

Hyperon semileptonic decays in QCD sum rules

Sheng-qi Zhang (张圣奇)

University of Chinese Academy of Sciences

Collaborator: Xuan-Heng Zhang, Cong-Feng Qiao

arXiv:2402.15088

第六届重味物理与量子色动力学研讨会

2024.04.21 @青岛

Hyperon history

"V" particles G.D. Rochester, C. C. Butler, Nature 160, 855 (1947) Hyperon: heavier than proton

THE PHYSICAL REVIEW

 ${\cal A}$ journal of experimental and theoretical physics established by E. L. Nichols in 1893

SECOND SERIES, VOL. 86, NO. 5

JUNE 1, 1952

Some Remarks on the V-Particles*

A. PAIS Institute for Advanced Study, Princeton, New Jersey (Received January 22, 1952)

- Produce in pairs in strong interactions
- Decay via the weak interactions
- A. Pais, Phys.Rev. 86, 663 (1952)
- Strangeness(*S*): conserve in strong interaction, violate in weak interaction
- Selection rule: $\Delta S = 0, \pm 1$
- M. Gell-Mann, Phys.Rev. 92, 833 (1953)T. Nakano, K. Nishijima, Prog.Theor.Phys 10, 581(1953)

Hyperon decays

	Λ	Σ^+	Σ^0	Σ^{-}	Ξ^0	[I]
$M({ m GeV})$	1.116	1.189	1.192	1.197	1.315	1.322
$ au(10^{-10}s)$	2.632	0.802	$7.4 imes 10^{-10}$	1.479	2.90	1.639

Hyperon decays

- ✓ CKM matrix element V_{us}
- \checkmark *SU*(3) flavor symmetry
- ✓ Source of *CP* violation

Semileptonic decays

- ★ Simple environment
- ★ Decay dynamics (form factors)
 - J. D. Richman and P. R. Burchat, Rev. Mod. Phys. 67, 893 (1995)

Experimental perspective

→ Current status: long history, large uncertainties, not direct measurement.....

Obstacles

- ▶ Dominant two-body decay backgrounds $\Lambda \rightarrow p + \pi^{-}, \Sigma^{-} \rightarrow n + \pi^{-}, \Xi^{-} \rightarrow \Lambda + \pi^{-}$
- ▶ Tiny branching fractions $(10^{-4} \sim 10^{-6})$

Super *τ*-charm facility Front.Phys 19, 14701(2024)

Theoretical perspective

leptonic part:

• lepton current:
$$\bar{\ell}\gamma^{\mu} \left(1-\gamma_{5}\right) \nu_{\ell}$$

hadronic part:

•
$$s \rightarrow u$$
 transition, $\bar{u} \gamma_{\mu} (1 - \gamma_5) s$

• parametrized in terms of form factors

$$\langle B_2 | J^h_\mu | B_1 \rangle = \bar{u}_2 \left[f_1 \gamma_\mu + i f_2 \sigma_{\mu\nu} \frac{q^\nu}{M_1} + f_3 \frac{q_\mu}{M_1} \right] u_1 - \bar{u}_2 \left[g_1 \gamma_\mu + i g_2 \sigma_{\mu\nu} \frac{q^\nu}{M_1} + g_3 \frac{q_\mu}{M_1} \right] \gamma_5 u_1$$

Form factors

Cabibbo's predictions: flavor SU(3) symmetry

	$f_1(0)$	$g_1(0)$	$g_1(0)/f_1(0)$	$f_2(0)/f_1(0)$
$\Lambda \to p$	$-\sqrt{\frac{3}{2}}$	$-\sqrt{rac{3}{2}}(F+rac{D}{3})$	$F + \frac{D}{3}$	${M_\Lambda\over M_p}{\mu_p\over 2}$
$\Sigma^0 \to p$	$-\sqrt{\frac{1}{2}}$	$-\sqrt{\frac{1}{2}}(F-D)$	F-D	$rac{M_{\Sigma^0}}{M_p}rac{(\mu_p{+}2\mu_n)}{2}$
$\Xi^- ightarrow \Lambda$	$\sqrt{\frac{3}{2}}$	$\sqrt{rac{3}{2}}(F-rac{D}{3})$	$F-rac{D}{3}$	$-rac{M_{\Xi^-}}{M_p}rac{(\mu_p+\mu_n)}{2}$
$\Xi^0 \to \Sigma^+$	1	F + D	F + D	$rac{M_{\Xi 0}}{M_p}rac{(\mu_p\!-\!\mu_n)}{2}$
n ightarrow p	1	F + D	F + D	$rac{M_n}{M_p}rac{(\mu_p-\mu_n)}{2}$

- ★ Isospin symmetry is considered.
- ★ g_2 vanishes in *SU*(3) symmetry.
- $\star f_3$ and g_3 have little contributions to the decays.

N. Cabibbo, Phys. Rev. Lett. 10, 531-533 (1963)

N. Cabibbo et al., Ann. Rev. Nucl. Part. Sci. 53, 39–75 (2003)

Potential symmetry breaking $m_s \gg m_d \sim m_u$

- Symmetry breaking of f_1 : $f_1/f_1^{SU(3)}$
- In *SU*(3) symmetry, $(g_1/f_1)^{n \to p} = (g_1f_1)^{\Xi^0 \to \Sigma^+}$

Donoghue et al., PRD(1987); Schlumpf, PRD(1995); Villadoro, PRD(2006); Faessler et al., PRD(2008) Ledwig et al., JHEP(2008); L. S. Geng et al., PRD(2009); Sasaki, PRD(2012); G.S. Yang et al., PRC(2015)

PDG : $(g_1/f_1)^{n \to p} = 1.2754 \pm 0.013, \quad (g_1/f_1)^{\Xi^0 \to \Sigma^+} = 1.22 \pm 0.05$

Form factors in QCD sum rules

SUM RULES AND THE PION FORM FACTOR IN QCD

V.A. NESTERENKO and A.V. RADYUSHKIN Laboratory of Theoretical Physics, JINR, Dubna, USSR

Received 12 May 1982

MESON WIDTHS AND FORM FACTORS AT INTERMEDIATE MOMENTUM TRANSFER IN NON-PERTURBATIVE QCD

B.L. IOFFE and A.V. SMILGA

ITEP, Moscow, 117259, USSR

Received 14 September 1982

light and heavy hadrons. The applications include the pion electromagnetic form factor,¹⁰⁰ radiative charmonium decays such as $J/\psi \rightarrow \eta_c \gamma$,¹⁰¹ D and B semileptonic and flavor-changing neutral current (FCNC) transitions ¹⁰²⁻¹⁰⁷ and, more recently, the radiative decays $\phi \rightarrow (\eta, \eta')\gamma$.¹⁰⁸

P. Colangelo et al., QCD sum rules, a modern perspective(2000)

pion electromagnetic form factor

- ☑ Radiative decay
- **FCNC** transition
- ☑ Strong decay
- Semileptonic decay

Semileptonic decays in QCD sum rules

Channel	work			
Meson				
$D o \pi, ho, K^{(*)}$	Dosch et al.(1991); Ball et al.(1993); 杨茂志 (2006);			
$D_s o \phi$	杜东升 & 李竞武 & 杨茂志 (2006);			
$J/\psi o D_s^{(*)}$	王玉明 & Hao Zou & 魏正涛 & 李学潜 & 吕才典 (2006);			
$B \to \pi, \rho, K$	Narison et al. (1992) ; Khodjamirian et al. (1993) ;			
$B \rightarrow D I/w = \gamma - B B$	Colangelo et al. (1993) ; Kiselev et al. (2000) ; Azizi et al. (2009)			
$D_c \rightarrow D, J/\psi, \eta_c, \chi_{c0}, D, D_s$	王志刚 (2014); Leljak et al.(2020);			
Baryon				
Δ	戴元本 & 黄朝商 & 黄明球 & 刘纯 (1996); Nielsen et al.(1999);			
$m_b \rightarrow m_c$	赵振兴 & 李润辉 & 沈月龙 & 施瑀基 & Yan-Sheng Yang(2020);			
$\Lambda_b o p$	黄朝商 & 乔从丰 & Hua-Gang Yan(1998);			
$\Lambda_c o \Lambda$	Dosch et al. $(1999);$			
$\Lambda_c o n$	ZSQ & 乔从丰 (2023);			
$\{\Xi_{QQ},\Omega_{QQ}\}\to\{\Lambda_Q,\Sigma_Q,\Xi_Q,\Omega_Q\}$	施瑀基 & 王伟 & 赵振兴 (2020)			

$$\Pi_{\mu}(q_1^2, q_2^2, q^2) = i^2 \int d^4x \ d^4y \ e^{i(-q_1x+q_2y)} < 0 \,|\, T\{j_2(y)j_{\mu}(0)j_1^{\dagger}(x)\} \,|\, 0 > 0 \,|\, T\{j_2(y)j_{\mu}(0)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_{\mu}(0)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{\dagger}(x)j_1^{\dagger}(x)\} \,|\, T\{j_2(y)j_1^{$$

 $j_{1,2}$: interpolating currents for the initial and final state baryons

 j_{μ} : weak transition current

$$j = \epsilon^{abc} \left(q_i^{aT} C \sigma^{\mu\nu} q_j^b \right) \sigma_{\mu\nu} \gamma_5 q_k^c$$

$$j_{\mu} = \bar{u}\gamma_{\mu}(1-\gamma_5)s$$

dispersion relations

$$\Pi_{\mu}(q_1^2, q_2^2, q^2) = \int ds_1 \int ds_2 \frac{\rho_{\mu}(s_1, s_2, q^2)}{(s_1 - q_1^2)(s_2 - q_2^2)}$$

QCD side

$$\Pi_{\mu}(q_1^2, q_2^2, q^2) = i^2 \int d^4x \ d^4y \ e^{i(-q_1x+q_2y)} < 0 \,|\, T\{j_2(y)j_{\mu}(0)j_1^{\dagger}(x)\} \,|\, 0 > 0$$

dispersion relations $\prod_{\mu}(q_1^2, q_2^2, q^2) = \sum_d C_{d,\mu}(q_1^2, q_2^2) < 0 | O_d(0) | 0 > -$

vacuum condensate

 $\Pi_{\mu}^{\text{QCD}}(q_1^2, q_2^2, q^2) = \int_{s_1^{\text{min}}}^{\infty} ds_1 \int_{s_2^{\text{min}}}^{\infty} ds_2 \frac{\rho_{\mu}^{\text{QCD}}(s_1, s_2, q^2)}{(s_1 - q_1^2)(s_2 - q_2^2)} \quad \rho_{\mu}^{\text{QCD}}: \text{ spectral density}$

$$\rho_{\mu}^{\text{QCD}}(s_1, s_2, q^2) = \rho_{\mu}^{\text{pert}}(s_1, s_2, q^2) + \rho_{\mu}^{\langle \bar{q}q \rangle}(s_1, s_2, q^2) + \rho_{\mu}^{\langle g_s^2 G^2 \rangle}(s_1, s_2, q^2) + \rho_{\mu}^{\langle g_s \bar{q}\sigma \cdot Gq \rangle}(s_1, s_2, q^2) + \rho_{\mu}^{\langle \bar{q}q \rangle^2}(s_1, s_2, q^2) + \rho_{\mu}^{\langle \bar{q}q \rangle^2}(s_1, s_2, q^2) + \rho_{\mu}^{\langle \bar{q}q \rangle^2}(s_1, s_2, q^2) + \rho_{\mu}^{\langle \bar{q}q \rangle}(s_1, s_2, q^2) +$$

$$\begin{split} \Pi_{\mu}(q_{1}^{2},q_{2}^{2},q^{2}) &= i^{2} \int d^{4}x \ d^{4}y \ e^{i(-q_{1}x+q_{2}y)} < 0 \ | T\{j_{2}(y)j_{\mu}(0)j_{1}^{\dagger}(x)\} | 0 > \\ & \text{dispersion relations} \qquad \sum_{\mu} |H\rangle \langle H| = 1 \\ \Pi_{\mu}^{\text{phe}}(q_{1}^{2},q_{2}^{2},q^{2}) &= \sum_{\text{spins}} \frac{<0 \ |j_{2}| B_{2}(q_{2}) > < B_{2}(q_{2}) | j_{\mu}| B_{1}(q_{1}) > < B_{1}(q_{1}) | j_{1}| 0 > \\ (q_{1}^{2} - M_{1}^{2})(q_{2}^{2} - M_{2}^{2}) \\ & + \text{higher resonances and continuum states,} \\ < 0 \ |j_{i}| B_{i}(p) > &= \lambda_{i}u_{i}(p) \qquad \qquad < B_{2}(q_{2}) \ |\bar{u}\gamma_{\mu}(1 - \gamma_{5}) \ s \ |B_{1}(q_{1}) > \\ &= \bar{u}_{2}(q_{2}) \left[f_{1}(q^{2})\gamma_{\mu} + if_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + f_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] u_{1}(q_{1}) \\ &- \bar{u}_{2}(q_{2}) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}u_{1}(q_{1}) . \\ \\ \Pi_{\mu}^{\text{phe}}(q_{1}^{2}, q_{2}^{2}, q^{2}) = \frac{\lambda_{2}\left(g_{2} + M_{2}\right) \left[f_{1}(q^{2})\gamma_{\mu} + if_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + f_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{2} + M_{2}\right) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}\lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{2} + M_{2}\right) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}\lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{1}^{2} + M_{2}\right) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}\lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{1}^{2} + M_{2}\right) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}\lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{1}^{2} + M_{2}\right) \left[g_{1}(q^{2})\gamma_{\mu} + ig_{2}(q^{2})\sigma_{\mu\nu}\frac{q^{\nu}}{M_{1}} + g_{3}(q^{2})\frac{q_{\mu}}{M_{1}} \right] \gamma_{5}\lambda_{1}\left(g_{1} + M_{1}\right) \\ &- \frac{\lambda_{2}\left(g_{1}^{2} - M_{2}^{2}\right) \left[g_{1}^{2} - M_{2}^{2}\right] \left[g_{1}^{2} - M_{2}^{2}\right] \\ &- \frac{\lambda_{2}\left(g_{1}^{2} - g_{1}^{2} - g_{2}^{2}\right)}{\left[g_{1}^{2} - g_{1}^{2} - g_{2}^{2}\right]} \\ &- \frac{\lambda_{2}\left(g_{1}^{2} - g_{1}^{2}\right) \left[g_{1}^{2} - g_{1}^{2} - g_{1}^{2}\right] \left[g_{1}^{2} - g_{1}^{2} - g_{1}^{2}$$

Suppress the higher excited states and continuum states contributions

$$\mathcal{B}[g(Q^2)] \equiv g(M_B^2) = \lim_{\substack{Q^2, n \to \infty \\ n/Q^2 = 1/M_B^2}} \frac{(-1)^n (Q^2)^{n+1}}{n!} \left(\frac{\partial}{\partial Q^2}\right)^n g(Q^2)$$

Quark-hadron duality

Establish the equivalence between two sides

$$\Pi_{\mu}^{\text{phe}}(q_1^2, q_2^2, q^2) \simeq \int_{s_1^{\min}}^{s_1^0} ds_1 \int_{s_2^{\min}}^{s_2^0} ds_2 \frac{\rho_{\mu}^{\text{QCD}}(s_1, s_2, q^2)}{(s_1 - q_1^2)(s_2 - q_2^2)}$$

 $s_{1(2)}^0$: threshold parameters

Symmetry breaking of vector form factor $f_1(0)$

					negative corrections
					1
	$\Lambda \to N$	$\Sigma \to N$	$\Xi\to\Lambda$	$\Xi\to\Sigma$	Refs
$f_1(0)/f_1^{SU(3)}$					
QCDSR	0.963 ± 0.061	0.993 ± 0.059	0.993 ± 0.061	0.956 ± 0.049	This work
Quark model	0.987	0.987	0.987	0.987	J. F. Donoghue et al., $PRD(1987)$
Quark model	0.976	0.975	0.976	0.976	F. Schlumpf, $PRD(1995)$
lattice QCD		0.975 ± 0.01		0.973 ± 0.007	S. Sasaki, $PRD(2012)$
$1/N_c$ expansion	1.02 ± 0.02	1.04 ± 0.02	1.10 ± 0.04	1.12 ± 0.05	R. Flores-Mendiet et al., $PRD(1998)$
$\chi \mathrm{PT}$	1.027	1.041	1.043	1.009	G. Villadoro, $PRD(2006)$
$\chi \mathrm{PT}$	$1.001\substack{+0.013 \\ -0.010}$	$1.087\substack{+0.042\\-0.031}$	$1.040\substack{+0.028\\-0.021}$	$1.017\substack{+0.022\\-0.016}$	L. S. Geng et al., PRD(2009)

QCDSR and $1/N_c$ expansion suggest relatively larger breaking in $\Xi \rightarrow \Sigma$.

positive corrections

	$\Lambda \to N$	$\Sigma \to N$	$\Xi ightarrow \Lambda$	$\Xi \to \Sigma$	Refs
$g_1(0)/f_1(0)$					
QCDSR	0.708 ± 0.047	-0.327 ± 0.046	0.271 ± 0.045	1.293 ± 0.100	This work
Cabibbo model	0.731	-0.341	0.195	1.267	N. Cabibbo et al., Annu. Rev(2003)
Quark model	0.724	-0.260	0.265	1.20	A. Faessler et al., $PRD(2008)$
Soliton model	0.68	-0.27	0.21	1.16	T. Ledwig et al., $JHEP(2008)$
Soliton model	0.718 ± 0.003	-0.340 ± 0.003	0.250 ± 0.002	1.210 ± 0.005	G.S. Yang et al., $PRC(2015)$
$1/N_c$ expansion	0.73	-0.34	0.22	1.03	R. Flores-Mendiet et al., PRD(1998)
lattice OCD		0.287 ± 0.052		1 248 ± 0 020	D. Guadagnol et al., NPB(2007)
lattice QCD		-0.287 ± 0.052		1.240 ± 0.029	S. Sasaki et al., $PRD(2009)$
Exp	0.718 ± 0.015	-0.340 ± 0.017	0.25 ± 0.05	1.22 ± 0.05	PDG(2022)
			$(g_1/f_1)_{\text{Exp}}^{n \to p} =$	1.2754 ± 0.013	

• The results are generally consistent.

 $\star \ln SU(3)$ symmetry:

• $(g_1/f_1)^{n \to p}$ slightly deviates from the $(g_1/f_1)^{\Xi \to \Sigma}$ $(g_1/f_1)^{n \to p} = (g_1f_1)^{\Xi^0 \to \Sigma^+}$

	$\Lambda \to N$	$\Sigma \to N$	$\Xi\to\Lambda$	$\Xi\to\Sigma$	Refs
$f_2(0)/f_1(0)$					
QCDSR	0.752 ± 0.074	-1.042 ± 0.090	0.118 ± 0.032	1.957 ± 0.255	This work
Cabibbo model	1.066	-1.292	0.085	2.609	N. Cabibbo et al., Annu. $Rev(2003)$
Quark model	1	-0.962	0.129	2.402	A. Faessler et al., $PRD(2008)$
Soliton model	0.637 ± 0.041	-0.709 ± 0.036	-0.069 ± 0.027	1.143 ± 0.061	G.S. Yang et al., $PRC(2015)$
Soliton model	0.71	-0.96	-0.02	2.02	T. Ledwig et al., $JHEP(2008)$
$1/N_c$ expansion	0.90	-1.02	-0.06	1.85	R. Flores-Mendiet et al., $PRD(1998)$
lattice QCD		-1.52 ± 0.81			S. Sasaki et al., $PRD(2009)$
Fun	1.29 ± 0.91	0.07 ± 0.14	0.24 ± 0.25	2.0 ± 0.0	M. Bourquin et al., Z. Phys. C(1983)
пхр	1.32 ± 0.01 $-0.97 \pm$	-0.97 ± 0.14	4 -0.24 ± 0.25	2.0 ± 0.9	PDG(2022)

q^2 dependence of the form factors

 \Leftrightarrow Employ BCL parametrization to extrapolate the form factors:

$$f_i(q^2) = \frac{f_i(0)}{1 - q^2/(m_{\text{pole}})^2} \{1 + a_1(z(q^2, t_0) - z(0, t_0))\}$$

Branching fractions

not include q^2 dependence of the form factors

	QCDSR	QCDSR ⁰	Exp
$\mathcal{B}(\Lambda \to p e^- \bar{\nu}_e) \times 10^{-4}$	8.09 ± 0.73	7.12 ± 0.65	8.34 ± 0.14
$\mathcal{B}(\Lambda o p \mu^- \bar{ u}_\mu) imes 10^{-4}$	1.44 ± 0.13	1.15 ± 0.11	1.51 ± 0.19
$\mathcal{B}(\Sigma^- \to n e^- \bar{\nu}_e) \times 10^{-3}$	1.06 ± 0.20	0.87 ± 0.14	1.017 ± 0.034
$\mathcal{B}(\Sigma^- o n\mu^- \bar{\nu}_\mu) imes 10^{-4}$	5.17 ± 1.03	3.74 ± 0.59	4.5 ± 0.4
$\mathcal{B}(\Sigma^0 \to p e^- \bar{\nu}_e) \times 10^{-13}$	2.67 ± 0.49	2.18 ± 0.34	$2.46\pm0.32^{*}$ R.M. Wang, M.Z. Yang, H.B. Li
$\mathcal{B}(\Sigma^0 o p \mu^- \bar{\nu}_\mu) imes 10^{-13}$	1.30 ± 0.25	0.94 ± 0.15	$1.13 \pm 0.15^{*}$ and X.D. Cheng, PRD(2019)
$\mathcal{B}(\Xi^- \to \Lambda e^- \bar{\nu}_e) \times 10^{-4}$	5.41 ± 0.79	4.67 ± 0.63	5.63 ± 0.31
${\cal B}(\Xi^- o \Lambda \mu^- ar{ u}_\mu) imes 10^{-4}$	1.66 ± 0.26	1.24 ± 0.17	$3.5^{+3.5}_{-2.2}$
$\mathcal{B}(\Xi^0 \to \Sigma^+ e^- \bar{\nu}_e) \times 10^{-4}$	2.48 ± 0.24	2.39 ± 0.25	2.52 ± 0.08
$\mathcal{B}(\Xi^0 o \Sigma^+ \mu^- \bar{\nu}_\mu) imes 10^{-6}$	2.18 ± 0.24	1.91 ± 0.20	2.33 ± 0.35
$\mathcal{B}(\Xi^- o \Sigma^0 e^- \bar{\nu}_e) imes 10^{-5}$	8.07 ± 0.77	7.72 ± 0.81	8.7 ± 1.7
$\mathcal{B}(\Xi^- o \Sigma^0 \mu^- \bar{\nu}_\mu) imes 10^{-6}$	1.12 ± 0.12	0.97 ± 0.10	< 800

- Contributions from the q^2 dependence of the form factors: $10\% \sim 30\%$.
- Much more impact to μ mode.

Summary

- We calculated the transition form factors of hyperon semileptonic decays in the frame work of QCD sum rules.
- We analyze the flavor SU(3) symmetry breaking effects based on the relevant form factors.
- We derive the branching fractions of hyperon semileptonic decays and the tensor form factor related to the new physics beyond the standard model.
- Potential improvement: inverse problem, NLO corrections.....

Thanks