γ = 265	$I^{G}(J^{PC}) = 1^{-}(2^{+}+)$ 40 MeV \pm 60 MeV
a ₂ (1700) DECAY MODES	Fraction (Γ_i/Γ)
$\eta\pi$	$(3.6\ \pm 1.1\)\ \%$
$\gamma \gamma$	$(1.13\pm0.30)\times10^{-6}$
KK	$(1.9\ \pm 1.2\)\ \%$

 $a_2(1320)^+ & a_2(1700)^+$

CONTRIBUTIONS:

<i>a</i> ₂ (1320)	$I^{G}(J^{PC}) = 1^{-}(2$	$2^{++})$		
Mass $m=1318.2\pm0.6$ MeV (S = 1.2) Full width $\Gamma=107\pm5$ MeV $^{[i]}$				
a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)	
3π	$(70.1 \ \pm 2.7 \)$ %	S=1.2	624	
$\eta\pi$	(14.5 ± 1.2) %		535	
$\omega \pi \pi$	(10.6 \pm 3.2) %	S=1.3	366	
$\overline{K}\overline{K}$	(4.9 \pm 0.8) %		437	

$$B_s^0 \to \bar{D}^0[\bar{K}_2^*(1430)^0 \to] K^- \pi^+ \quad \mathcal{B} = (3.7 \pm 1.4) \times 10^{-5}$$

PRD90-072003 LHCb

 $s \rightarrow u$

 $B^+ \to \bar{D}^0 a_2(1320)^+$ $\mathcal{B} = (0.99 \pm 0.37) \times 10^{-4}$

For the Kaon pair in $B^+ o \overline{D}^{(*)0}K^+\overline{K}^0$ and $B^0 o D^{(*)-}K^+\overline{K}^0$ decays

- (i). The intermediate states $\rho(770)^+$ & $\rho(1450)^+$ dominate the branching fractions for the four corresponding decay channels;
- (ii). The role of $a_2(1320)^+$ in these four decay channels is negligible;
- (ii). The state $a_0(980)^+$ turned out to be less important than expected for the kaon pair near the threshold;

For the Kaon pair in $B^+ o \overline{D}^{(*)0}K^+\overline{K}^0$ and $B^0 o D^{(*)-}K^+\overline{K}^0$ decays

- (i). The intermediate states $\rho(770)^+$ & $\rho(1450)^+$ dominate the branching fractions for the four corresponding decay channels;
- (ii). The role of $a_2(1320)^+$ in these four decay channels is negligible;
- (ii). The state $a_0(980)^+$ turned out to be less important than expected for the kaon pair near the threshold;

Appendíx

Figure 4. Dalitz distributions of $(m(D^*K^-), m(K^-K_S^0))$ (upper panels) and $(m(D^*K_S^0), m(K^-K_S^0))$ (lower panels) for (left to right) $B^- \to D^0K^-K_S^0$, $\overline{B}^0 \to D^+K^-K_S^0$, $B^- \to D^{*0}K^-K_S^0$, and $\overline{B}^0 \to D^{*+}K^-K_S^0$ channels. The background is subtracted by applying the signal *s*Weight.

Belle-II preliminary

Channel	Yield $(K_S^0 \ / \ K^{*0})$	Average $\varepsilon~(K^0_S~/~K^{*0})$	$\mathcal{B}~[10^{-4}]$	
$B^- \rightarrow D^0 K^- K^0_S$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$	
$\overline{B}{}^0 \rightarrow D^+ K^- K_S^{\bar{0}}$	105 ± 14	0.048	$0.82 \pm 0.12 \pm 0.05$	first
$B^- \rightarrow D^{*0} K^- \tilde{K}^0_S$	51 ± 9	0.044	$1.47 \pm 0.27 \pm 0.10$	observation
$\overline{B}{}^0 \rightarrow D^{*+} K^- K^0_S$	36 ± 7	0.046	$0.91 \pm 0.19 \pm 0.05$	observation

13

