A precise determination of D_s^* radiative decay width from lattice QCD

孟雨(郑州大学)

主要合作者: 刘川, 刘朝峰, 张克龙

2401.13475(PRD in press)

第六届重味物理与量子色动力学研讨会,青岛,4.19-4.22,2024

D^{\ast}_{s} decay mode

$D_s^{*\pm}$	$I(J^P)$ = $0(??)$					
J^P is natural, width and decay modes consistent with 1 $^$						
$D_s^{*\pm}$ MAS	S	2112.2 ± 0.4 MeV			× .	
$m_{D_s^{*\pm}}-m$	D_s^{\pm}	143.8 ± 0.4 MeV			~	
$D_s^{*\pm}$ wid	TH	< 1.9 MeV CL=90.0%			~	
D_s^{*+} decay modes						
D_s^{st-} modes are charge conjugates of the modes below.						
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)		
Γ_1	$D_s^+\gamma$	$(93.5 \pm 0.7)\%$		139	~	
Γ_2	$D_s^+\pi^0$	$(5.8\pm0.7)\%$		48	~	
Γ_3	$D_s^+ e^+ e^-$	$(6.7\pm1.6) imes10^{-3}$		139	~	

• No absolute measurements, above branching fraction are determined by two relative measurements

$$R_{ee} = \Gamma(D_s^* \to D_s e^+ e^-) / \Gamma(D_s^* \to D_s \gamma)$$
$$R_{Ds\pi^0} = \Gamma(D_s^* \to D_s \pi^0) / \Gamma(D_s^* \to D_s \gamma)$$

assuming no other decay mode exists.

• Total decay width of D_s^* is experimentally unknown.

D_s^* leptonic decay

• Decay width of $D^*_s \to l \nu_l$ is

$$\Gamma(D_s^* \to l\nu_l) = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 m_{D_s^*}^3 \left(1 - \frac{m_l^2}{m_{D_s^*}^2}\right)^2 \left(1 + \frac{m_l^2}{2m_{D_s^*}^2}\right)^2$$

• Branching fraction first determined by BESIII PRL131,141802(2023)

$$Br(D_s^{*,+} \to e^+\nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

- Total decay width of D_s^* is essential to extract $f_{D_s^*}|V_{cs}|$, playing a important role to test the standard model.
- Radiative decay $D_s^* \to D_s \gamma$ can be used to estimate the D_s^* total decay width.

Phenomenological studies

• $D_s^* \to D_s \gamma$

Method	$\Gamma_{D_s\gamma}(\text{keV})$	Refs
$\chi \mathrm{PT}$	4.5	H-Y.Cheng et al, PRD49,5857(1994)
$\chi \mathrm{PT}$	0.32 ± 0.3	B.Wang et al, PRD100,016019(2019)
LFQM	0.18 ± 0.01	H.M.Choi,J.Korean Phys.Soc.53,1295(2008)
RQM	$0.321\substack{+0.009\\-0.008}$	J.L. Goity et al,PRD64,094007(2001)
QCDSR	0.25 ± 0.08	T.M. Aliev,PLB334,169(2004)
QCDSR	0.51 ± 0.15	G.L.Yu et al,EPJC75,243(2015)
NJLM	0.09	H.B.Deng et al, CPC38,013103(2014)
NRQM	0.21	A.N.Kamal et al, PLB284,421(1992)
NRQM	0.4	A.Fayyazuddin, PRD48,1220(1993)

Lattice result

 $\bullet~$ HPQCD, HISQ fermion with pion mass ~ 300 MeV, $a\sim 0.12$ and 0.09 fm, each ensemble with statistic $\sim 2000\times 4$

$$D_{s}(p)|J_{\nu}^{\rm em}(0)|D_{s,\mu}^{*}(p')\rangle = \frac{2V(q^{2})}{3(m_{D_{s}} + m_{D_{s}^{*}})}\epsilon_{\mu\nu\alpha\beta}p_{\alpha}p_{\beta}'$$

• $\Gamma_{D_s\gamma} = 0.066(26)$ keV, PRL112,212002(2014)

• Branching fraction first determinted by BESIII PRL131,141802(2023)

$$\operatorname{Br}(D_s^{*,+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

• HPQCD, PRL112,212002(2014)

$$\Gamma_{D_s\gamma} = 0.066(26) \text{keV}$$

• Combining the above results, it arrives at

$$f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\text{stat.}}} \pm 42.7_{\text{syst.}}) \text{MeV}$$

with

$$42.7_{\text{syst.}} \rightarrow 9.9_{\text{syst.exp}} 41.5_{\text{syst.latt}}$$

Our target

• CLQCD gauge ensembles

CLQCD Collaboration, PRD109,054507(2024), much effort from Ming Gong,Liuming Liu,Peng Sun,Wei Wang,Yi-Bo Yang et al.

• Statistical error $\leq 10\% \leftarrow 40\%$ (HPQCD)

Computational Resources

"SongShan" supercomputer at Zhengzhou University

• The queue vip1 is only used for lattice study

• A small step now, a promising future(total 3800 nodes and 100PB storage at Zhengzhou University)

Ensemble	C24P29	F32P30	H48P32
$a(\mathrm{fm})$	0.10530(18)	0.07746(18)	0.05187(26)
$a\mu_s$	-0.2400	-0.2050	-0.1700
$a\mu_c$	0.4479	0.2079	0.0581
$L^3 \times T$	$24^3 \times 72$	$32^3 \times 96$	$48^3 \times 144$
$N_{\rm cfg} imes N_{ m src}$	450×72	377×96	306×72
$m_{\pi}(\text{MeV})$	292.7(1.2)	303.2(1.3)	317.2(0.9)
$m_{J/\psi}(\text{MeV})$	3098.6(0.3)	3094.9(0.4)	3096.5(0.3)
t	3-18	2-22	8-30
Z_V	0.79814(23)	0.83548(12)	0.86855(04)

- (2+1)-flavor Wilson-clover gauge ensembles
- Similar pion mass ~ 300 MeV, volume ~ 2.5 fm, more fine lattice spacing \Rightarrow continuum limit
- Each ensemble with the statistics 3-4 times larger than HPQCD.

Methodology

• The effective form factor

$$\langle D_s(p)|J_{\nu}^{\rm em}(0)|D_{s,\mu}^*(p')\rangle = \frac{2V_{\rm eff}(q^2)}{m_{D_s} + m_{D_s^*}}\epsilon_{\mu\nu\alpha\beta}p_{\alpha}p_{\beta}'$$

• Scalar function method YM,Xu Feng,Chuan Liu,et al,Sci.Bull 68,1880(2023)

$$\begin{aligned} V_{\text{eff}}(q^2) &= \frac{-(m_{D_s} + m_{D_s^*})E_{D_s}}{2Z_{D_s}m_{D_s^*}}e^{E_{D_s}t} \\ &\times \int^R d^3\vec{x} \frac{j_1(|\vec{p}||\vec{x}|)}{|\vec{p}||\vec{x}|} \epsilon_{\mu\nu\alpha0}x_\alpha \langle 0|\mathcal{O}_{D_s}(\vec{x},t)J_{\nu}^{\text{em}}(0)|D_{s,\mu}^*(p')\rangle \end{aligned}$$

with $q^2 = (m_{D_s^*} - E_{D_s})^2 - |\vec{p}|^2$.

- Zero transfer momentum $\vec{p} = (0, 0, 0)$ is projected directly, which is missed in the traditional way.
- Finite-volume effect is exponentially suppressed and also easily examined with an integral truncation $|\vec{x}| = R$.

Spectrum of D_s^* and D_s

• Extracted by correlated fit within the range $t \in [2.3, 3.4]$ fm

Form factor

- The far right points are missed in traditional extrapolation. $V_{\rm eff}(0)$ is strictly constrained by $V_{\rm eff}(\delta^2 m)$.
 - Note $q^2 = (m_{D_s^*} E_{D_s})^2 |\vec{p}|^2 \to \delta^2 m$ as $|\vec{p}| = 0$
- New method has a unique advantage in precision calculation.

Continuum limit

• We obtain $V_{\rm eff}(0)=0.178(9)$ and the decay width

 $\Gamma(D_s^* \to \gamma D_s) = 0.0549(54) \text{ keV}$

with a much reduced stastistical error compared with previous 0.066(26) keV.

New constraint on $f_{D_s^*}|V_{cs}|$

• BESIII+ HPQCD [PRL112,212002(2014)]

 $f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\text{stat.}}} \pm 9.9_{\text{syst.exp}} \pm 41.5_{\text{syst.latt}}) \text{MeV}$ where $\Gamma_{D_s^*}^{\text{total}} = 0.0700(280)$ keV.

• BESIII+ this work [2401.13475]

 $f_{D_s^*}|V_{cs}| = (190.5^{+55.1}_{-41.7_{stat.}} \pm 9.1_{syst.exp} \pm 8.7_{syst.latt}) MeV$ where $\Gamma_{D_s^*}^{total} = 0.0589(54)$ keV.

Dalitz decay $D_s^* \to D_s e^+ e^-$

• The third decay mode observed by CLEO, giving the branching fraction

$$R_{ee} = [0.72^{+0.15}_{-0.13} \pm 0.10]\%$$

PRD 86,072005(2014)

• First lattice result $R_{ee} = 0.624(3)\%$, much precise than 0.67(16)% PDG

Finite-volume effect

- R-dependence of the quantity $\bar{H}(\vec{x},t) = \epsilon_{\mu\nu\alpha0} x_{\alpha} \langle 0 | \mathcal{O}_{D_s}(\vec{x},t) J_{\nu}^{\text{em}}(0) | D_{s,\mu}^*(p') \rangle$
- Three volumes are 2.53fm, 2.48fm, and 2.49fm for L=24,32 and 48. Take L=32 with t = 1.24 fm as an example

 $\bullet~R>1.4$ fm, the hadronic function has a negligible contribution.

Conclusion and outlook

Conclusion

- $\bullet\,$ We present a lattice calculation of D_s^* radiative decay using Wilson-clover gauge ensembles by CLQCD.
- After a continuum limit, we obtain $\Gamma(D_s^*\to D_s\gamma)=0.0549(54)~{\rm keV}$ with much reduced statisticl error than before.
- Dalitz decay $D_s^* \to D_s e^+ e^-$ is studied for the first time and the ratio is obtained as $R_{ee} = 0.624(3)\%$.
- We determine $f_{D_s^*}|V_{cs}| = (190.5^{+55.1}_{-41.7_{\text{stat.}}} \pm 12.6_{\text{syst.}})$ MeV with the experimental input of $\text{Br}(D_s^{+,*} \rightarrow e^+\nu_e)$.
- Outlook
 - The effects from the neglected disconnected diagrams, the quenching of the charm quark, and nonphysical light quark masses are considered in the future.

Thank you for attention!

Autocorrelation

Blocking $\mathcal{I}(t, |\vec{p}|)$ to check the potential autocorrelation effects.