T_{cc}和X(3872)研究

吴佳俊 (中国科学院大学) 合作者: 王广娟,杨智,朱世琳, Makoto Oka [hep-ph] 2306.12406

第六届重味物理和量子色动力学研讨会 2024.04.22 中国海洋大学 青岛

目录

- 背景
- •HEFT介绍,单玻色子交换,3P0模型
- T_{cc}的产生
- X(3872)的性质
- 小结和展望

背景介绍

University of Chinese Academy of Sciences

背景介绍

问题: 对于一个强子而言, 究竟是如何由这些可能的 成分组成的?

---强子在强相互作用下是怎么形成的?---强子在夸克胶子层次的图像是什么?

背景介绍

问题:对于一个强子而言,究竟是如何由这些可能的 成分组成的? ---强子在强相互作用下是怎么形成的? ---强子在夸克胶子层次的图像是什么? 夸克胶子层次 相互作用的完整性 强子层次 能够系统描述强子的较为完整的框架

能够描述一系列强子,不是一个两个

HEFT介绍

HEFT---3P0模型和单玻色子交换模型

D介子和D*介子的相互作用,OBE

$$\begin{split} V_{\rho/\omega}^{t} &= \frac{\beta^{2} g_{V}^{2}}{2} \frac{\left(\epsilon_{\lambda} \cdot \epsilon_{\lambda'}^{\dagger}\right)}{q^{2} - m_{\rho/\omega}^{2}}. \qquad \begin{array}{c} Q \overset{\dagger}{\mathcal{F}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{}}{\operatorname{ks}}} \overset{}}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{\operatorname{ks}}} \overset{\phantom}}{$$

• g = 0.57 通过 $D^* \rightarrow D\pi$ 来确定 未知参数 $\lambda \&$

	wave function	$I(J^{PC})$	$u-{\rm channel}$: π	$u-{\rm channel}:\rho/\omega$	$t-{\rm channel}:\rho/\omega$
DD^*	$\frac{1}{\sqrt{2}}(D^+D^{*0} - D^0D^{*+})$	$0(1^+) [T_{cc}^+]$	$rac{3}{2}V_{\pi}$	$\frac{3}{2}V^u_\rho - \frac{1}{2}V^u_\omega$	$-\tfrac{3}{2}V_{\rho}^t + \tfrac{1}{2}V_{\omega}^t$
	$\frac{1}{\sqrt{2}}(D^+D^{*0}+D^0D^{*+})$	$1(1^{+})$	$rac{1}{2}V_{\pi}$	$\frac{1}{2}V^u_\rho + \frac{1}{2}V^u_\omega$	$\frac{1}{2}V_{\rho}^{t} + \frac{1}{2}V_{\omega}^{t}$
$D\bar{D}^*$	$\frac{1}{\sqrt{2}}\left(\left[D^+D^{*-}\right] + \left[D^0\bar{D}^{*0}\right]\right)$	$0(1^{++})[X(3872)]$	$rac{3}{2}V_{\pi}$	$-\tfrac{3}{2}V^u_\rho - \tfrac{1}{2}V^u_\omega$	$-\tfrac{3}{2}V_{\rho}^t - \tfrac{1}{2}V_{\omega}^t$
	$\frac{1}{\sqrt{2}}\left(\left[D^+D^{*-}\right] - \left[D^0\bar{D}^{*0}\right]\right)$	$1(1^{++})$	$-\frac{1}{2}V_{\pi}$	$\frac{1}{2}V_{\rho}^{u} - \frac{1}{2}V_{\omega}^{u}$	$\frac{1}{2}V_{\rho}^t - \frac{1}{2}V_{\omega}^t$
	$\frac{1}{\sqrt{2}} \left(\left\{ D^+ D^{*-} \right\} + \left\{ D^0 \bar{D}^{*0} \right\} \right)$	$0(1^{+-})[h_c]$	$-\frac{3}{2}V_{\pi}$	$\tfrac{3}{2}V^u_\rho + \tfrac{1}{2}V^u_\omega$	$-\tfrac{3}{2}V_{\rho}^t - \tfrac{1}{2}V_{\omega}^t$
	$\frac{1}{\sqrt{2}} \left(\left\{ D^+ D^{*-} \right\} - \left\{ D^0 \bar{D}^{*0} \right\} \right)$	$1(1^{+-}) [Z_c(3900)]$	$rac{1}{2}V_{\pi}$	$-\tfrac{1}{2}V^u_\rho + \tfrac{1}{2}V^u_\omega$	$\frac{1}{2}V_{\rho}^{t} - \frac{1}{2}V_{\omega}^{t}$

$V_{\rho/\omega}^{u} = -2\lambda^{2}g_{V}^{2} \frac{(\epsilon_{\lambda'}^{\dagger} \cdot q)(\epsilon_{\lambda} \cdot q) - q^{2}(\epsilon_{\lambda} \cdot \epsilon_{\lambda'}^{\dagger})}{q^{2} - m_{\rho/\omega}^{2}}, \qquad \text{由于不同电荷态的质量不同会有同位旋破坏,因此我们随后的 计算是按照粒子的物理态来计算的。}$

$$H_{a}^{(Q)} = \frac{1+\not{p}}{2} [P_{a}^{*\mu}\gamma_{\mu} - P_{a}\gamma_{5}] \qquad D^{(*)}D^{(*)}$$

$$\bar{H}_{a}^{(Q)} = \gamma_{0}H^{(Q)\dagger}\gamma_{0} = [P_{a}^{*\dagger\mu}\gamma_{\mu} + P_{a}^{\dagger}\gamma_{5}] \frac{1+\not{p}}{2}$$

$$\bar{P} = (D^{0}, D^{+}, D_{s}^{+}) \& P^{*} = (D^{*0}, D^{*+}, D_{s}^{*+})$$

$$\mathcal{L}_{MH^{(Q)}H^{(Q)}} = ig \operatorname{Tr} \left[H_{b}^{(Q)}\gamma_{\mu}\gamma_{5}A_{ba}^{\mu}\bar{H}_{a}^{(Q)}\right]$$

$$\mathcal{L}_{VH^{(Q)}H^{(Q)}} = i\beta \operatorname{Tr} \left[H_{b}^{(Q)}v_{\mu}(V_{ba}^{\mu} - \rho_{ba}^{\mu})\bar{H}_{a}^{(Q)}\right]$$

$$+i\lambda \operatorname{Tr} \left[H_{b}^{(Q)}\sigma_{\mu\nu}F^{\mu\nu}(\rho)_{ba}\bar{H}_{a}^{(Q)}\right]$$

$$\mathcal{K}.$$

$$\mathcal{K}.$$

$$\mathcal{K}.$$

$$\mathcal{K}.$$

$$\mathcal{K}.$$

$$\mathcal{K}.$$

$\Lambda(\texttt{fixed})$	λ (/GeV)	β
0.8 GeV	0.890 ± 0.20	0.810 ± 0.11
1 GeV	0.683 ± 0.025	0.687 ± 0.017
1.2 GeV	0.587 ± 0.21	0.550 ± 0.12
1.17 GeV	0.56	0.9
	Ch	eng, et al. PRD 106,016012

T_{cc}的产生

$\Lambda~({\rm GeV})$	BE (keV)	$\Gamma \ (keV)$	$\sqrt{\langle r^2 \rangle}$	I = 0	I = 1	$P(D^0D^{*+})$	$P(D^+D^{*0})$	$\frac{\operatorname{Res}(D^0D^{*+})}{\operatorname{Res}(D^+D^{*0})}$
0.8	-387.7	67.3	$4.8~\mathrm{fm}$	95.8%	4.2%	70.0%	30.0%	-1.063 + 0.001I
1.0	-393.0	70.4	$4.7~\mathrm{fm}$	95.8%	4.2%	70.0%	30.0%	-1.055 + 0.001I
1.2	-391.6	72.7	$4.7~\mathrm{fm}$	95.7%	4.3%	70.3%	29.7%	-1.052 + 0.001I

 $pp \to X \, D^0 D^0 \pi^+$

X(3872)的性质

由 DD^* 相互作用得到 $D\overline{D}^* + \overline{D}D^*$ 的相互作 用,因此可以类似考 虑纯 $D\overline{D}^* + \overline{D}D^*$ 的相 互作用产生的T矩阵, 即没有 $c\overline{c}$ 态。

 $V'_{\overline{D^*}D} = x * V_{\overline{D^*}D}$

首先,这是一个吸引势能,其次这个 吸引势能不足以形成一个束缚态

> 对于X(3872),只找到一个虚态 3870.0 + 0.26 i MeV

首先,这是一个吸引势能,其次这个吸引势能不足以形成一个束缚态

加入*cc*裸态的成分,需要一个裸态: *χ*_{c1}(2*P*,3940)及其波函数,由夸克模型确定。 3P0的相互作用参数 γ =4.69通过ψ(3770)到*DD* 确定,因此对X(3872)的分析没有增加任何参数。

University of Chinese Academy of Science

- 束缚态 $\Delta E = -80.4 \text{ keV}$ $\Gamma_{T_{cc}} = 32.5 \text{ keV}$
- $\sqrt{\langle r^2 \rangle} = 11.2 \, fm$

• 94.0% $\overline{D}^{*0}D^{0}$, 4.8% $D^{*-}D^{+}$, 1.2% $c\overline{c}$

T_{cc}, X(3872)的性质

X(3872)的束缚能极小, $D^{*0}\overline{D}^{0}$ 波函数占比非常大,长程肯定以此成分为主。 在短距离的成分中,还是以 $c\overline{c}$ 成分为主。而且在束缚态形成中,也体现出裸态的重要作用。

中国科学院大学

预言

小结

- 通过Tcc的研究确定DD*的相互作用
- 由确定的DD*的相互作用和裸态可以研究X(3872)的 性质
- •研究发现X(3872)中DD*成分绝对主导,但是主要分 布在长程部分,即大于1fm,裸态在短程部分依然主 导
- •预言, X(3957)应该存在

X(3872) Relevant $Dar{D}^*$ Scattering in $N_f=2$ Lattice QCD

TABLE III. Resonance parameters (m_R, Γ_R) .

307(2)

57(18)

3926(6)

Haozheng Li, Chunjiang Shi, Ying Chen, Ming Gong, Juzheng Liang et al. (Feb 22, 2024)

362(1)

37(13)

3969(4)

417(1)

3995(4)

57(10)

 $c \rightarrow b$

e-Print: 2402.14541 [hep-lat]

250(3)

3924(5)

63(23)

 $m_{\pi}(\text{MeV})$

 $m_R({\rm MeV})$

 $\Gamma_R(MeV)$

在强子的花园里挖呀挖呀挖 用HEFT种下一颗小小的种子 开出大大的花

I bb Hep-ph 2310.09836

Yu-Shan Ren, Guang-Juan, Zhi, Jia-Jun Wu

广告时间

2-0 July 2024 Asia/Shanghai timezone

6月30 - 7月4日, 30日报到,4日离会

会议概况
会议日程
会议注册
参会人员
往届会议

Travel Info

第二届强子物理新发展研讨会 暨 强子物理在线论坛100期特 别活动

https://indico.itp.ac.cn/event/225/

