

Recent Charmonium and XYZ Studies at BESII

Yuping Guo (郭玉萍) guoyp@fudan.edu.cn

第6届重味物理与量子色动力学研讨会 中国海洋大学&山东大学 青岛 2024.04.22

Charmonium Spectroscopy

* Selected topics in this talk:

- Vector charmonium(-like) states
 - Hadronic transitions
 - Precise measurement of the open charm processes
 - Non- $D\bar{D}$ decays of $\psi(3770)$
- New measurements of X(3872)
- Radiative transition in search for C-even states
- Hadronic decays of spin-singlet charmonium states

Beijing Electron Positron Collider II and BESIII

Solenoid Magnet: 0.9/1.0 T

BESIII Data Samples

+ 10 Billion J/ψ , 2.7 Billion $\psi(3686)$, 20 fb⁻¹ $\psi(3770)$

Discovery of Y States

- - Confirmed by CLEO and Belle
 - Mass > 4 GeV, above $D\bar{D}$ threshold
 - Not observed in inclusive hadron cross section
 - Not observed in open charm pair cross section

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

Summary of CS Measurements at BESII

* Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$

Summary of CS Measurements at BESII

* Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$

Hidden charm processes

 Open charm processes Light hadron processes

Summary of CS Measurements at BESIII

 $Y(4260) \Rightarrow Y(4230)$

Y(4230) in Open Charm Process

14.6[1.2]

Mass and width from different process

determined with BW parameterization consider possible interference

			\downarrow		
$\pi^+\pi^-\psi(2S)$	$\eta J/\psi$	K^+K^-J/ψ	$\pi^+\pi^- J/\psi$	$\pi^{\pm}(D\bar{D}^*)^{\mp}$	$\pi^{\pm}(D^*\bar{D}^*)^{\mp}$
0.02[0.01]	4.0[0.5]	0.29[0.10]	0.22[0.25]	8.6[1.6]	4.8[0.9]
1.64[0.83]	11.9[1.1]	0.42[0.15]	0.53[0.15]	77.4[10.1]	22.4[9.0]
				Same	e Order

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

Update of nh_c Cross Section

Update of $\eta\psi(3686)$ and Search for X(3872)

* 8.9 fb⁻¹ data sample from 4.288 to 4.951 GeV

Observations in $\omega \chi_{c1}$ and $\omega \chi_{c2}$

11.0 fb⁻¹ data sample from 4.308 to 4.951 GeV

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

τπ**h**c

υχ_{c0}

τππη_c

pi<mark>20</mark>uo (Fudan University) @第6届重味物理与量子色动力学研讨会

pi<mark>20</mark>uo (Fudan University) @第6届重味物理与量子色动力学研讨会

Precise CS Measurement of Open Charm Processes

Non-DD Decay of $\Psi(3770)$

Coherent fit						
Parameters	Solution1	Solution2	Solution3	Solution4	Incoherent fit	
$\overline{M_1({\rm MeV}/c^2)}$		3773.7	(fixed)		3773.7 (fixed)	
$\Gamma_1(MeV)$		27.2 (fixed)				
C_0		13.3	± 1.9		11.0 ± 1.6	
$Br_1(\times 10^{-4})$	$11.3\pm5.9\pm1.1$	$11.6\pm6.0\pm1.1$	$11.2\pm5.8\pm1.1$	$11.5\pm6.0\pm1.1$	$8.7\pm1.0\pm0.8$	
$\phi_1(rad)$	$3.9\pm0.6\pm0.07$	$4.2\pm0.6\pm0.09$	$3.7\pm0.6\pm0.05$	$4.1\pm0.6\pm0.08$		

interference between $\psi(3770)$, continuum, and Y states

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

CLEO result: 3.5σ (8.7 ± 3.3 ± 2.2) × 10⁻⁴

Non-DD Decay of $\Psi(3770)$

•
$$\mathscr{B} = (2.63^{+1.40}_{-1.59}) \times 10^{-5}, \phi = (-0.39^{+0.05}_{-0.10})\pi$$

- PRD 64, 094002 (2001), P. Wang, X. H. Mo, C. Z. Yuan, PRD 70, 077505 (2004)))
- excludes the possibility that flavor-SU(3) breaking is the primary reason for the strong experimental violation of the pQCD production of $|F(\pi^{\pm})|/|F(K^{\pm})| = f_{\pi}^2/f_K^2$

PRL132, 131901 (2024)

• Branching fraction in good agreement with the prediction of the S- and D-wave charmonium mixing model (J. L. Rosner,

• $|F_{K_{s}^{0}K_{t}^{0}}|/|F_{K+K-}| = 0.21 \pm 0.01$, indicates a small but significant effect of flavor-SU(3) breaking in the kaon wave function,

Evidence also seen in baryon pair processes

Line Shape of X(3872)

* Effects of the couple-channels and the off-shell D^{*0} are included in the parameterization

* Line share mass: $M_X = (3871.63 \pm 0.13^{+0.06}_{-0.05}) \text{ MeV}$

 Weinberg's compositeness: Z=1 - pure elemental state; Z=0 -pure bound state

Parameters	BESIII	LHCb
g	$0.16 \pm 0.010^{+1.12}_{-0.11}$	$0.108 \pm 0.003^{+0.005}_{-0.006}$
Re[EI] (MeV)	$7.04 \pm 0.15^{+0.07}_{-0.08}$	7.10
Im[EI] (MeV)	$-0.19 \pm 0.08^{+0.14}_{-0.19}$	-0.13
$\Gamma[\pi^+\pi^- J/\psi]/\Gamma[D^0\bar{D}^{*0}]$	$0.05 \pm 0.01^{+0.01}_{-0.02}$	0.11 ± 0.03
FWHM (MeV)	$0.44_{-0.35-0.25}^{+0.13+0.38}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$
Z	0.18	0.15 (0.33)

Decays of X(3872)

* 10.9 fb⁻¹ data samples from 4.16 to 4.34 GeV

* Decay ratio of $X(3872) \rightarrow \pi^0 \chi_{c1}$ and $X(3872) \rightarrow \pi^+ \pi^- \chi_{c1}$ can be used to discriminate theoretical interpretations for the nature

 ${ullet}$ Enhanced if it is a shallow bound state of a $ar{D}^0 D^{*0}$ pair

* No obvious signal is found in data, $R = \frac{B[\chi_{c1} \to \pi^+ \pi^- \chi_{c1}]}{B[\chi_{c1} \to \pi^+ \pi^- J/\psi]} < 0.18 \text{ at } 90\% \text{ C. L.}$ $\frac{\Gamma[\chi_{c1}(3872) \rightarrow \chi_{c1}\pi^0]}{\Gamma[\chi_{c1}(3872) \rightarrow \chi_{c1}\pi^+\pi^-]} > 5, \text{ two orders of magnitude greater}$ than expectation for $\chi_{c1}(2P)$

PRD09, L071101 (2024)

- * Dedicated scan sample around the resonance

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

C-even States in Radiative Transition Process

Yuping Guo (Fudan University) @第6届重味物理与量子色动力学研讨会

	State	$M ({ m MeV}/c^2)$) Γ (MeV) I	$\Gamma_{D_s^{\pm}D_s^{*\mp}}$ (MeV) J^{PC}
	$\eta_{c2}(2D)$ [4]	4158	111	18	2^{-+}
	$\chi_{c1}(3P)$ [4]	4271	39	9.7	1^{++}
	$\chi_{c2}(3P)$ [4]	4317	66	11	2^{++}
	X(4080) [20]	4082.55	5	-	1++
hybrid	X(4217) [9–11]	4217	6	6	1^{-+}
пурпа	X(4279) [9–11]	4279	110	34	0^{-+}

Molecula: X, K, Dong, F. K. Guo, B. S. Zou, Progr. Phys. 41, 65 (2021) hybrid states: G.K.Cheung. (Hadron Spectrum Collaboration) JHEP 12, 089 (2016) C. Farina, H. Garcia Tecocoatzi, A. Giachino, E. Santopinto, E. S. Swanson, PRD102, 014023 (2020)

	$\eta_{c2}(2D)$	$\chi_{c1}(3P)$	$\chi_{c2}(3P)$	X(4080)	X(4217)	X(4279)
f^r	1.06	1.06	1.06	1.06	1.06	1.06
f^v	1.05	1.05	1.05	1.05	1.05	1.05
$N_{ m sig}^{ m UL}$	6.7	16.3	18.7	2.4	7.6	19.6
$N_{ m sig}$	$-5.6\substack{+4.2\-3.2}$	$9.8\substack{+5.2\\-4.4}$	$13.0\substack{+4.5 \\ -3.9}$	$-0.9\substack{+0.3 \\ -0.2}$	$2.3\substack{+3.0 \\ -2.4}$	$13.8_{-3.8}^{+4.5}$
Significance (σ)	1.3	2.6	3.1	—	0.9	3.3
$ar{\epsilon}~(10^{-4})$	3.73	3.48	3.26	4.21	3.50	3.11
$\sigma^{\mathrm{UL}} \cdot \mathcal{B}$ with sys. (pb)	13.3	36.3	45.5	4.1	15.7	51.7

arXiv:2404.02033

Hadronic Decay of $\eta_c(2S)$

*
$$Q = \frac{\eta_c(2S) \rightarrow h}{\eta_c(1S) \rightarrow h} \approx 12\%$$
[M. Anselmino, M. Genovese, E. Predaz
100% [K. T. Chao, Y. F. Gu, S. F. Tuan, Commun. Theor. Phys. 25, 471 (1996)]

- * Analyzing existing data, the ratios of the branching fractions of $\eta_c(2S)$ and $\eta_c(1S)$ decays into 10 different final states are obtained by H. P. Wang and C. Z Yuan [cPC46, 071001 (2022)]
- * Using large $\psi(3686)$ data sample, several hadronic decays of $\eta_c(2S)$ are measured
 - $3(\pi^+\pi^-)$ [PRD 106, 032014 (2022)], $\pi^+\pi^-\eta$ [PRD107, 052007 (2023)]
 - $K\bar{K}\eta, K\bar{K}\eta', 2(\pi^+\pi^-)\eta, \dots$

zzi, PRD44, 1597 (1991)] **O**ľ

Summary

- hidden charm, and light hadronic final states
 - samples are needed around 4.5 GeV and 4.7 GeV
 - No evident structure is seen in light hadron process
 - effort/better modeling \Rightarrow combined fit with K-matrix?
 - Interference effect need to be considered properly
- process in the future?
- need refined theoretical predictions

* Properties of vector states have been investigated using various processes, including open charm,

• Y(4230) is seen in 10 decay modes; rich structures in the cross section line shapes above 4.3 GeV, more data

• Hard to get a unified picture with current used strategy [use simply formula to fit cross section], require joint

* Line shape and new decays of X(3872) investigated \Rightarrow study in direct electron-positron annihilation

Decay properties studies for lower charmonium states, e.g. hadronic transition, hadronic decays,

Thank You!

Future Data Samples

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the re most column shows the number of required data taking days with the current (T_C) and upgraded (T_U) maching implementation and beam current increase.

Energy	Physics motivations	Cı
1.8 - 2.0 GeV	R values Nucleon cross-sections	
2.0 - 3.1 GeV	R values Cross-sections	Fine scan
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb
$\psi(3770)$ peak	D^0/D^{\pm} decays	
3.8 - 4.6 GeV	R values XYZ /Open charm	Fine scan (
4.180 GeV	D_s decay XYZ /Open charm	
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fl
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	
4.95 GeV	Ξ_c decays	

Pentaquark: 4.86 GeV - $p\bar{p}\eta_c$ threshold; 4.97 GeV - $p\bar{p}J/\psi$ threshold

Update of K+K-J/W Cross Section

 ML fit with coherent sum of two BWs 						
• Mass: 4225.	• Mass: $4225.3 \pm 2.3 \pm 21.5$ MeV					
0.3 • Width: $72.9 \pm Y_{2}^{(466)} \xrightarrow{PHG2}{3} 0.8^{Y(466)} \xrightarrow{T_{1}} (3686)}{Y_{3}^{-KKJ/\psi}}$						
Significance	• Significance $>_{Y_3}-\pi D^* D^* Y_3 - D_s^* D_s^*$					
02						
Ratio to $\pi\pi J/\psi$	$K\bar{K}J/\psi$ Sol. I	$K\bar{K}J/\psi$ Sol. II				
$\pi\pi J/\psi$ Sol. I	0.17 ± 0.02	0.25 ± 0.04				
$\pi\pi J/\psi$ Sol. II	0.097 ± 0.017	0.14 ± 0.03				
$\pi\pi J/\psi$ Sol. III	0.035 ± 0.004	0.051 ± 0.007				
$\pi\pi J/\psi$ Sol. IV	0.020 ± 0.002	0.028 ± 0.004				

4.6 4.7 4.8
● ML fit with 𝔥 𝔥 𝔅 𝔅 𝔅 𝑘 𝔅 𝔅 𝔅 𝔅 𝑘

- Mass: 4226.0 ± 1.4 MeV
- Width: 70.0^{+3.9}_{-3.6} MeV

