On-Shell Construction of Chiral Effective Theory

- supported by package ABC4EFT¹

Ming-Lei Xiao (肖明磊)

Sun Yat-Sen University

I. Low, J. Shu, MLX and Y.-H. Zheng, JHEP 01 (2023) 031

April 21, 2024 @ 第六届重味物理与量子色动力学研讨会,青岛

¹ https://	/abc4eft.hepforge.org/
110005./	abe rentineprongetorg/

Image: A mathematical states and a mathem

1 Effective Field Theory of Goldstone Bosons

2 Building Soft Blocks

Results and Summary

æ

<ロ> (日) (日) (日) (日) (日)

Outline

1 Effective Field Theory of Goldstone Bosons

Building Soft Blocks

Results and Summary

æ

<ロ> (日) (日) (日) (日) (日)

Symmetry breaking $\mathcal{G} \to \mathcal{H}$ with Goldstone fields $\xi = e^{i\pi^a X^a/f} \in \mathcal{G}/\mathcal{H}$.

 \bullet Although spontaneously broken, ${\cal G}$ is realized non-linearly at low energy

 $\pi \to \pi + \epsilon$

Symmetry breaking $\mathcal{G} \to \mathcal{H}$ with Goldstone fields $\xi = e^{i\pi^a X^a/f} \in \mathcal{G}/\mathcal{H}$.

 \bullet Although spontaneously broken, ${\cal G}$ is realized non-linearly at low energy

$$\pi \to \pi + \epsilon$$

• The CCWZ construction (Coleman et al. 69')

$$i\xi^{-1}\partial_{\mu}\xi = d^{a}_{\mu}X^{a} + e^{i}_{\mu}T^{i}$$

<ロト < 同ト < ヨト < ヨト

Symmetry breaking $\mathcal{G} \to \mathcal{H}$ with Goldstone fields $\xi = e^{i\pi^a X^a/f} \in \mathcal{G}/\mathcal{H}$.

 \bullet Although spontaneously broken, ${\mathcal G}$ is realized non-linearly at low energy

$$\pi \to \pi + \epsilon - \frac{1}{3}\mathcal{T}(\pi)\epsilon + \dots$$

• The CCWZ construction (Coleman et al. 69')

$$i\xi^{-1}\partial_{\mu}\xi = d^{a}_{\mu}X^{a} + e^{i}_{\mu}T^{i}$$

• The bottom-up approach: Adler Zero (Low 14')

$$d_{\mu} = \frac{1}{f} \frac{\sin \sqrt{\mathcal{T}}}{\sqrt{\mathcal{T}}} \partial_{\mu} \pi , \quad e^{i}_{\mu} = \frac{2i}{f^{2}} \partial_{\mu} \pi \frac{\sin^{2}(\sqrt{\mathcal{T}}/2)}{\mathcal{T}} T^{i} \pi .$$

where $\mathcal{T}_{ab} = f^{-2} \sum_{i} (T^{i} \pi)_{a} (T^{i} \pi)_{b}$, without any knowledge of the broken group \mathcal{G} .

э

イロト イポト イヨト イヨト

Symmetry breaking $\mathcal{G} \to \mathcal{H}$ with Goldstone fields $\xi = e^{i\pi^a X^a/f} \in \mathcal{G}/\mathcal{H}$.

 \bullet Although spontaneously broken, ${\cal G}$ is realized non-linearly at low energy

$$\pi \to \pi + \epsilon - \frac{1}{3}\mathcal{T}(\pi)\epsilon + \dots$$

• The CCWZ construction (Coleman et al. 69')

$$i\xi^{-1}\partial_{\mu}\xi = d^{a}_{\mu}X^{a} + e^{i}_{\mu}T^{i}$$

• The bottom-up approach: Adler Zero (Low 14')

$$d_{\mu} = \frac{1}{f} \frac{\sin \sqrt{\mathcal{T}}}{\sqrt{\mathcal{T}}} \partial_{\mu} \pi , \quad e^{i}_{\mu} = \frac{2i}{f^{2}} \partial_{\mu} \pi \frac{\sin^{2}(\sqrt{\mathcal{T}}/2)}{\mathcal{T}} T^{i} \pi .$$

where $\mathcal{T}_{ab} = f^{-2} \sum_i (T^i \pi)_a (T^i \pi)_b$, without any knowledge of the broken group \mathcal{G} .

• G-invariant (H-invariant + Adler Zero) Chiral Lagrangian

$$\mathcal{L}^{(2)} = \frac{f^2}{2} \operatorname{Tr}(d_{\mu} d^{\mu}) \supset \pi^2 \partial^2, \pi^4 \partial^2, \pi^6 \partial^2, \dots$$

э

イロト イポト イヨト イヨト

Chiral Perturbation Theory (ChPT)

- Consider $\mathcal{G} = SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V = \mathcal{H}$ by $\langle \bar{q}q \rangle \neq 0$
- External sources in QCD: $\mathcal{L} = \mathcal{L}_{QCD}^0 + \bar{q}\gamma^{\mu}(v_{\mu} + a_{\mu}\gamma^5)q \bar{q}(s ip\gamma^5)q$.

Hidden Local Symmetry: $\nabla_\mu X = \partial_\mu X - i A_\mu(X) \ , \quad A \in \{v,a,e\}$

- Two ways to parameterize the chiral Lagrangian:
 - Left-right basis: $U = \xi^2$, $\chi \sim s + ip$, $F_L^{\mu\nu}$, $F_R^{\mu\nu}$.
 - u basis: $u_{\mu} \sim d_{\mu}$, χ_{\pm} , $f_{\pm}^{\mu\nu}$.
- Redundancy relations to build Lagrangian:
 - IBP: $(\nabla X_1)X_2 + X_1(\nabla X_2) \simeq 0$.
 - EOM (field redef.): $\nabla_{\mu}u^{\mu} = \frac{i}{2}\left(\chi_{-} \frac{1}{N_{f}}\langle\chi_{-}\rangle\right)$.
 - CDC: $[\nabla_{\mu}, \nabla_{\nu}] = \frac{1}{4}[u_{\mu}, u_{\nu}] \frac{i}{2}f_{+\mu\nu}, \nabla_{[\mu}u_{\nu]} + f_{-\mu\nu} = 0$.
 - Schouten Identity (specific for fixed D = 4): $\mathcal{O}_{[\mu_1\mu_2\mu_3\mu_4\mu_5]} = 0$.

• $O(p^4)$ (Gasser&Leutwyler 84'), $O(p^6)$ (Bijnens *et al.* 99'), $O(p^8)$ (Bijnens *et al.* 19').

イロト イヨト イヨト

э.

• It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):

PHYSICAL REVIEW D

VOLUME 1, NUMBER 6

15 MARCH 1970

Algebraic Aspects of Pionic Duality Diagrams

LEONARD SUSSKINN^{*} AND GRAHAM FRVE Belfer Graduate School of Science, Yeshiva University, New York, New York 10033 (Received 9 May 1969)

Certain algebraic aspects are abstracted from the duality principle and are incorporated in a simple model of pion μ -point functions. An algorithm for constructing the μ -point function in the tree-graph approximation is based on the duality assumption and the Adler condition which states that the amplitudes satisfy the constraints of current algebra and partial conservation of axial-vector current for n=4, 6, and 8, and (we conjecture) for all n. In addition, duality specifies a definite form for third symmetry breaking.

6 / 20

<ロト < 同ト < ヨト < ヨト

• It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):

$$\mathcal{L}^{(2)} = \frac{f^2}{2} \operatorname{Tr}(d_{\mu}d^{\mu}) \sim \frac{1}{2}(\partial \pi)^2 + \frac{\pi^2}{2f^2}(\partial \pi)^2 + \dots$$
$$\mathcal{M}(p_1, \dots, p_6) = \underbrace{p_2}_{p_1} \underbrace{p_6}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_7}_{p_6} p_4 + \underbrace{p_6}_{p_5} \underbrace{p_7}_{p_4} p_4 + \underbrace{p_6}_{p_5} \underbrace{p_7}_{p_6} p_5 + \underbrace{p_7}_{p_6} p_6 + \underbrace{p_7}_{p_6} p_6$$

violate Adler Zero

6/20

イロト イボト イヨト イヨト

• It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):

$$\mathcal{L}^{(2)} = \frac{f^2}{2} \operatorname{Tr}(d_{\mu}d^{\mu}) \sim \frac{1}{2} (\partial \pi)^2 + \frac{\pi^2}{2f^2} (\partial \pi)^2 + \frac{\pi^4}{2f^4} (\partial \pi)^2 + \dots$$
$$\mathcal{M}(p_1, \dots, p_6) = \underbrace{p_2}_{p_1} \underbrace{p_6}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_2}_{p_5} p_4 + \underbrace{p_1}_{p_5} \underbrace{p_2}_{p_4} p_3 + \underbrace{p_2}_{p_1} \underbrace{p_3}_{p_6} p_4 + \underbrace{p_2}_{p_5} \underbrace{p_3}_{p_4} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_5}_{p_5} p_4 + \underbrace{p_1}_{p_6} \underbrace{p_5}_{p_5} p_4 + \underbrace{p_1}_{p_6} \underbrace{p_5}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_5}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_2}_{p_6} \underbrace{p_3}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_5}_{p_6} p_5 + \underbrace{p_1}_{p_6} \underbrace{p_2}_{p_6} \underbrace{p_3}_{p_6} \underbrace{p_3}_{p$$

violate Adler Zero

イロト イボト イヨト イヨト

- It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):
- Extended to arbitrary n: Soft Recursion Relation (Cheung et al. 15')

$$p_i \rightarrow \hat{p}_i = (1 - a_i z) p_i$$
, $\mathcal{M}(\hat{p}_1, \dots, \hat{p}_n) \equiv \hat{\mathcal{M}}_n(z)$,

Poles at $\hat{s}_I(z_I^{\pm}) = 0$, thus the Cauchy's theorem gives

$$\mathcal{M}(p_1,\ldots,p_n) = \hat{\mathcal{M}}_n(0) = \sum_{I,\pm} \frac{1}{s_I} \frac{\hat{\mathcal{M}}_L^{(I)}(z_I^{\pm}) \hat{\mathcal{M}}_R^{(I)}(z_I^{\pm})}{F_n(z_I^{\pm})(1 - z_I^{\pm}/z_I^{\mp})} , \quad F_n(z) \equiv \prod_{i=1}^n (1 - a_i z) .$$

6/20

イロト イボト イヨト イヨト

- It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):
- Extended to arbitrary n: Soft Recursion Relation (Cheung et al. 15')

$$\mathcal{M}(p_1,\ldots,p_n) = \hat{\mathcal{M}}_n(0) = \sum_{I,\pm} \frac{1}{s_I} \frac{\hat{\mathcal{M}}_L^{(I)}(z_I^{\pm}) \hat{\mathcal{M}}_R^{(I)}(z_I^{\pm})}{F_n(z_I^{\pm})(1 - z_I^{\pm}/z_I^{\mp})} , \quad F_n(z) \equiv \prod_{i=1}^n (1 - a_i z) .$$

• How about higher derivatives? Need new inputs (LEC)! (Low&Yin 19')

$$\begin{split} \text{Single Trace:} \quad & \mathcal{S}_1^{(4)}(1,2,3,4) = \frac{c_1}{\Lambda^2 f^2} s_{13}^2 \,, \quad & \mathcal{S}_2^{(4)}(1,2,3,4) = \frac{c_2}{\Lambda^2 f^2} s_{13} s_{23} \,, \\ \text{Double Trace:} \quad & \mathcal{S}_1^{(4)}(1,2|3,4) = \frac{d_1}{\Lambda^2 f^2} s_{13}^2 \,, \quad & \mathcal{S}_2^{(4)}(1,2|3,4) = \frac{d_2}{\Lambda^2 f^2} s_{13} s_{23} \,. \end{split}$$

<ロト < 同ト < ヨト < ヨト

6/20

- It is known for more than half a century that the non-linear constraint can be reproduced in the amplitude by Adler Zero: $\lim_{p_i=0} \mathcal{M} = 0$ (Susskind&Frye 69'):
- Extended to arbitrary n: Soft Recursion Relation (Cheung et al. 15')

$$\mathcal{M}(p_1,\ldots,p_n) = \hat{\mathcal{M}}_n(0) = \sum_{I,\pm} \frac{1}{s_I} \frac{\hat{\mathcal{M}}_L^{(I)}(z_I^{\pm}) \hat{\mathcal{M}}_R^{(I)}(z_I^{\pm})}{F_n(z_I^{\pm})(1 - z_I^{\pm}/z_I^{\mp})} , \quad F_n(z) \equiv \prod_{i=1}^n (1 - a_i z) .$$

• How about higher derivatives? Need new inputs (LEC)! (Low&Yin 19')

$$\begin{split} \text{Single Trace:} \quad \mathcal{S}_1^{(4)}(1,2,3,4) &= \frac{c_1}{\Lambda^2 f^2} s_{13}^2 \,, \quad \mathcal{S}_2^{(4)}(1,2,3,4) &= \frac{c_2}{\Lambda^2 f^2} s_{13} s_{23} \,, \\ \text{Double Trace:} \quad \mathcal{S}_1^{(4)}(1,2|3,4) &= \frac{d_1}{\Lambda^2 f^2} s_{13}^2 \,, \quad \mathcal{S}_2^{(4)}(1,2|3,4) &= \frac{d_2}{\Lambda^2 f^2} s_{13} s_{23} \,. \end{split}$$

(1) All soft blocks S satisfy Adler Zero.

(2) 1-to-1 correspond to Lagrangian terms
$$\mathcal{L}^{(4)} = \sum_{i=1}^{4} \frac{L_{4,i}}{\Lambda^2 f^2} \mathcal{O}_i$$
.

6/20

<ロト < 同ト < ヨト < ヨト

Outline

3 Results and Summary

æ

・ロト ・四ト ・ヨト ・ヨト

Soft Block Construction: First Attempt

Systematic construction of soft blocks (Dai et al. 20'):

- Only P even Building block s_{ij} (no $\epsilon^{\mu\nu\rho\sigma}$).
- Mandelstams constrained by Gram determinant
 D = 4 at O(p¹⁰): det s_{ii} = 0
- The resulting soft blocks are polynomials.
 - Do not correspond to monomial operator
- Assuming independent traces (large N_f).
 - Cayley-Hamilton when $N_f < N$.

e.g.
$$\langle A^4 \rangle = \frac{1}{2} \langle A^2 \rangle^2$$
, $\forall A \in \mathfrak{su}(3)$

<ロト < 同ト < ヨト < ヨト

8/20

On-Shell Operator Construction in a Broader Sense

Amplitude/Operator basis correspondence (Shu, Ma, MLX 19')

- \bullet Operators ${\cal O}$ are isomorphic to local gauge invariant on-shell amplitudes ${\cal B}={\cal TM}$
 - IBP \simeq momentum conservation $\sum_i p_i = \sum_i |i\rangle [i| = 0.$
 - EOM \simeq on-shell condition $\langle ii\rangle = [ii] = 0.$
 - D = 4 Schouten Identity / Gram Determinants \simeq spinor Schouten Identities. $\langle ij \rangle \langle kl \rangle + \langle ik \rangle \langle lj \rangle + \langle il \rangle \langle jk \rangle = 0$, [ij][kl] + [ik][lj] + [il][jk] = 0.

An independent operator basis \simeq an independent amplitude basis.

• Young Tensor Method (Li, Ren, Shu, MLX, Yu, Zheng 20').

$$\mathcal{M} \xrightarrow{\text{reduce}} \sum_{i} c_i \mathcal{M}_i^{(y)} , \qquad \mathcal{M}^{(y)} \sim \langle ij \rangle \dots [kl] \dots$$

• Mathematica Package ABC4EFT (Li, Ren, MLX, Yu, Zheng 22')

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Soft Block Construction: Second Attempt

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

 $\checkmark\,$ Both parities are included (but mixed).

$$\begin{split} \langle ij\rangle[jk]\langle kl\rangle[li] \pm [ij]\langle jk\rangle[kl]\langle li\rangle \\ = \begin{cases} 4(s_{ij}s_{kl} - s_{ik}s_{jl} + s_{il}s_{jk}) \\ 4i\epsilon_{\mu\nu\rho\sigma}p_{\mu}^{\mu}p_{j}^{\nu}p_{k}^{\rho}p_{l}^{\sigma} \end{cases} \end{split}$$

✓ Free from Gram Det. and Schouten (D = 4)

	$\phi^6 p^8$	$\phi^{6}p^{10}$	$\phi^{6}p^{12}$	$\phi^7 p^8$	$\phi^{7}p^{10}$	$\phi^{7}p^{12}$	$\phi^{8}p^{10}$	$\phi^{8}p^{12}$
$f^{even}(s_{ij})$	-	1287	3003	-	8568	27132	42504	177100
y-basis	—	1286	2994	-	8547	26873	42308	173915
$f^{\text{odd}}(s_{ij}, \epsilon)$	225	825	2475	1575	8400	35700	53900	309925
y-basis	180	600	1650	1106	5019	18305	28196	132335

- The resulting soft blocks are still polynomials.
- Assuming independent traces (large N_f).

<ロト < 同ト < ヨト < ヨト

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

Ming-Lei Xiao ((肖明磊)

<ロト < 同ト < ヨト < ヨト

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

- ✓ Both parities are included separately. $s_{12}s_{34}s_{56} = \sum_{i=1}^{205} c_i^{(\text{even})} \mathcal{M}_i^y, \ \epsilon_{1234}s_{56} = \sum_{i=1}^{205} c_i^{(\text{odd})} \mathcal{M}_i^y$
- ✓ Free from Gram Det. and Schouten (D = 4)
- Orbits of residual group $H^{(\mathcal{T})}$ (e.g. $H^{(6)} = Z_6$):

$$\begin{aligned} \mathcal{Y}(\mathcal{T}\mathcal{M}) &= \mathcal{Y}(\mathcal{T}\mathcal{M}') \,, \quad \text{if } \mathcal{M}' \in H^{(\mathcal{T})}(\mathcal{M}) \\ \mathcal{Y}(\mathcal{B}) &= \mathcal{Y}(\mathcal{B}') \, \Leftrightarrow \, \mathcal{O} \simeq \mathcal{O}' \end{aligned}$$

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

✓ Both parities are included separately. $s_{12}s_{34}s_{56} = \sum_{i=1}^{205} c_i^{(\text{even})} \mathcal{M}_i^y, \ \epsilon_{1234}s_{56} = \sum_{i=1}^{205} c_i^{(\text{odd})} \mathcal{M}_i^y$

✓ Free from Gram Det. and Schouten (D = 4)

• Orbits of residual group $H^{(\mathcal{T})}$ (e.g. $H^{(6)} = Z_6$):

$$\begin{split} \mathcal{Y}(\mathcal{T}\mathcal{M}) &= \mathcal{Y}(\mathcal{T}\mathcal{M}')\,, \quad \text{if } \mathcal{M}' \in H^{(\mathcal{T})}(\mathcal{M})\\ \mathcal{Y}(\mathcal{B}) &= \mathcal{Y}(\mathcal{B}') \,\, \Leftrightarrow \,\, \mathcal{O} \simeq \mathcal{O}' \end{split}$$

э

イロト イヨト イヨト

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

- ✓ Both parities are included separately. $s_{12}s_{34}s_{56} = \sum_{i=1}^{205} c_i^{(\text{even})} \mathcal{M}_i^y, \ \epsilon_{1234}s_{56} = \sum_{i=1}^{205} c_i^{(\text{odd})} \mathcal{M}_i^y$
- ✓ Free from Gram Det. and Schouten (D = 4)
- ✓ Linearly independent orbits $\{H^{(\mathcal{T})}(\mathcal{M}_a)\}$ ⇔ Monomial soft blocks $\mathcal{O}_a^{(\mathcal{T})} \simeq \mathcal{Y}(\mathcal{T}\mathcal{M}_a)$.
- They are independent at $N_f \ge N$.

くロト (雪下) (ヨト (ヨト))

Young Tensor approach (Low, Shu, MLX, Zheng 22'):

- ✓ Both parities are included separately. $s_{12}s_{34}s_{56} = \sum_{i=1}^{205} c_i^{(\text{even})} \mathcal{M}_i^y, \ \epsilon_{1234}s_{56} = \sum_{i=1}^{205} c_i^{(\text{odd})} \mathcal{M}_i^y$
- ✓ Free from Gram Det. and Schouten (D = 4)
- ✓ Linearly independent orbits $\{H^{(\mathcal{T})}(\mathcal{M}_a)\} \Leftrightarrow$ Monomial soft blocks $\mathcal{O}_a^{(\mathcal{T})} \simeq \mathcal{Y}(\mathcal{T}\mathcal{M}_a)$.
- ✓ Reduce: $\mathcal{Y}(\mathcal{TM}_a) = \sum_{i,j} c_{a,ij} \mathcal{T}_i \mathcal{M}_j^{y}$

Find independent coordinates $c_{a,ij}$!

くロト (雪下) (ヨト (ヨト))

Independent Trace Structures

Group $SU(N_f)$	SU(2)	SU(3)	SU(4)	SU(5)	SU(6)	SU(7)	Trace
$\mathcal{T}^{a_1a_2a_3}$	1	2	2	2	2	2	2
$\mathcal{T}^{a_1a_2a_3a_4}$	3	8	9	9	9	9	9
$\mathcal{T}^{a_1a_2a_3a_4a_5}$	6	32	43	44	44	44	44
$\mathcal{T}^{a_1a_2a_3a_4a_5a_6}$	15	145	245	264	265	265	265

Independent Trace Structures

Group $SU(N_f)$	SU(2)	SU(3)	SU(4)	SU(5)	SU(6)	SU(7)	Trace
$\mathcal{T}^{a_1a_2a_3}$	1	2	2	2	2	2	2
$\mathcal{T}^{a_1a_2a_3a_4}$	3	8	9	9	9	9	9
$\mathcal{T}^{a_1a_2a_3a_4a_5}$	6	32	43	44	44	44	44
$\mathcal{T}^{a_1a_2a_3a_4a_5a_6}$	15	145	245	264	265	265	265

Inner Product Treatment

Define
$$g_{ij}\equiv\langle\mathcal{T}_i,\mathcal{T}_j
angle=(\mathcal{T}_i^\dagger)_{a_1...a_N}(\mathcal{T}_j)^{a_1...a_N}$$
 , we have

det $g(N_f) \neq 0 \quad \Leftrightarrow \quad \{\mathcal{T}_i\}$ is independent

where
$$T^a_{ij}T^a_{kl} = \delta_{il}\delta_{kj} - \delta_{ij}\delta_{kl}/N_f$$

Tensor reduction for $\mathcal{T} = \sum_i c^i \mathcal{T}_i$: $c^i = \langle (g^{-1})^{ij} \mathcal{T}_j, \mathcal{T} \rangle$.

v

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Outline

2) Building Soft Blocks

Results and Summary

æ

・ロト ・回ト ・モト ・モト

The Operator Basis

- **()** Obtain independent orbits $\mathcal{Y}(\mathcal{TM}_a)$ (independent soft blocks for large N_f);
- **2** Evaluate \mathcal{Y} and find the unique coordinate on the $\mathcal{T}_i \mathcal{M}_j$;
- Select independent monomials via linear algebra;
- Translate to operators

$$p_{i\mu_1}p_{i\mu_2}\cdots p_{i\mu_n} \quad \Leftrightarrow \quad \nabla_{(\mu_1}\nabla_{\mu_2}\cdots\nabla_{\mu_{n-1}}u_{\mu_n)}$$

 $O(p^6)$ and $O(p^8)$ bases for 6-point soft blocks (agree with Graf *et al.* 20'):

6-pt $O(p^6)$	SU(2)	SU(3)	SU(4)	SU(5)	SU(6)
P-even	3	8	13	14	15
P-odd	0	3	4	4	4
6-pt $O(p^8)$	SU(2)	SU(3)	SU(4)	SU(5)	SU(6)
P-even	9	40	68	74	76
P-odd	2	20	33	35	35

April 21, 2024

14 / 20

The Operator Basis

${\cal O}(p^6)$ operators without external sources:

	Sl	$U(N_f)$	Operator Basis	Amplitude Basis
		SU(2)	$\mathcal{O}_1 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\mu} u_{\nu} u_{\rho} \rangle$ $\mathcal{O}_2 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\mu} u_{\nu} u_{\rho} \rangle$	$\mathcal{B}_{1} = \mathcal{Y} \circ \text{tr}[123456] s_{14} s_{25} s_{36}$ $\mathcal{B}_{2} = \mathcal{Y} \circ \text{tr}[123456] s_{14} s_{25} s_{36}$
		50(2)	$\mathcal{O}_2 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\rho} u_{\mu} u_{\nu} \rangle$ $\mathcal{O}_3 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\rho} u_{\mu} u_{\nu} \rangle$	$\mathcal{B}_2 = \mathcal{Y} \circ \text{tr}[123456]s_{14}s_{26}s_{35}$ $\mathcal{B}_3 = \mathcal{Y} \circ \text{tr}[123456]s_{15}s_{26}s_{34}$
			$\mathcal{O}_4 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\rho} u_{\nu} u_{\mu} \rangle$	$\mathcal{B}_4 = \mathcal{Y} \circ \text{tr}[123456] s_{16} s_{25} s_{34}$
			$\mathcal{O}_5 = \langle u^{\mu} u^{\nu} u_{\nu} u^{\rho} u_{\rho} u_{\mu} \rangle$	$\mathcal{B}_5 = \mathcal{Y} \circ tr[123456] s_{16} s_{23} s_{45}$
		SU(3)	$\mathcal{O}_6 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\mu} \rangle \langle u_{\nu} u_{\rho} \rangle$	$\mathcal{B}_6 = \mathcal{Y} \circ \text{tr}[1234 56] s_{14} s_{25} s_{36}$
			$\mathcal{O}_7 = \langle u^{\mu} u^{\nu} u^{\rho} u_{\nu} \rangle \langle u_{\mu} u_{\rho} \rangle$	$\mathcal{B}_7 = \mathcal{Y} \circ tr[1234 56]s_{15}s_{24}s_{36}$
			$\mathcal{O}_8 = \langle u^{\mu} u^{\nu} u_{\mu} u^{\nu} \rangle \langle u_{\rho} u_{\rho} \rangle$	$\mathcal{B}_8 = \mathcal{Y} \circ \text{tr}[1234 56] s_{13} s_{24} s_{56}$
			$\mathcal{O}_9 = \langle u^{\mu} u^{\nu} u_{\nu} u_{\mu} \rangle \langle u^{\rho} u_{\rho} \rangle$	$\mathcal{B}_9 = \mathcal{Y} \circ tr[1234 56]s_{14}s_{23}s_{56}$
			$\mathcal{O}_{10} = \langle u^{\mu} u^{\nu} u^{\rho} \rangle \langle u_{\mu} u_{\nu} u_{\rho} \rangle$	$\mathcal{B}_{10} = \mathcal{Y} \circ \operatorname{tr}[123 456] s_{14} s_{25} s_{36}$
		SU(4)	$\mathcal{O}_{11} = \langle u^{\mu} u^{\nu} u^{\rho} \rangle \langle u_{\mu} u_{\rho} u_{\nu} \rangle$	$\mathcal{B}_{11} = \mathcal{Y} \circ \operatorname{tr}[123 456] s_{14} s_{26} s_{35}$
			$\mathcal{O}_{12} = \langle u^{\mu} u^{\nu} u_{\mu} \rangle \langle u^{\rho} u_{\nu} u_{\rho} \rangle$	$\mathcal{B}_{12} = \mathcal{Y} \circ tr[123 456]s_{13}s_{25}s_{46}$
			$\mathcal{O}_{13} = \langle u^{\mu} u^{\rho} \rangle \langle u^{\nu} u_{\mu} \rangle \langle u_{\rho} u_{\nu} \rangle$	$\mathcal{B}_{13} = \mathcal{Y} \circ \operatorname{tr}[12 34 56]s_{14}s_{25}s_{36}$
	_	SU(5)	$\mathcal{O}_{14} = \langle u^{\mu} u^{\nu} \rangle \langle u^{\rho} u_{\rho} \rangle \langle u_{\mu} u_{\nu} \rangle$	$\mathcal{B}_{14} = \mathcal{Y} \circ \operatorname{tr}[12 34 56]s_{15}s_{26}s_{34}$
£	SU($(N_f \ge 6)$	$\mathcal{O}_{15} = \langle u^{\mu} u_{\mu} \rangle \langle u^{\nu} u_{\nu} \rangle \langle u^{\rho} u_{\rho} \rangle$	$\mathcal{B}_{15} = \mathcal{Y} \circ \text{tr}[12 34 56]s_{12}s_{34}s_{56}$

April 21, 2024

ヘロト 人間 とくほとくほとう

15 / 20

æ

Induced Linear Relations

For example $N_f = 2$, choose $\{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}$ as the basis:

$$\begin{pmatrix} \mathcal{B}_4\\ \mathcal{B}_5\\ \mathcal{B}_6\\ \mathcal{B}_7\\ \mathcal{B}_8\\ \mathcal{B}_9 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1\\ 1 & 1 & -1\\ 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 2\\ 2 & 2 & -2 \end{pmatrix} \times \begin{pmatrix} \mathcal{B}_1\\ \mathcal{B}_2\\ \mathcal{B}_3 \end{pmatrix}, \quad \begin{pmatrix} \mathcal{B}_{10}\\ \mathcal{B}_{11}\\ \mathcal{B}_{12}\\ \mathcal{B}_{13}\\ \mathcal{B}_{14}\\ \mathcal{B}_{15} \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1\\ 0 & 1 & -1\\ 0 & 0 & 0\\ 1 & 2 & 1\\ 2 & 2 & 0\\ 4 & 4 & -4 \end{pmatrix} \times \begin{pmatrix} \mathcal{B}_1\\ \mathcal{B}_2\\ \mathcal{B}_3 \end{pmatrix}$$

æ

16/20

ヘロト 人間ト 人造ト 人造ト

${\cal O}(p^8)$ 6-pt P-even operators

SU(N _f) Operator Basis	Amplitude Basis
$O_1 = \langle \nabla^\mu \nabla^\nu u^\rho u^\sigma u_\mu u_\nu u_\rho u$	σ $B_1 = Y \circ tr[123456]s_{13}s_{14}s_{15}s_{26}$
$\mathcal{O}_2 = \langle abla^\mu abla^ u u^ ho u^\sigma u_\mu u_ u u_\sigma u$	$ B_2 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{16}s_{25}$
$\mathcal{O}_3 = \langle \nabla^\mu \nabla^ u u^ ho u_\mu u^\sigma u_ u u_\sigma u$	$ _{p}\rangle = B_{3} = Y \circ tr[123456]s_{12}s_{14}s_{16}s_{35}$
$O_4 = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\nu} u_{\rho} u$	σ $B_4 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{25}s_{26}$ S
$SU(2)$ $O_5 = \langle \nabla^{\mu}u^{\nu}\nabla^{\rho}u^{\sigma}u_{\mu}u_{\rho}u_{\nu}u$	σ $B_5 = Y \circ tr[123456]s_{13}s_{15}s_{24}s_{26}$
$O_6 = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} u_{\mu} u_{\sigma} u$	ν $B_6 = \mathcal{Y} \circ tr[123456]s_{14}s_{16}s_{23}s_{25}$
$O_7 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\nu} u_{\rho} u$	σ $B_7 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{25}s_{36}$
$O_8 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\nu} u_{\sigma} u$	$_{\rho}$ $B_8 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{26}s_{35}$
$O_9 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\rho} u_{\nu} u$	σ $B_9 = \mathcal{Y} \circ tr[123456]s_{12}s_{15}s_{24}s_{36}$
$O_{10} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\sigma} u_{\mu} u_{\nu} \rangle$	$ u_{\rho}\rangle = B_{10} = Y \circ tr[123456]s_{14}s_{15}s_{16}s_{23}$
$O_{11} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u_{\sigma} u_{\nu} \rangle$	$ u_{\rho}\rangle = B_{11} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{16}s_{24}$
$\mathcal{O}_{12} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} u_{\sigma} u_{\mu} \rangle$	$ \mu_{\nu}\rangle = B_{12} = \mathcal{Y} \circ tr[123456]s_{15}s_{16}s_{23}s_{24}$
$O_{13} = \langle \nabla^{\mu}u^{\nu}\nabla^{\rho}u^{\sigma}u_{\mu}u_{\rho}u_{\sigma}$	$ \mu_{\nu}\rangle = B_{13} = Y \circ tr[123456]s_{13}s_{16}s_{24}s_{25}$
$O_{14} = \langle \nabla^{\mu}u^{\nu}\nabla^{\rho}u^{\sigma}u_{\rho}u_{\mu}u_{\nu}u_{\nu}u_{\mu}u_{\nu}u_{\nu}u_{\nu}u_{\nu}u_{\nu}u_{\nu}u_{\nu}u_{\nu$	$ u_{\sigma}\rangle = B_{14} = \mathcal{Y} \circ tr[123456]s_{14}s_{15}s_{23}s_{26}$
$O_{15} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u_{\sigma} u_{\nu} \rangle$	$ \mu_{\rho}\rangle = B_{15} = \mathcal{Y} \circ tr[123456]s_{12}s_{15}s_{16}s_{34}$
$O_{16} = \langle \nabla^{\mu}u^{\nu}u^{\rho}u^{\sigma}\nabla_{\rho}u_{\sigma}u_{\mu}$	$ \mu_{\nu}\rangle = B_{16} = \mathcal{Y} \circ tr[123456]s_{15}s_{16}s_{24}s_{34}$
$O_{17} = \langle \nabla^{\mu}u^{\nu}\nabla_{\mu}u^{\rho}u^{\sigma}u_{\sigma}u_{\rho}$	$ \mu_{\nu}\rangle = B_{17} = Y \circ tr[123456]s_{12}s_{16}s_{25}s_{34}$
$\mathcal{O}_{18} = \langle abla^{\mu} u^{ u} abla_{\mu} u^{ ho} u^{\sigma} u_{\sigma} u_{ u} \rangle$	$ \mu_p\rangle = B_{18} = \mathcal{Y} \circ tr[123456]s_{12}s_{15}s_{26}s_{34}$
$O_{19} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\sigma}u_{\nu}$	$ u_{\rho}\rangle = B_{19} = Y \circ tr[123456]s_{13}s_{15}s_{26}s_{34}$
$\mathcal{O}_{20} = \langle \nabla^{\mu} u^{ u} u^{ ho} u^{\sigma} u_{\sigma} \nabla_{\mu} u_{ u} \rangle$	$ u_p\rangle = B_{20} = Y \circ tr[123456]s_{15}^2s_{26}s_{34}$
$\mathcal{O}_{21} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\rho} u_{\sigma} u_{\sigma} u_$	$ \mu_{\nu}\rangle = B_{21} = Y \circ tr[123456]s_{12}s_{16}s_{24}s_{35}$
$\mathcal{O}_{22} = \langle \nabla^{\mu} u^{ u} u^{ ho} \nabla_{\mu} u^{\sigma} u_{ u} u_{\sigma}$	$ \mu_{\rho}\rangle = B_{22} = Y \circ tr[123456]s_{13}s_{14}s_{26}s_{35}$
$O_{23} = \langle \nabla^{\mu}u^{\nu}u^{\rho}u^{\sigma}\nabla_{\mu}u_{\nu}u_{\sigma}'$	$ \mu_{\rho}\rangle = B_{23} = Y \circ tr[123456]s_{14}^2 s_{26}s_{35}$
$O_{24} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u_{\nu} u_{\rho} u_{\rho}$	$ u_{\sigma}\rangle = B_{24} = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{15}s_{36}$
$SU(3)$ $O_{25} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u_{\nu}u^{\sigma}u_{\rho}u^{\sigma}u_{\rho}u^{\sigma}u_{\rho}u^{\sigma}u_{\rho}u^{\sigma}u^{\sigma}u^{\sigma}u^{\sigma}u^{\sigma}u^{\sigma}u^{\sigma}u^{\sigma$	$ u_{\sigma}\rangle = B_{25} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{24}s_{36}$
$O_{26} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\nu}u_{\rho}u_{\rho}u^{\sigma}u_{\nu}u_{\rho}u_{\rho}u_{\rho}u_{\rho}u_{\rho}u_{\rho}u_{\rho}u_{\rho$	$ u_{\sigma}\rangle = B_{26} = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{25}s_{36}$
$O_{27} = \langle \nabla^{\mu}u^{\nu}\nabla_{\mu}u^{\rho}u_{\rho}u^{\sigma}u_{\sigma}$	$ \mu_{\nu}\rangle = B_{27} = Y \circ tr[123456]s_{12}s_{16}s_{23}s_{45}$
$O_{28} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\nu} u^{\sigma} u_{\rho} \rangle$	$ u_{\sigma}\rangle = B_{28} = Y \circ tr[123456]s_{12}s_{13}s_{15}s_{46}$
$\mathcal{O}_{29} = \langle \nabla^{\mu} \nabla^{\nu} u^{ ho} u_{\mu} u_{\nu} u_{ ho} u^{\sigma} u^{\sigma}$	$ u_{\sigma}\rangle = B_{29} = Y \circ tr[123456]s_{12}s_{13}s_{14}s_{56}$
$\mathcal{O}_{30} = \langle abla^{\mu} abla^{ u} u^{ ho} u^{\sigma} u_{\mu} u_{\sigma} angle \langle u^{ ho} u^{ ho} u^{ ho} u^{ ho} u_{\mu} u_{\sigma} angle \langle u^{ ho} u$	$ \mu_{\nu}u_{\rho}\rangle B_{30} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{16}s_{24}$
$O_{31} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} u_{\sigma} \rangle \langle u$	$ \mu u_{\nu}\rangle B_{31} = \mathcal{Y} \circ tr[1234 56]s_{15}s_{16}s_{23}s_{24}$
$O_{32} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u_{\nu} \rangle \langle u$	$ \rho u_{\sigma}\rangle \mathcal{B}_{32} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{14}s_{15}s_{26}$
$O_{33} = \langle \nabla^{\mu}u^{\nu}\nabla^{\rho}u^{\sigma}u_{\mu}u_{\rho}\rangle\langle u$	$ _{\psi}u_{\sigma}\rangle B_{33} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{24}s_{26}$
$\mathcal{O}_{34} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\nu} \rangle \langle u$	$ B_{p}u_{\sigma}\rangle B_{34} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{14}s_{25}s_{26}$
$O_{35} = \langle \nabla^{\mu}u^{\nu}\nabla_{\mu}u^{\rho}u^{\sigma}u_{\sigma} \rangle \langle u$	$ u_{\nu}u_{\rho}\rangle B_{35} = \mathcal{Y} \circ tr[1234 56 s_{12}s_{15}s_{26}s_{34} $
$\mathcal{O}_{36} = \langle abla^{\mu} u^{ u} abla_{\mu} u^{ ho} u^{\sigma} u_{ ho} angle \langle u^{ ho} u^{\sigma} u_{ ho} \rangle \langle u^{ ho} u^{\sigma} u_{ ho} \rangle \langle u^{ ho} u^{\sigma} u_{ ho} \rangle \langle u^{ ho} u^{\sigma} u^{ ho} $	$ _{\psi}u_{\sigma}\rangle B_{36} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{24}s_{36}$
$\mathcal{O}_{37} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\rho} \rangle \langle u \rangle$	$ _{\psi}u_{\sigma}\rangle B_{37} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{24}s_{36}$
$\mathcal{O}_{38} = \langle abla^{\mu} u^{ u} abla_{\mu} u^{ ho} u^{\sigma} u_{ u} angle \langle u^{ ho} u^{ h$	$ B_{38} = Y \circ tr[1234 56]s_{12}s_{14}s_{25}s_{36}$
$\mathcal{O}_{39} = \langle \nabla^{\mu}u^{\nu}u^{ ho}\nabla_{\mu}u^{\sigma}u_{ u} angle \langle u$	$ B_{39} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{14}s_{25}s_{36}$
$O_{40} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\nu} u^{\rho} \rangle \langle u$	$\sigma u_{\sigma} \rangle B_{40} = Y \circ tr[1234 56]s_{12}s_{13}s_{14}s_{56} SU$

1	$SU(N_f)$	Operator Basis	Amplitude Basis
		$O_{41} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{41} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{16}s_{23}$
		$\mathcal{O}_{42} = \langle abla^{\mu} u^{ u} abla^{ ho} u^{\sigma} u_{ ho} u_{\mu} \rangle \langle u_{ u} u_{\sigma} \rangle$	$B_{42} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{23}s_{26}$
		$\mathcal{O}_{43} = \langle abla^{\mu} abla^{ u} u^{ ho} u_{\mu} u^{\sigma} u_{\sigma} angle \langle u_{ u} u_{ ho} angle$	$\mathcal{B}_{43} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{16}s_{34}$
		$O_{44} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{44} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{26}s_{34}$
		$O_{45} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} u_{\sigma} \rangle \langle \nabla_{\mu} u_{\nu} u_{\rho} \rangle$	$B_{45} = \mathcal{Y} \circ tr[1234 56]s_{15}^2s_{26}s_{34}$
		$O_{46} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{46} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{14}s_{15}s_{36}$
		$O_{47} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\rho} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{47} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{23}s_{36}$
		$O_{48} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{48} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{24}s_{36}$
		$O_{49} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{49} = Y \circ tr[1234 56]s_{14}^2s_{25}s_{36}$
		$O_{50} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\nu} u^{\sigma} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{50} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{13}s_{15}s_{46}$
		$O_{51} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\rho} u^{\sigma} \rangle \langle u^{\nu} u_{\sigma} \rangle$	$B_{51} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{23}s_{46}$
		$O_{52} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u_{\nu} u^{\sigma} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{52} = Y \circ tr[1234 56]s_{13}^2s_{25}s_{46}$
		$O_{53} = \langle u^{\mu}u^{\nu}u^{\rho}u^{\sigma}\rangle\langle \nabla_{\mu}\nabla_{\nu}u_{\rho}u_{\sigma}\rangle$	$B_{53} = Y \circ tr[1234 56]s_{15}s_{25}s_{35}s_{46}$
	SU(4)	$O_{54} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\nu} u_{\rho} \rangle \langle u^{\sigma} u_{\sigma} \rangle$	$B_{54} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{13}s_{24}s_{56}$
		$O_{55} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\sigma} \rangle \langle u_{\mu} u_{\nu} u_{\rho} \rangle$	$B_{55} = \mathcal{Y} \circ tr[123 456]s_{14}s_{15}s_{16}s_{23}$
		$O_{56} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{56} = \mathcal{Y} \circ tr[123 456]s_{13}s_{14}s_{15}s_{26}$
		$O_{57} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} \rangle \langle u_{\mu} u_{\nu} u_{\sigma} \rangle$	$B_{57} = \mathcal{Y} \circ tr[123 456]s_{14}s_{15}s_{23}s_{26}$
		$\mathcal{O}_{58} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{58} = Y \circ tr[123 456]s_{13}s_{14}s_{25}s_{26}$
		$O_{59} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} \rangle \langle u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_{59} = Y \circ tr[123 456]s_{12}s_{14}s_{26}s_{35}$
		$\mathcal{O}_{60} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \rangle \langle \nabla_{\mu} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_{60} = \mathcal{Y} \circ tr[123 456]s_{14}^2s_{26}s_{35}$
		$O_{61} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} \rangle \langle u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{61} = \mathcal{Y} \circ tr[123 456]s_{12}s_{14}s_{25}s_{36}$
		$\mathcal{O}_{62} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \rangle \langle \nabla_{\mu} u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{62} = \mathcal{Y} \circ tr[123 456]s_{14}^2s_{25}s_{36}$
		$O_{63} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\nu} \rangle \langle u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{63} = \mathcal{Y} \circ tr[123 456]s_{12}s_{13}s_{15}s_{46}$
		$O_{64} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\rho} \rangle \langle u^{\sigma} u_{\nu} u_{\sigma} \rangle$	$B_{64} = \mathcal{Y} \circ tr[123 456]s_{12}s_{15}s_{23}s_{46}$
		$O_{65} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\nu} \rangle \langle u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{65} = \mathcal{Y} \circ tr[123 456]s_{12}s_{13}s_{25}s_{46}$
		$O_{66} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u_{\mu} \rangle \langle \nabla_{\nu} u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{66} = \mathcal{Y} \circ tr[123 456]s_{13}s_{14}s_{25}s_{46}$
		$O_{67} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} \rangle \langle u_{\mu} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{67} = Y \circ tr[12 34 56]s_{13}s_{14}s_{25}s_{26}$
		$O_{68} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} \rangle \langle u^{\sigma} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{68} = \mathcal{Y} \circ tr[12 34 56]s_{12}s_{14}s_{25}s_{36}$
		$\mathcal{O}_{69} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} \rangle \langle u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{69} = Y \circ tr[123 456]s_{12}s_{14}s_{15}s_{36}$
		$O_{70} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} \rangle \langle u_{\mu} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{70} = Y \circ tr[12 34 56]s_{13}s_{14}s_{15}s_{26}$
	CIL(P)	$O_{71} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} \rangle \langle u_{\mu} u_{\rho} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{71} = Y \circ tr[12 34 56]s_{13}s_{15}s_{24}s_{26}$
	50(5)	$\mathcal{O}_{72} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} \rangle \langle u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{72} = \mathcal{Y} \circ tr[12 34 56]s_{12}s_{15}s_{26}s_{34}$
		$O_{73} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} \rangle \langle u^{\sigma} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{73} = \mathcal{Y} \circ tr[12 34 56 s_{12}s_{14}s_{15}s_{36}]$
		$O_{74} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \rangle \langle \nabla_{\mu} u^{\sigma} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$\mathcal{B}_{74} = \mathcal{Y} \circ tr[12 34 56 s_{13}s_{14}s_{25}s_{36}]$
	$U_{N} > 0$	$O_{75} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} \rangle \langle u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{75} = \mathcal{Y} \circ tr[12 34 56]s_{12}s_{15}s_{16}s_{34}$
	·(14 ≥ 0)	$\mathcal{O}_{76} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \rangle \langle \nabla_{\mu} u^{\sigma} u_{\rho} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{76} = \mathcal{Y} \circ tr[12 34 56]s_{13}s_{15}s_{24}s_{36}$

æ

${\cal O}(p^8)$ 6-pt P-odd operators

$SU(N_f)$	Operator Basis	Amplitude Basis
SII(9)	$O_1 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\nu} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_1 = \mathcal{Y} \circ tr[123456]s_{12}s_{13}\epsilon(2, 4, 5, 6)$
50(2)	$\mathcal{O}_2 = \langle abla^\mu u^ ho abla^\sigma u^ u u_ u u_ \mu u^\eta u^\lambda angle \epsilon_{ ho\sigma\eta\lambda}$	$B_2 = \mathcal{Y} \circ tr[123456]s_{14}s_{23}\epsilon(1, 2, 5, 6)$
	$O_3 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_3 = \mathcal{Y} \circ tr[123456]s_{13}s_{15}\epsilon(1, 2, 4, 6)$
	$\mathcal{O}_4 = \langle \nabla^\mu \nabla^ u u^ ho u^\sigma u_\mu u_ u u^\eta u^\lambda angle \epsilon_{ ho\sigma\eta\lambda}$	$\mathcal{B}_4 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}\epsilon(1, 2, 5, 6)$
	$O_5 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_5 = \mathcal{Y} \circ tr[123456]s_{12}s_{15}\epsilon(1, 3, 4, 6)$
	$\mathcal{O}_6 = \langle \nabla^\mu \nabla^\nu u^\rho u_\mu u^\sigma u_\nu u^\eta u^\lambda \rangle \epsilon_{\rho\sigma\eta\lambda}$	$\mathcal{B}_6 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}\epsilon(1, 3, 5, 6)$
	$\mathcal{O}_7 = \langle \nabla^{\mu} u^{\rho} u^{\nu} \nabla_{\mu} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_7 = \mathcal{Y} \circ tr[123456]s_{13}s_{24}\epsilon(1, 3, 5, 6)$
	$\mathcal{O}_8 = \langle abla^\mu abla^ u u^ ho u_\mu u_ u u^\sigma u^\eta u^\lambda angle \epsilon_{ ho\sigma\eta\lambda}$	$\mathcal{B}_8 = \mathcal{Y} \circ \text{tr}[123456] s_{12} s_{13} \epsilon(1, 4, 5, 6)$
	$\mathcal{O}_9 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_9 = \mathcal{Y} \circ tr[123456]s_{12}s_{15}\epsilon(2, 3, 4, 6)$
	$\mathcal{O}_{10} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{10} = \mathcal{Y} \circ \text{tr}[123456] s_{13} s_{15} \epsilon(2, 3, 4, 6)$
SU(3)	$\mathcal{O}_{11} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{11} = \mathcal{Y} \circ tr[123456]s_{12}s_{14}\epsilon(2, 3, 5, 6)$
	$\mathcal{O}_{12} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{12} = \mathcal{Y} \circ \text{tr}[123456] s_{13} s_{14} \epsilon(2, 3, 5, 6)$
	$\mathcal{O}_{13} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{13} = \mathcal{Y} \circ \text{tr}[123456]s_{14}^2 \epsilon(2, 3, 5, 6)$
	$\mathcal{O}_{14} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u_{\nu} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{14} = \mathcal{Y} \circ tr[123456]s_{13}^2 \epsilon(2, 4, 5, 6)$
	$\mathcal{O}_{15} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u_{\nu} u^{\rho} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{15} = \mathcal{Y} \circ \text{tr}[123456] s_{12}^2 \epsilon(3, 4, 5, 6)$
	$\mathcal{O}_{16} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u^{\eta} u_{\mu} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{16} = \mathcal{Y} \circ \text{tr}[123456]s_{14}s_{15}\epsilon(1,2,3,6)$
	$\mathcal{O}_{17} = \langle \nabla^{\mu} u^{\rho} \nabla^{\nu} u^{\sigma} u_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{17} = \mathcal{Y} \circ \text{tr}[1234 56]s_{13}s_{25}\epsilon(1,2,4,6)$
	$\mathcal{O}_{18} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{18} = \mathcal{Y} \circ \text{tr}[1234 56] s_{12} s_{15} \epsilon(1,3,4,6)$
	$O_{19} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{19} = \mathcal{Y} \circ \text{tr}[1234 56]s_{12}s_{15}\epsilon(2,3,4,6)$
	$O_{20} = \langle \nabla^{\mu} u^{\nu} u^{\nu} \nabla_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{20} = \mathcal{Y} \circ \text{tr}[1234 56 s_{13}s_{15}\epsilon(2,3,4,6)]$
	$O_{21} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u^{\eta} u_{\mu} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{21} = \mathcal{Y} \circ \text{tr}[1234 56]s_{14}s_{15}\epsilon(1,2,3,6)$
	$O_{22} = \langle \nabla^{\mu} u^{\nu} \nabla^{\nu} u^{\sigma} u^{\eta} u_{\mu} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{22} = \mathcal{Y} \circ \text{tr}[1234 56]s_{14}s_{25}\epsilon(1,2,3,6)$
	$O_{23} = \langle \nabla^{\mu} \nabla^{\nu} u^{\nu} u^{\sigma} u_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{23} = \mathcal{Y} \circ \text{tr}[1234 56]s_{13}s_{15}\epsilon(1,2,4,6)$
	$O_{24} = \langle \nabla^{\mu} u^{\nu} u^{\nu} \nabla_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{24} = \mathcal{Y} \circ \text{tr}[1234 56]s_{13}s_{25}\epsilon(1,3,4,6)$
	$O_{25} = \langle \nabla^{\mu} u^{\nu} u^{\nu} u^{\nu} \nabla_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{25} = \mathcal{Y} \circ \text{tr}[1234 56 s_{14}s_{25}\epsilon(1,3,4,6)]$
auto	$O_{26} = \langle \nabla^{\mu} u^{\nu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{26} = \mathcal{Y} \circ \text{tr}[1234 56 s_{14}s_{15}\epsilon(2,3,4,6)]$
50(4)	$O_{27} = \langle u^{\mu} \nabla^{\nu} u^{\nu} u^{\nu} \nabla_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{27} = \mathcal{Y} \circ \text{tr}[1234 56]s_{14}s_{25}\epsilon(2,3,4,6)$
	$O_{28} = \langle \nabla^{\mu} u^{\nu} u^{\nu} u^{\nu} \nabla_{\mu} \rangle \langle u^{\eta} u_{\nu} u^{\nu} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{28} = Y \circ tr[123 456]s_{14}s_{25}\epsilon(1,3,4,6)$
	$O_{29} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\nu} \rangle \langle u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$\mathcal{B}_{29} = \mathcal{Y} \circ \text{tr}[123 456]s_{12}s_{13}\epsilon(1, 4, 5, 6)$
	$O_{30} = \langle \nabla^{\mu} u^{\nu} u^{\nu} u^{\nu} \nabla_{\mu} \rangle \langle u_{\nu} u^{\eta} u^{\nu} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{30} = \mathcal{Y} \circ \text{tr}[123 456]s_{14}^* \epsilon(2,3,5,6)$
	$O_{31} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\mu} u_{\nu} \rangle \langle u^{\mu} u^{\mu} u^{\nu} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$D_{31} = \mathcal{Y} \circ tr[123 450]s_{12}s_{13}\epsilon(2, 4, 5, 0)$
11	$U_{32} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u_{\nu} u^{\nu} \rangle \langle u^{\sigma} u^{\eta} u^{\nu} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$D_{32} = y \circ tr[123]436]s_{12}^{*}\ell(3, 4, 5, 6)$
	$O_{33} = \langle \nabla^{\mu} u^{\nu} u^{\nu} \nabla_{\mu} \rangle \langle u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\kappa} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$D_{33} = y \circ tr[12 34 56 s_{13}s_{15}\epsilon(2,3,4,6)]$
$SU(N_f \ge 5)$	$O_{34} = \langle \mathbf{v}^{\mu} \mathbf{v}^{\nu} u^{\mu} u^{\mu} \rangle \langle u_{\mu} u_{\nu} u^{\nu} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$D_{34} = y \circ tr[120]400]s_{14}s_{15}\epsilon(1, 2, 3, 6)$ $R = y \circ tr[10]24[56]s_{14}s_{15}\epsilon(1, 2, 3, 6)$
	$U_{35} = \{v \cdot u \cdot v \cdot u^{-}\} \langle u_{\mu}u^{\mu} \rangle \langle u_{\nu}u^{\nu} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$D_{35} = \mathcal{Y} \cup U[12]34[30]8_{13}8_{25}\epsilon(1, 2, 4, 0)$

・ロト ・四ト ・ヨト ・ヨト

æ

Conclusion

- Features of our algorithm:
 - Monomial operators basis (consistent with Hilbert Series counting);
 - Parity-odd amplitude/operator basis;
 - Gram determinant considered;
 - Cayley-Hamilton theorem considered (finite N_f);
 - **(**) Capable of deriving linear relations among the operators.
- Easy to add external sources: EWChEFT (NLO, NNLO) (Sun, MLX, Yu, 22'&23').

Classes	$\mathcal{N}_{\mathrm{type}}$	$\mathcal{N}_{\mathrm{term}}$	$\mathcal{N}_{operator}$
UhD^4	3 + 6 + 0 + 0	15	15
$X^2 Uh$	6 + 4 + 0 + 0	10	10
$XUhD^2$	2+6+0+0	8	8
X^3	4 + 2 + 0 + 0	6	6
$\psi^2 UhD$	4 + 8 + 0 + 0	13(16)	$13n_f^2$ (16 n_f^2)
$\psi^2 UhD^2$	6 + 10 + 0 + 0	60(80)	$60n_f^2$ ($80n_f^2$)
$\psi^2 Uh X$	7 + 7 + 0 + 0	22(28)	$22n_f^2$ (28 n_f^2)
ψ^4	12 + 24 + 4 + 8	117(160)	$\frac{1}{4}n_f^2(31 - 6n_f + 335n_f^2) (n_f^2(9 - 2n_f + 125n_f^2))$
Total	123	261(313)	$ \begin{array}{l} \frac{335n_f^{-4}}{4} - \frac{3n_f^{-3}}{2} + \frac{411n_f^{-2}}{4} + 39 (39+133n_f^{-2} - 2n_f^{-2} - 2n_f^{-3} + 125n_f^{-4}) \\ \mathcal{N}_{\rm operatrs}(n_f=1) = 224(295), \mathcal{N}_{\rm operatrs}(n_f=3) = 7704(11307) \end{array} $

Thank you for your attention!

19/20

Gram Det Makes a Difference

ONLY at $O(p^{10})$ or beyond (# independent trace orbits):

Trace Class	(6)	(4 2)	(3 3)	(2 2 2)
General D	112	91	43	25
D=4	111	90	42	24

	(8)	(6 2)	(5 3)	(4 4)	(4 2 2)	(3 3 2)	(2 2 2 2)
General D	435	320	226	129	149	117	26
D = 4	427	314	222	126	146	115	25

	(10)	(8 2)	(7 3)	(6 4)	(5 5)	(6 2 2)
General D	105	74	45	50	29	37
D = 4	99	71	43	47	27	35
	(5 3 2)	(4 4 2)	(4 3 3)	(4 2 2 2)	(3 3 2 2)	(2 2 2 2 2)
			(- - -)			(= = = = =)
General D	35	30	21	18	18	7

April 21, 2024

・ロト ・部 ト ・ ヨト ・ ヨト

æ