

Opportunities to Search for New Physics in Charm Sector at Low-Energy Accelerators

Xin-shuai Yan (严鑫帅) Henan Normal University

第六届重味物理与量子色动力学研讨会 2024/4/22,青岛

Why we need New Physics?

Neutrino oscillation

Dark matter

Normal Matter 4% Dark Matter 23% Dark Energy 73 % Content of the Universe

BAU

Call for New Physics beyond the SM

Hint of New Physics

 4.2σ $\Delta a_e = a_e^{\exp} - a_e^{\rm SM} = -(8.7 \pm 3.6) \times 10^{-13}$ 2.4σ

Search for NP in charm sector?

Belle II: Lepton Photon's talk 2023

BaBar

0.5

LHCb^a

0.55

R(D)

FCNC in charm sector

[J. Fuentes-Martin, 2003.12421]

In SM, the flavor-changing neutral-current (FCNC) transitions

- > absent at the tree level
- > Strongly GIM-suppressed in charm sector

FCNC in charm sector:

- ♦ High-energy collider, e.g., $pp(q\bar{q}) \rightarrow \ell^+ \ell^-$
- ✤ Rare weak decays
 - * semileptonic decays, e.g., $D^+ \to \pi^+ \mu^+ \mu^-$ [S. Boer 1510.00311]
 - $\star{}$ leptonic decays, e.g., $D^0 \to \mu^+ \mu^-$
- [S. Fajfer 1510.00965]

✤ Low-energy ep scattering processes (NEW)

- * unpolarized scattering processes $(e^- p \rightarrow e^- (\mu^-) \Lambda_c)$
- \star polarized scattering processes $(e^- p \to e^- \Lambda_c)$

Li-Fen Lai, Xin-Qiang Li, XY, Ya-Dong Yang 2111.01463 [PRD], 2203.17104 [PRD]

e beam, *p* target: polarized *e* beam, *p* target:

APEX: 1108.2750, Qweak: 1409.7100 COMPASS, hep-ex/0703049

Theoretical Framework

$$e^{-}p \rightarrow e^{-}\Lambda_{c}$$

$$e^{-}p \rightarrow \mu^{-}\Lambda_{c}$$

$$e^{-}p \rightarrow \mu^{-}\Lambda_{c}$$

$$= g_{V}^{LL}(\bar{\ell}_{L}\gamma_{\mu}\ell_{L})(\bar{q}_{L}\gamma^{\mu}q_{L}) + g_{V}^{LR}(\bar{\ell}_{L}\gamma_{\mu}\ell_{L})(\bar{q}_{R}\gamma^{\mu}q_{R}) + g_{V}^{RL}(\bar{\ell}_{R}\gamma_{\mu}\ell_{R})(\bar{q}_{R}\gamma^{\mu}q_{L}) + g_{V}^{RR}(\bar{\ell}_{R}\gamma_{\mu}\ell_{R})(\bar{q}_{R}\gamma^{\mu}q_{R}) + g_{T}^{RL}(\bar{\ell}_{R}\sigma^{\mu\nu}\ell_{L})(\bar{q}_{R}\sigma_{\mu\nu}q_{L}) + g_{T}^{R}(\bar{\ell}_{L}\sigma^{\mu\nu}\ell_{R})(\bar{q}_{L}\sigma_{\mu\nu}q_{R}) + g_{S}^{L}(\bar{\ell}_{R}\ell_{L})(\bar{q}_{R}q_{L}) + g_{S}^{R}(\bar{\ell}_{L}\ell_{R})(\bar{q}_{L}q_{R})$$

Cross section and Kinematics

• Fixed-target experiment $e^{-}(k) + p(P) \rightarrow e^{-}(k') + \Lambda_{c}(P')$ (LFC)

The desired experimental setup

• e^- beam: E = 3 GeV, $I = 150 \ \mu A$

[APEX, 1108.2750; R. Essig, 1001.2557]

• p target: liquid hydrogen, $L = 40 \text{ cm}, \rho = 71.3 \times 10^{-3} \text{ g/cm}^3$ [Qweak, 1409.7100]

Model independent results (in units of $G_F^2 \alpha_e^2 / \pi^2$)

	Processes	9	$\left v_V^{LL,RR} \right ^2$	g	$\left {_V^{LR,RL}} \right ^2$	2	$\left g_{S}^{L,R} ight ^{2}$	$\left g_{T}^{L,R} ight ^{2}$
	$D^0 \to e^- e^{+[1]}$		\setminus		\		0.062	\setminus
LFC	$D^+ \rightarrow \pi^+ e^- e^{+[2]}$		14		14		6.3	13
	$pp(q\bar{q}) \rightarrow e^- e^{+[3]}$		3.6		3.6		22	0.57
	$e^-p \to e^-\Lambda_c$		0.035		0.083		0.17	0.0056

[1] LHCb, 1512.00322; [2] BaBar, 1107.4465; [3]A. Angelescu, 2002.05684

We find

- More competitive constraints and a further complementary relation with $D^0 \rightarrow e^- e^+$
- Constraints on $g_V^{LL,RR}$ and $g_V^{LR,RL}$ are *different* compared with other processes

Same Exp Setup!

Model independent results (in units of $G_F^2 \alpha_e^2 / \pi^2$)

	Processes	9	$\left. g_V^{LL,RR} \right ^2$	$ g_V^L $	$^{R,RL} ^2$	$ g_S^{L,R} $	$ ^2$	$\left g_{T}^{L,R} ight ^{2}$
L FV	$D^0 \rightarrow e^- \mu^{+[1]}$		\setminus		\	0.01	0	\setminus
	$D^+ \to \pi^+ e^- \mu^{+[2]}$		40		40	19		34
	$pp(q\bar{q}) \rightarrow e^- \mu^{+[3]}$		1.2		1.2	5.8		0.19
	$e^-p \to \mu^-\Lambda_c$		0.039	0	.091	0.18	}	0.0063

[1] LHCb, 1512.00322; [2] BaBar, 1107.4465; [3]A. Angelescu, 2002.05684

We find

- More competitive constraints and a further complementary relation with $D^0 \to e^- \mu^+$
- Constraints on $g_V^{LL,RR}$ and $g_V^{LR,RL}$ are *different* compared with other processes

Leptoquark model

What are the leptoquarks (LQs)?

- ♦ Convert a quark into a lepton and vice versa, e.g., $S_1 u_R e_R$ ⇒ rich phenomenology
- * 10 common LQs (without ν_R): 5 scalars and 5 vectors
- Predicted by many NP models, e.g., GUT [I. Doršner, 1603.04993]

LQs can address:

[K. Ban 2104.06656; A. Angelescu 2103.12504; K. Cheung 2204.05942;...]

• Event rate forecast for LFV

LQs	g_V^{LL}	g_V^{RR}	$g_V^{LR,RL}$	$g_S^{L,R}$
R_2	\setminus	\setminus	13	0.039
U_3	31	\backslash	\setminus	\backslash
$ ilde{U}_1$		31	\setminus	

 $\Rightarrow \text{ Differential cross section in the} \\ \text{LFV case}$

• Event rate forecast for LFC

 $\Rightarrow \text{ Differential cross section in the} \\ \text{LFC case}$

Spin asymmetries

• Single-spin asymmetries

Li-Fen Lai, Xin-Qiang Li, **XY**, Ya-Dong Yang 2203.17104 [PRD]

10

$$e^{-}\vec{p} \rightarrow e^{-}\Lambda_{c}$$

$$A_{L}^{p} = \frac{\sigma_{p}^{-} - \sigma_{p}^{+}}{\sigma_{p}^{-} + \sigma_{p}^{+}}, \quad A_{T}^{p} = \frac{\widetilde{\sigma}_{p}^{-} - \widetilde{\sigma}_{p}^{+}}{\widetilde{\sigma}_{p}^{-} + \widetilde{\sigma}_{p}^{+}}$$

• Double-spin asymmetries

$$\vec{e}_{L}^{-}\vec{p}_{L} \rightarrow e^{-}\Lambda_{c}$$

$$\vec{e}_{L}^{-}\vec{p}_{L} \rightarrow e^{-}\Lambda_{c}$$

$$\vec{e}_{L}^{-}\vec{p}_{T} \rightarrow e^{-}\Lambda_{c}$$

$$\vec{e}_{L}^{ep}\vec{p}_{T} \rightarrow e^{-}\Lambda_{c}$$

$$\vec{e}_{L}^{ep}\vec{p}_{T} \rightarrow e^{-}\Lambda_{c}$$

$$A_{L3}^{ep} = \frac{\sigma^{--} - \sigma^{++}}{\sigma^{--} + \sigma^{++}}, \ A_{L4}^{ep} = \frac{\sigma^{-+} - \sigma^{+-}}{\sigma^{--} + \sigma^{+-}}$$

$$A_{L5}^{ep} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}}, \ A_{L6}^{ep} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

$$\vec{e}_{L5}^{ep} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}}, \ A_{L6}^{ep} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

$$\vec{e}_{L5}^{ep} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}}, \ A_{L6}^{ep} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}, \ A_{T5}^{ep} = \frac{\widetilde{\sigma}^{++} - \widetilde{\sigma}^{-+}}{\widetilde{\sigma}^{++} + \widetilde{\sigma}^{+-}}, \ A_{T6}^{ep} = \frac{\widetilde{\sigma}^{++} - \widetilde{\sigma}^{+-}}{\widetilde{\sigma}^{++} + \widetilde{\sigma}^{+-}}$$

LQ model identification

• Set E = 3 GeV

	A_L^e	A_L^p	A^{ep}_{L3}
S_1	c_1	C ₃	-1
R_2	c_2	c_4	1
S_3	1	-1	-1
U_3	1	-1	-1
\widetilde{V}_2	1	1	1
\widetilde{U}_1	-1	1	0
V_2	-1	-1	0

τ polarization in charm sector

Consider:
$$e^- p \rightarrow \Lambda_c \tau^-$$

 $m_{D^+} - m_{\pi^0} \simeq 1.735 \text{ GeV}$
only leptonic (tauonic) decays are possible
only sensitive to axial and pseudoscalar OPs

Coeff.	Operator	Coeff.	Operator
g_V^{LL}	$(\bar{\tau}\gamma_{\mu}P_{L}e)(\bar{c}\gamma^{\mu}P_{L}u)$	g_V^{RR}	$(\bar{\tau}\gamma_{\mu}P_{R}e)(\bar{c}\gamma^{\mu}P_{R}u)$
g_V^{LR}	$(\bar{\tau}\gamma_{\mu}P_{L}e)(\bar{c}\gamma^{\mu}P_{R}u)$	g_V^{RL}	$(\bar{\tau}\gamma_{\mu}P_{R}e)(\bar{c}\gamma^{\mu}P_{L}u)$
g_S^{LL}	$(\bar{\tau}P_L e)(\bar{c}P_L u)$	g_S^{RR}	$(\bar{\tau}P_R e)(\bar{c}P_R u)$
g_S^{LR}	$(\bar{\tau}P_L e)(\bar{c}P_R u)$	g_S^{RL}	$(\bar{\tau}P_R e)(\bar{c}P_L u)$
g_T^{LL}	$(\bar{\tau}\sigma_{\mu\nu}P_Le)(\bar{c}\sigma^{\mu\nu}P_Lu)$	g_T^{RR}	$(\bar{\tau}\sigma_{\mu\nu}P_R e)(\bar{c}\sigma^{\mu\nu}P_R u)$

$$D^0 o au e$$

not measured yet!

Other observables are needed!

$$e^- p \to \Lambda_c \tau^- (\to \pi^- \nu_\tau, \rho^- \nu_\tau, \ell^- \bar{\nu}_\ell \nu_\tau)$$

Extraction of the τ polarization components

$$\frac{d^{3}\sigma_{d}}{dq^{2}d\Omega_{d}} = \frac{\mathcal{B}_{d}}{4\pi} \frac{d\sigma_{s}}{dq^{2}} [g^{d} + g_{D}^{d}(P_{T}(q^{2})\sin\theta_{d}\cos\phi_{d} + P_{P}(q^{2})\sin\theta_{d}\sin\phi_{d} + P_{L}(q^{2})\cos\theta_{d})]$$
$$+ P_{P}(q^{2})\sin\theta_{d}\sin\phi_{d} + P_{L}(q^{2})\cos\theta_{d})]$$
Integrate over ϕ_{d} :

$$P_{L} = \frac{2g^{d}}{g_{D}^{d}} \frac{\int_{0}^{1} d\cos\theta_{d} \frac{d^{2}\sigma}{dq^{2}d\cos\theta_{d}} - \int_{-1}^{0} d\cos\theta_{d} \frac{d^{2}\sigma}{dq^{2}d\cos\theta_{d}}}{\int_{0}^{1} d\cos\theta_{d} \frac{d^{2}\sigma}{dq^{2}d\cos\theta_{d}} + \int_{-1}^{0} d\cos\theta_{d} \frac{d^{2}\sigma}{dq^{2}d\cos\theta_{d}}} \qquad FB asym$$

One can obtain P_P and P_T in a similar way, and τ polarization components can be extracted from analyzing the kinematics of the τ visible decay products.

15 NP vector models (I-XV)

 $\begin{array}{l} \mathcal{O}_{V}^{LL}, \ \mathcal{O}_{V}^{LR}, \ \mathcal{O}_{V}^{RL}, \ \mathcal{O}_{V}^{RR}; \\ \mathcal{O}_{V}^{LL} + \mathcal{O}_{V}^{LR}, \ \mathcal{O}_{V}^{LL} + \mathcal{O}_{V}^{RL}, \ \mathcal{O}_{V}^{LL} + \mathcal{O}_{V}^{RR}, \ \mathcal{O}_{V}^{LR} + \mathcal{O}_{V}^{RL}, \ \mathcal{O}_{V}^{LR} + \mathcal{O}_{V}^{RR}, \ \mathcal{O}_{V}^{RR} + \mathcal{O}_{V}^{RR} + \mathcal{O}_{V}^{RR}, \ \mathcal{O}_{V}^{RR} + \mathcal{O}_{V}^{RR} + \mathcal{O}_{V}^{RR}, \ \mathcal{O}_{V}^{RR} + \mathcal{O}_{V}^{RR} +$

 $E = 12 \text{ GeV}, Q^2 = 6 \text{ GeV}^2$

	Ι	II	III	IV	V
$P_T(e_L)$	0.5	0	0	0	С
$P_T(e_R)$	0	0	0	-0.5	0
	VI	VII	VIII	IX	X
$P_T(e_L)$	0.5	0.5	0	0	0
$P_T(e_R)$	0	-0.5	0	-0.5	- <i>c</i>
	XI	XII	XIII	XIV	XV
$P_T(e_L)$	С	С	0.5	0	С
$P_T(e_R)$	0	-0.5	- <i>c</i>	- <i>c</i>	- <i>C</i>

$$\nu_{\tau} + n \to \tau^{-} + \Lambda_{c}$$

Polarization vector

Ya-Ru Kong, Li-Fen Lai, Xin-Qiang Li, **XY**, Ya-Dong Yang, Dong-hui Zheng. 2307.07239 [PRD]

$$\mathcal{P}_{l}^{\mu} = \frac{\mathrm{Tr}[\rho_{l}(k')\gamma^{\mu}\gamma_{5}]}{\mathrm{Tr}[\rho_{l}(k')]}$$

$$\mathcal{P}_{l,h}^{\mu} = P_L^{l,h} (N_L^{l,h})^{\mu} + P_P^{l,h} (N_P^{l,h})^{\mu} + P_T^{l,h} (N_T^{l,h})^{\mu}$$

Constraints on the WC of $\mathcal{L}_{\mathrm{eff}}$ (can choose a different OP basis)

Challenge from Form Factors $(\Lambda_c \rightarrow N)$

RCQM:
$$f(q^2) = \frac{f(0)}{1 - a\hat{s} + b\hat{s}^2}$$

T. Gutsche, etc, 1410.6043 [PRD]

NRQM:
$$f(q^2) = \frac{A}{(1 - q^2/M_R^2)^2}$$

M. Avila-Akoki, etc, Phys.Rev.D 40 (1989) 2944

LQCD:
$$f(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \sum_{n=0}^{n_{\text{max}}} a_n^f [z(q^2)]^n$$
 z expansion

S. Meinel, 1712.05783 [PRD]

Double-pole

dipole

Large uncertainties induced by form factors.

Summary

- With desired experimental setups, competitive constraints can be provided by the low-E scattering, compared with other FCNC processes in the charm sector.
- The LQ models can be effectively distinguished by measuring 3 spin asymmetries, involving only longitudinally polarized scattering processes.
- > τ polarization components can be extracted from analyzing the kinematics of the τ visible decay products, and can be used to distinguish 15 NP vector models.
- Large uncertainties of the polarization observables arise from using the different schemes and dwarf that from the error propagation of the form factors.

Thank you for your patience

Backup slides

Theoretical Framework

$$\begin{split} & \mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{eff}}^{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}}^{\mathrm{NP}} \\ & \mathcal{L}_{\mathrm{eff}}^{\mathrm{np}} = \sum_{g \alpha \beta j \alpha} g_{\alpha \beta j \alpha} J_{\beta} \\ & = g_{V}^{LL} (\bar{\ell}_{L} \gamma_{\mu} \ell_{L}) (\bar{q}_{L} \gamma^{\mu} q_{L}) + g_{V}^{LR} (\bar{\ell}_{L} \gamma_{\mu} \ell_{L}) (\bar{q}_{R} \gamma^{\mu} q_{R}) \\ & + g_{V}^{RL} (\bar{\ell}_{R} \gamma_{\mu} \ell_{R}) (\bar{q}_{L} \gamma^{\mu} q_{L}) + g_{V}^{RR} (\bar{\ell}_{R} \gamma_{\mu} \ell_{R}) (\bar{q}_{R} \gamma^{\mu} q_{R}) \\ & + g_{T}^{L} (\bar{\ell}_{R} \sigma^{\mu\nu} \ell_{L}) (\bar{q}_{R} \sigma_{\mu\nu} q_{L}) + g_{T}^{R} (\bar{\ell}_{L} \sigma^{\mu\nu} \ell_{R}) (\bar{q}_{L} \sigma_{\mu\nu} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{q}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{q}_{L} q_{R}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} \ell_{L}) (\bar{\ell}_{R} q_{L}) + g_{S}^{R} (\bar{\ell}_{L} \ell_{R}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^{L} (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) (\bar{\ell}_{R} q_{L}) \\ & + g_{S}^$$

The desired experimental setup

- LP e^- beam: E = 3.48 GeV, $I = 100 \ \mu A$, $P_e = 0.9$ [happex, 1107.0913]
- p target: liquid hydrogen, $L = 70 \text{ cm}, \rho = 71.3 \times 10^{-3} \text{ g/cm}^3$ [Qweak, 1409.7100]
- LP&TP p target: solid NH3, L = 6 cm, $\rho = 0.917 \text{ g/cm}^3$, $P_p = 0.8$ [J. Arrington, 2112.00060]

		$ g_V^{LL} ^2$	$ g_V^{RR} ^2$	$ g_V^{LR} ^2$	$ g_V^{RL} ^2$	$ g_S^L ^2$	$ g^R_S ^2$	$ g_T^L ^2$	$ g_T^R ^2$
Polarized electron	e_L^-	0.007	\setminus	0.016	\setminus	0.035	\setminus	0.001	\setminus
i olui izeu ciccii oli	e_L^+	\setminus	0.007	\setminus	0.016	\setminus	0.035	\setminus	0.001
				VS					
		Pro	cesses	$ g_V^{LL,R} $	$\left \frac{1}{R} \right ^2 \left g_V^L \right $	$\left. R,RL \right ^2$	$\left g_{S}^{L,R} ight $	$2 g_T^{L,F} $	$\frac{1}{\left 2 \right ^2}$
		$D^{0} -$	$\rightarrow e^+e^-$	\		\	0.062	\	
		$D^+ \rightarrow$	$\pi^+ e^+ e^-$	14		14	6.3	13	
		$pp(qar{q})$	$\rightarrow e^+e^-$	3.6		3.6	22	0.5'	7

 $e^- p \to \Lambda_c \tau^- (\to \pi^- \nu_\tau, \rho^- \nu_\tau, \ell^- \bar{\nu}_\ell \nu_\tau)$

Processes	$ g_V^{LL,RR} $	$ g_V^{LR,RL} $	$ g_S^{LL,RR} $	$ g_T^{LL,RR} $
$p p \rightarrow \tau^{\pm} e^{\mp}$ [19]	5.27	5.27	11.1	2.11
$e^- p \to \Lambda_c \tau^- (\to d\nu_\tau)$	1.40	1.74	2.67	0.52

XY, Liang-Hui Zhang, Qin Chang, Ya-Dong Yang, 2402.16344 [PRD]

12 GeV CEBAF at Jlab, proposed SoLID:

E=12 GeV,
$$\mathcal{L} = 1.2 \times 10^{37} \text{ cm}^{-2} \text{ s}^{-1}$$

Use form factors to parametrize the hadronic contributions as in charm decays (one example)

$$\begin{split} \langle p(P,s) | \bar{u} \gamma^{\mu} c | \Lambda_{c}(P',s') \rangle &= \bar{u}_{p}(P,s) \Big[f_{0}(q^{2}) (m_{\Lambda_{c}} - m_{p}) \frac{q^{\mu}}{q^{2}} \\ &+ f_{+}(q^{2}) \frac{m_{\Lambda_{c}} + m_{p}}{s_{+}} \Big(P'^{\mu} + P^{\mu} - (m_{\Lambda_{c}}^{2} - m_{p}^{2}) \frac{q^{\mu}}{q^{2}} \Big) \\ &+ f_{\perp}(q^{2}) \Big(\gamma^{\mu} - \frac{2m_{N}}{s_{+}} P'^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} P^{\mu} \Big) \Big] u_{\Lambda_{c}}(P',s') \end{split}$$

$$f(q^{2}) = \frac{1}{1 - q^{2}/(m_{pole}^{f})^{2}} \sum_{n=0}^{n_{max}} a_{n}^{f}[z(q^{2})]^{n}$$

$$f(q^{2}) = \frac{f(0)}{1 - a\hat{s} + b\hat{s}^{2}} \qquad f(q^{2}) = \frac{A}{(1 - q^{2}/M_{R}^{2})^{2}}$$

$$LQCD \qquad RCQM \qquad NRQM$$

LQCD

Scalar cases

$$P_a = -(\mathcal{P} \cdot s_a) = \frac{\Sigma_P^a}{C} = \frac{2\Sigma_P^a}{|\mathcal{M}|^2},$$

$$2v^{4}\Sigma_{P}^{a} = (|g_{S}^{LL}|^{2} + |g_{S}^{LR}|^{2} - |g_{S}^{RR}|^{2} - |g_{S}^{RL}|^{2})\mathcal{A}_{S_{LL}-S_{LL}}^{\tau}$$

$$v^4 |\mathcal{M}|^2 = (|g_S^{LL}|^2 + |g_S^{RR}|^2 + |g_S^{LR}|^2 + |g_S^{RL}|^2)\mathcal{A}_{S_{LL}-S_{LL}}$$

$$\mathcal{A}^{\tau}_{S_{LL}-S_{LL}} = \mathcal{A}_{S_{LL}-S_{LL}} \frac{2m_{\tau}(k \cdot s_a)}{m_{\tau}^2 - q^2}$$

 P_a : independent of form factors!