

Space Charge Neutralization on a Pulsed Beam in MEBT with Gas Sheet Beam Profile Monitor

Ippei YAMADA*, Kunihiro KOJIMA, Motoki CHIMURA J-PARC center

Background: Gas-Sheet Beam Profile Monitor

Non-invasive beam profile monitor

High-intensity accelerator requires non-invasive monitoring

=> We developed "Gas-Sheet Beam Profile Monitor"

< Principle >

- Injecting a sheet-shaped gas into beamline
- Beam interacts with gas sheet
- Gas produces plasma and photons
- Detecting photons as an image
 - —> distribution proportional to beam profile
- Beam profile can be obtained from the image

We were successful to obtain a profile corresponding with a wire-scanner monitor

Background: invasiveness of GSM

How is invasiveness of GSM?

GSM is non-invasive monitor but injecting an extra gas

- -> Quantified the invasiveness from perspectives of
 - beam current reduction
 - phase space distribution change

with **J-PARC RFQ test stand**

Background: invasiveness of GSM

Invasiveness: beam current reduction

Beam current was measured at 11-deg. bent line

< Prediction >

Extra electron weakly attaches to H atom

-> Gas may strip the electron

$$H^{-} + Gas \rightarrow H^{0} + Gas + e^{-}$$

 $H^{-} + Gas \rightarrow H^{+} + Gas + 2e^{-}$

< Result >

- Reduction ratio linearly increased against gas flux
- Ratio agrees with the e-stripping cross-section

Background: invasiveness of GSM

❖ Invasiveness: phase space distribution (emittance) ← MEBT chamber: Emittance monitor

Beam RMS emittances in transverse were measured

< Prediction >

Emittance should increase due to scattering

< Results >

- X-X' plane: no significant change
- Y-Y' plane: decreased at high flux!!

Background: Space-Charge Neutralization

Space-Charge Neutralization (Compensation)

Beam-Gas interaction produces plasma as well as photons

- => lons in plasma are integrated by H^- beam's potential and neutralize space charge
- => Non-linear force inducing emittance growth disappears
- => Emittance **relatively** decreases

Does use of Gas Sheet Monitor improve beam quality, rather than disturb beam!?

Objectives & Methods

Objectives

Understanding and Modeling neutralization in terms of beam dynamics for developing a beam profile monitor having relative cooling function

Methods

- Check code with simple model
- Simulate GSM experiment to evaluate measured emittance reduction
- Clarify SCN and emittance reduction and their conditions/limitations

Methods: Particle-in-Cell Simulation Model

Simulation Code

WARP code developed in LBNL: one of Particle-in-Cell code

-> Calculating time development of beam and plasma motions

Simulation Model

Beam : H^-

assumed rapidly eliminated by beam potential

Plasma : N_2^+ ions w/o electrons

Production probability = $n_{\text{gas}}\sigma_{\text{ion}}(\beta c\Delta t)$: $\sigma_{\text{ion}} = 6 \times 10^{-21} \text{ m}^2$

- distribution in trans.) same as beam
- distribution in long.) proportional to gas distribution
- distribution in velocity) thermal motion (300 K)
-) uniform = produced in each time step time structure

Elimination: collision with wall

Result: Checking code

Coasting Beam Model

For coasting beam,

SCN degree may reach 1 at steady state

-> Code evaluation

< Conditions >

- Beam: 3 MeV, 60 mA,
 Gaussian(trans.)+uniform(long.)
- External Force: uniform focusing
- Gas density: 10-3 Pa, uniform

< Result >

Plasma density has a steady state where SCN degree took 1 as expected

=> WARP code can simulate space-charge neutralization

Result: Emittance Reduction with Gas Sheet Monitor

Simulating Gas Sheet Monitor Experiment

Reproducing the GSM evaluation experiment

< Conditions >

- Beam: 3 MeV, 60 mA, bunched (with 324 MHz RFQ), phase space distr. measured by double-slit monitor
- Lattice: RFQ test stand
- Gas: realistic distribution simulated with measured pressures 10⁻⁵-10⁻³ Pa

Simulation reproduced the experimental emittance reduction

=> GSM has potential to reduce emittance through SCN when measuring beam profile

- √ WARP code can simulate SCN
- √ GSM can induce SCN

Modeling SCN

Result: Gas density enough to reduce emittance

Time evolution dependance on gas density

To find enough gas density to reduce emittance, time dependance of the emittance change was evaluated

< Conditions >

- Beam : 6D Gaussian

- Lattice: RFQ-TS

- Gas : uniform

< Result >

- 10¹⁶ [m⁻³] ~ 10⁻⁴ [Pa] is enough => GSM case reached steady state
- Lower than 10-4 Pa does not lead to steady state because plasma disappears among pulses (even thermal motion at 300 K --> 500 m/s x 40 ms = 20 m)
- Denser gas leads to over relaxation?

Result: Comparison of densities

Densities of bunched beam and plasma at steady state

To understand the details of SCN, comparing densities of beam and plasma

- Plasma density is 10 times lower even in steady state
 SCN degree does not reach 1
- => Can plasma not respond to the beam passing and feel time-averaged field of the beam?

Result: Time-averaged beam density

Time average

Plasma feels time average field

=> Plasma density may reach time average density of beam

< Result >

- Plasma density distribution well agreed with time-averaged beam distribution
- => SCN degree for bunched beam is limited by bunch compression ratio
- Over neutralization caused at denser gas is understandable because plasma density can exceed the one at steady state before steady state

Discussion: Proposal of SCN term for envelop equstion

Space-Charge Neutralization Term in Envelop Equation

For steady state, we propose space-charge neutralization model for envelop eq. (we are trying to improve it for time evolution & consideration of gas density)

< Conventional >

- Arbitrary parameter: f

- Arbitrary parameter:
$$f$$
 - (perhaps) Only for continuous beam
$$\frac{\mathrm{d}^2 \sigma_x}{\mathrm{d} s^2} + k(s) \sigma_x - \frac{\varepsilon_x^2}{\sigma_x^3} - \frac{K_{\mathrm{sc,2D}} (1-f)}{\sigma_x + \sigma_y} = 0$$

< Proposal >

- For bunched beam
- No arbitrarity

$$K_{\rm sc} = \frac{qI}{4\pi\sqrt{2\pi\epsilon_0 m\beta^2 c^2 \gamma^3 f_{\rm RF}}}$$

$$\nu = \frac{qI}{4\pi\sqrt{2\pi\epsilon_0 m\beta^2 c^2 \gamma^3 f_{\rm RF}}}$$

$$\frac{\mathrm{d}^2 \sigma_x}{\mathrm{d}s^2} + k(s)\sigma_x - \frac{\varepsilon_x^2}{\sigma_x^3} - \frac{K_{\mathrm{sc}}}{(\sigma_x + \sigma_y)\sigma_z} + \frac{K_{\mathrm{scn}}}{\sigma_x + \sigma_y} = 0$$

$$\frac{\mathrm{d}^2 \sigma_z}{\mathrm{d}s^2} + k(s)\sigma_z - \frac{\varepsilon_z^2}{\sigma_z^3} - \frac{K_{\mathrm{sc}}}{\sigma_x \sigma_v} = 0$$

* in case of uniform beam

Discussion: SC and SCN terms

Comparison between SC and SCN terms

SCN term is

- bigger in factor of $\gamma^2/\beta > 1$
 - => Plasma is in Lab frame <-> Beam is in CM frame
- smaller in factor of $\sigma_z/\lambda_{\rm RF}$
 - => Bunch compression ratio against continuous beam reduces SCN effect

$$-\frac{K_{\rm sc}}{\sigma_z(\sigma_x + \sigma_y)} + \frac{K_{\rm scn}}{\sigma_x + \sigma_y} = -\frac{K_{\rm sc}}{\sigma_z(\sigma_x + \sigma_y)} \left\{ 1 - \sqrt{2\pi} \frac{\gamma^2}{\beta} \frac{\sigma_z}{\lambda_{\rm RF}} \right\}$$
SC term SCN term

 β , γ : Lorentz factor σ_{7} : Bunch length λ_{RF} : RF acceleration wavelength

Discussion: Effect of SCN term

Evaluation Env. eq. with PIC code

Beamline : RFQ test stand

Beam profile: 6D Gaussian => solve Poisson eq. in each time step for SC terms

Result: SCN term could improve the RMS evolution to match the PIC code

< Summary >

 Gas-sheet beam profile monitor can induce space-charge neutralization and emittance reduction even for bunched beam

- Plasma density reaches to beam density corresponding to continuous beam
 - => Space-charge neutralization for bunched beam is limited by bunch compression ratio

- SCN term at steady state can be described by perveance for continuous beam

and improves envelop equation to match PIC code

Improve SCN term by taking into consideration of

- Time evolution

- Gas density dependance

