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ニュートリノ実験施設

物質・生命科学実験施設
（MLF)

ハドロン実験施設
RCS

（3GeVシンクロトロン、周回型加速器）

リニアック
( 直線型加速器 )

MR
（30GeV 主リング、周回型加速器）
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H- Linac 
(→ 400 MeV)

RCS 
(400 MeV → 3 GeV)

MR 
(3 GeV → 30 GeV)

MLF
Hadron

Neutrino

The main ring synchrotron (MR) provides high power 
proton beams for the neutrino and hadron experiments.



MR beam power history
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To accumulate the statistics of neutrinos and hadrons, 
stable beam operation with higher power is required.

FX 800 kW 
(Neutrino)

SX 80 kW 
(Hadron)
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FX 1.3 MW upgrade plan
Power  =  Energy(30 GeV)  ×  Number of protons  /  Cycle time

JFY2021 515 kW 2.66×1014 ppp 2.48 s
Long-term shutdown for faster cycling

Present 800 kW 2.3×1014 ppp 1.36 s
Future 1300 kW 3.3×1014 ppp 1.16 s

To increase the beam intensity, we should 

・ Upgrade the RF system 

・ Reduce beam loss               today’ s talk 

(・ Improve the localization quality of beam loss)
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ppp … protons per pulse



Beam loss timing
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Tune spread and resonances

The working point is set not to 
cross low order resonances. 

Beams are crossing the 
nonstructure resonances 
3νx = 64 and νx + 2νy = 64 
driven by sextupole fields. 

The tune spread is also close to 
the differential resonance 
νx − νy = 0.

7
Beam intensity : 2.66×1014 ppp
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Tune spread and resonances

8th-order structure resonances 
driven by space charge cross 
the tune spread. 

Space charge enhances the 
differential resonance as 
2νx − 2νy = 0. 

Nonstructure resonances driven 
by space charge also cross tune 
spread (not drawn).
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Beam intensity : 2.66×1014 ppp
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Summary of resonances 
in FX operation

Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order
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Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order

Summary of resonances 
in FX operation

T. Yasui and Y. Kurimoto, PRAB 25, 121001 (2022)

https://doi.org/10.1103/PhysRevAccelBeams.25.121001


Tunes of lost particles 
(2.5D PIC simulation)
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No clear relation 
with resonances

Many particles are lost 
around the resonance 8νy = 171.

8νy = 171

Lost because 2Jy > 60π mm mrad (71.4%)Lost because 2Jx > 60π mm mrad (28.6%)
2νx + 6νy = 171



Vertical Poincaré map 
(2D simulation)

Simulation conditions: 
  - Bassetti-Erskine formula 
    (fields of 2D Gaussian beam) 
  - λ = λmax 

  - z = δ = 0 
  - Jx = 0 (initial) 

Clear 8 resonance islands 
can be seen. 
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Vertical Poincaré map 
(action-angle)



Center 2JyR and width 2ΔJy of 
resonances can be calculated 
analytically assuming a 2D-
Gaussian distribution. 

Analytical results: 
        (Jx = 0, z = δ = 0, λ = λmax) 
        2JyR = 66.3π mm mrad 
        2ΔJy = 6.0π mm mrad 

Well matched!

13

Vertical Poincaré map 
(action-angle)

Vertical Poincaré map 
(2D simulation)
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Vertical Poincaré map 
(action-angle)

        (Jx = 0, z = δ = 0, λ = λmax) 
        2JyR = 66.3π mm mrad 
        2ΔJy = 6.0π mm mrad



0 10 20 30 40 50 60 70 80
 mm mrad]π [xJ2

0

10

20

30

40

50

60

70

80

 m
m

 m
ra

d]
π [ yJ2

Resonance region

15

2JyR and 2ΔJy can also be 
calculated for Jx > 0.
2JyR and 2ΔJy can also be 
calculated for Jx > 0. 

The same process can be 
applied for 2νx + 6νy = 171. 
(Jy − 3Jx = const.) 

Solutions of other 8th-order 
structure resonances were  
out of plot range. 

This is why 8νy = 171 and       
2νx + 6νy = 171 are loss sources.
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2JyR and 2ΔJy can also be 
calculated for Jx > 0. 

The same process can be 
applied for 2νx + 6νy = 171. 
(Jy − 3Jx = const.) 

Solutions of other 8th-order 
structure resonances were  
out of plot range. 

This is why 8νy = 171 and       
2νx + 6νy = 171 are loss sources.

8νy = 171

2νx + 6νy = 171

H
 aperture

V aperture



Strategy for lower-loss operation
If we change the working point to avoid 8νy = 171, the tune spread 
will cross other lower-order resonances. 

If we use corrector magnets, we need at least six 16-pole magnets. 

We consider a new beam optics to suppress 8νy = 171, but 
maintaining the working point.
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present optics
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We measured beam losses with the present and new optics.
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Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order

Summary of resonances 
in FX operation
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3rd order nonstr. resonances

Nonstructure resonances 
3νx = 64 and νx + 2νy = 64 
are simultaneously “corrected” 
by using 4 trim coils of the 
sextupole magnets.
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Status of lost particles
Tracking simulation including magnet imperfections suggest 
that off-momentum particles grow horizontally and are lost. 

Even after applying trim coils, the resonances 3νx = 64 and        
νx + 2νy = 64 affect off-momentum particles.
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BEAM LOSS MITIGATION SCENARIOS 
The red result in the right panel in Fig. 1 is compared 

with the beam loss obtained with the ideal lattice with no 
error (black curve) in Fig. 4. The difference means that 
there still remains significant beam loss arising from lattice 
errors. The red and black curves in Fig. 5 show the 
corresponding normalized emittances as a function of time, 
in which significant emittance growth is found on the 
horizontal plane for the red curves. This emittance growth 
generates the extra beam loss, i.e., the difference between 
the red and black curves in Fig. 4. 

Thus, we then investigated the mechanism of the 
horizontal emittance growth. Figure 6-(i), -(ii) and -(iii) 
show the 2d plot of the horizontal and vertical actions, 
longitudinal phase space and tune footprint, respectively, 
calculated at 54 ms (at 10001 turns), in which the red ones 
correspond to the large amplitude particles found on the 
horizontal plane. In these figures, we can find that the large 
amplitude particles move on the outer region of the 
longitudinal phase space, i.e., they are off-momentum 
particles. Thus, we then investigated a turn-by-turn single-
particle motion for such off-momentum particles. Figure 7 
shows the typical samples of the single-particle motion 
growing horizontally, in which we can find that the 
particle’s tune oscillates according to the synchrotron 
oscillation, frequently crossing the 3rd-order resonance 
3νx=64, and that the betatron amplitude increases with each 
resonance crossing. As mentioned above, the resonance 
correction has already been applied to 3νx=64. However, it 
is only for on-momentum particles, i.e., the effect of the 
resonance is still present for off-momentum particles. This 
is the major mechanism of the horizontal emittance growth. 

For further beam loss reduction, we tried the resonance 
correction for both on- and off-momentum particles; the 
driving terms of 3νx=64 and νx+2νy=64 for both on- and 
off-momentum (∆p/p=0 and ±0.2%) particles were 
corrected simultaneously using 12 sets of trim-sextupoles. 
As shown in Figs. 4 and 5, the updated resonance 
correction well mitigated the emittance growth and beam 
loss from the red curves to the green ones, as expected. 

However, there still remains a slight difference between 
the green and black curves on the horizontal plane in Fig. 
5. A possible source of the remaining horizontal emittance 
growth is the 4th-order resonance 4νx=85, which is driven 
through a higher order term in the canonical perturbation 
expansion as a combination of the two resonances νx=21 
and 3νx=64 driven by sextupoles. Based on this 
assumption, we further updated the resonance correction, 
which simultaneously compensates 4νx=85 as well as 
3νx=64 and νx+2νy=64 for both on- and off-momentum 
particles using 24 sets of trim-sextupoles. As shown in 
Figs. 4 and 5, the emittance growth and beam loss were 
successfully reduced from the green curves to the light-
blue ones, i.e., to the same level as that of the ideal lattice, 
by the updated resonance correction. 

 

Figure 6: Numerical simulation results; (i) 2d plot of the
horizontal and vertical actions, (ii) longitudinal phase
space and (iii) tune footprint, calculated at 54 ms (at 10001
turns), in which the red ones correspond to the large
amplitude particles found on the horizontal plane. 

 

Figure 7: Numerical simulation results; typical samples of
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without trim coils
We estimated the resonance 
widths by the current applying 
to the 4 trim coils. 

In MR, |δ| ≦ 0.004. 

Negative-δ particles are strongly 
affected by the resonances. 

The resonances are successfully 
suppressed by the trim coils, 
but their effects remain for 
negative-δ particles.
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We estimated the resonance 
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to the 4 trim coils. 

In MR, |δ| ≦ 0.004. 

Negative-δ particles are strongly 
affected by the resonances. 

The resonances are successfully 
suppressed by the trim coils, 
but their effects remain for 
negative-δ particles.
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We estimated the resonance 
widths by the current applying 
to the 4 trim coils. 

In MR, |δ| ≦ 0.004. 

Negative-δ particles are strongly 
affected by the resonances. 

The resonances are successfully 
suppressed by the trim coils, 
but their effects remain for 
negative-δ particles.

with trim coils



Tracking simulations suggest that we can compensate 
resonances for off-momentum particles by increasing the 
number of trim coils to 24. 

As a first step, we will increase the number 4 → 8 this summer.

Countermeasure for 
3νx = 64, νx + 2νy = 64

 

Figure 2: Beta function modulations along the ring 
measured with the FX septum magnets turned off 
(closed circles), and the fitted results (solid curves), 
where the blue and red ones are for the horizontal and 
vertical planes, respectively. 

 

Figure 3: Resonance driving terms of 3νx=64 and 
νx+2νy=64 measured with two different optics (left and 
right). 

 
contribute to beam loss, so that we re-evaluated K1 and K2 
errors through the beam-based measurements. 

The major K1 errors in the MR are: K1 random errors of 
the main quadrupoles and K1 components in the leakage 
fields from the FX septum magnets. They were evaluated 
from beta function modulations measured with the FX 
septum magnets turned off (a) and on (b); the K1 random 
errors of the main quadrupoles were derived to fit (a) using 
all the main quadrupole K1 strengths as free parameters, as 
shown in Fig. 2, while the K1 field components in the 
leakage fields were evaluated in the similar way to fit the 
difference of (b)−(a). The actual beta function beating was 
well reproduced in the numerical simulation model using 
these updated K1 errors. 

The major K2 errors in the MR are: K2 random errors of 
the main sextupoles and K2 components intrinsic in the 
main bending magnets. Among them, we have 
experimentally confirmed that the K2 errors of the main 
sextupoles are not the main source of the two resonances 
3νx=64 and νx+2νy=64 causing major beam loss; the 
optimal trim-sextupoles setting that minimized beam loss  

 

Figure 4: Numerical simulation results; beam losses 
obtained with both trim-quadrupoles and -sextupoles, 
where the red, green, and light-blue curves are the 
results obtained with 4 sets (currently available 
configuration), 12 sets, and 24 sets of trim-sextupoles, 
respectively. The result obtained with the ideal lattice 
with no error is also shown as a black curve for 
reference. 

 

Figure 5: Numerical simulation results; normalized 
transverse emittances obtained with both trim-
quadrupoles and -sextupoles, where the color definitions 
are the same as in Fig. 4. 

 
hardly changed even if the main sextupole magnets were 
turned on and off. That is, the most probable source of the 
two resonances is the random errors of the K2 components 
intrinsic in the main bending magnets. In order to derive 
the K2 errors, we measured the driving terms of the two 
resonances with two different optics, as shown in Fig. 3; 
the betatron tune was set on each resonance, where the 
resonance driving term was derived from the optimal trim-
sextupoles setting that minimized beam loss. The random 
errors of the K2 components intrinsic in the bending 
magnets were determined so that the measured resonance 
driving terms were reproduced in the numerical simulation 
model. 

The right panel in Fig. 1 shows the latest numerical 
simulation results obtained with the updated lattice errors 
and the actual experimental conditions using the self-
consistent space-charge tracking code, simpsons [4,5]. The 
numerical simulation well reproduced the measured beam 
loss trends. We then discussed possible scenarios for 

ー Ideal (no errors) 
ー TrimS×24 
ー TrimS×12 
ー TrimS×4 (present)
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H. Hotchi et al., IPAC2023, TUPM055

Beam survival ratio 
(2.5D tracking simulation)

https://doi.org/10.18429/JACoW-IPAC2023-TUPM055
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Summary of resonances 
in FX operation

Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order



Optics correction

Even after applying trim coils of sextupole magnets, 
optics correction contributed to beam loss reduction. 

Space-charge-driven nonstructure resonances were weakened?

28

Example of optics correction (measurement)

Beam loss was reduced ~20% by this optics correction!

before after

(with 2.3×1013-ppb beams)



Resonances 
driven by space charge

29

21 21.1 21.2 21.3 21.4 21.5
21

21.1

21.2

21.3

21.4

21.5

2nd order
4th order
6th order

solid:    structure res. 
dotted: nonstructure res.
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Space-charge-driven 
nonstructure resonances 
appear to be weak overall. 

Resonances affecting particles 
close to the aperture can be 
source of the beam loss. 
　→　6νy = 128 ? 

Resonance width of 6νy = 128: 
　2ΔJy = 2.9π → 2.0π mm mrad 
　(Jx = 0, δ = 0) 
by optics correction.

before optics correction
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Summary of resonances 
in FX operation

Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order
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Recent working point

After the long-term shutdown, 
the beam loss scan results 
showed that the optimal working 
point moved vertically down 0.04. 

The optimal DC currents of the 
trim coils did not change. 
Some AC components arose? 

After the shutdown, the 
differential resonance became 
more important.
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before shutdown 
(νx,νy) = (21.35,21.43)
after shutdown 
(νx,νy) = (21.35,21.39)
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Resonance width of 
2νx − 2νy = 0

present optics

The resonance 2νx − 2νy = 0 
affects wide area. 

The new optics is effective 
not only for 8νy = 171 
but also for 2νx − 2νy = 0. 

Tracking simulation suggests that 
applying the new optics will 
reduce the beam loss.



Resonance width of 
2νx − 2νy = 0

0 20 40 60 80 100 120
time [ms]

0.994

0.995

0.996

0.997

0.998

0.999

1

su
rv

iv
al

 ra
tio

0 10 20 30 40 50 60 70 80
 mm mrad]π [xJ2

0

10

20

30

40

50

60

70

80

 m
m

 m
ra

d]
π [ yJ2

34

The resonance 2νx − 2νy = 0 
affects wide area. 

The new optics is effective 
not only for 8νy = 171 
but also for 2νx − 2νy = 0. 

Tracking simulation suggests that 
applying the new optics will 
reduce the beam loss.

present optics

present optics

new optics

new optics
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Summary of resonances 
in FX operation

Space charge Magnets

Structure

 8νy = 171, 2νx + 6νy = 171, … 
　・ 8th order 
　・ cross tune spread 

 2νx − 2νy = 0 
　・ 4th order

(far enough)

Nonstructure
 4νy = 85, 2νx + 2νy = 85, … 
　・ 4th, 6th, … order 
　・ cross tune spread

 3νx = 64, νx + 2νy = 64 
　・ 3rd order 
　・ cross tune spread 

 νx − νy = 0 
　・ 2nd order
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Differential resonance

We did not use to compensate 
for the differential resonance 
νx − νy = 0. 

Since the working point became 
close to this resonance, 
we attempted to compensate 
for this resonance using two 
skew quadrupoles. 

We measured turn-by-turn 
transverse beam positions 
using low-intensity beams.
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before upgrade 
(νx,νy) = (21.35,21.43)
after upgrade 
(νx,νy) = (21.35,21.39)



Result of compensation

The differential resonance νx − νy = 0 was successfully 
compensated in low-intensity beams. 

However, when we apply skew quadrupoles in high-intensity 
beams, the beam loss worsened.
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Summary

Space charge Magnets

Structure

 8νy = 171 
・ apply the new optics 
 2νx − 2νy = 0 
・ apply the new optics

(far enough)

Nonstructure  4νy = 85, 2νx + 2νy = 85, … 
・ fine optics correction

 3νx = 64, νx + 2νy = 64 
・ increase the number 
　 of trim coils 
 νx − νy = 0 
・ skew quadrupole?

To realize FX 1.3 MW operation, we need to compensate for 
resonances and reduce beam loss.

Countermeasures



Backup

39



Beam power upgrade plan 
of the MR

40

① Magnet PS upgrade 
　  2.48 s → 1.36 s cycle

② 2nd harmonic RF cavities

③ RF system upgrade

④ 1.36 s → 1.16 s cycle
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Beam intensity (measured by DCCT) 
Magnet ramping pattern

Beams are extracted 
within one turn: 
fast extraction (FX)

Injection 
0.01 s + 0.13 s

Acceleration 
1.4 s

Recovery 
0.94 s

Cycle 2.48 s

2.66×1014 ppp → 515 kW

Injection: 
2 bunches × 4 times
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Accel. 
0.65 s

Recovery 
0.57 s

Cycle 1.36 s

Beam intensity by 2021 (measured by DCCT) 
Magnet ramping pattern

Injection 
0.01 s + 0.13 s
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SX 80-kW beam operation

l We preformed:

- Optics tuning
- Dynamic RF manipulation to suppress beam instability

during the de-bunching process at flattop
- Introduction of  a diffuser to reduce beam loss at ESS during SX
- Spill feedback tuning … Extraction efficiency 99.6%

Spill duty factor 72%



Perspective of  the SX operation

l The beam power will be increased to100 kW in stages
- while further reducing beam loss
- while further improving spill duty factor

by
- improving configuration of  diffusers
- introducing new optics with large slippage factor
- improving spill feedback system
- reducing current ripple of  main magnet PS
- introducing VHF cavity, etc.

l We aim to achieve this by 2026.

Beam study results with two sets of  diffusers
for low intensity beam (11 kW)
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Strategy for 
beam loss reduction

Presently, beam loss is caused by 

1. Current ripples of bend power supplies 

    -   

    - We are going to reduce ripples within a year. 

2. Nonstructure resonances induced by magnet imperfections 

      - We plan to add correction sextupole fields 

3. Structure resonances induced by space charge effects 

      - Today’ s talk 
        (                                                                                     + some FMA results)
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Longitudinal distribution
2nd harmonic RF cavities are used 
for peak suppression. 

Most of the lost particles are 
found at locations of high line 
densities. 

Beam loss is caused by space 
charge effect. 

Peak suppression by the 2nd 
harmonic RF cavities are very 
important.
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Transverse distribution
The collimators were set to (2Jx, 2Jy) = (60π, 60π) mm mrad. 

The distribution of the lost particles suggest effects of 
the resonance 8νy = n.
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8 islands

2nd order ?

Phase-space (action-angle) distribution of lost particles
Lost because 2Jx > 60π mm mrad (28.6%) Lost because 2Jy > 60π mm mrad (71.4%)
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Interpretation for 8νy = 171?

The working point is at 
(νx, νy) = (21.35, 21.43). 

The resonance 8νy = 171 is 
neither strong nor close to the 
working point. 

Why 8νy = 171?
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Positions of lost particles

Beam loss is caused by 
the resonances which affect 
particles at beam halo.
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Image of phase-space 
beam distribution 

x

px
Particles at the center of 
6D phase space. 
Basically they survive.

Particles at the beam halo of 
6D phase space. 
These particles may be lost 
due to resonances.



Calculations of incoherent tunes
A particle is affected by a resonance mxνx + myνy = n 
when its incoherent tune satisfies mxνx,incoh. + myνy,incoh. = n. 

Incoherent tunes can be calculated analytically by setting 
the line density λ and assuming a Gaussian distribution. 
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A particle is affected by a resonance mxνx + myνy = n 
when its incoherent tune satisfies mxνx,incoh. + myνy,incoh. = n. 

Incoherent tunes can be calculated analytically by setting 
the line density λ and assuming a Gaussian distribution. 

Calculations were performed 
using λmax, λmin. 

The region λmin < λ < λmax (|z| < 33 m) 
covers 94.1% of beam losses.
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Loss in this region : 94.1%
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Where resonances affect
The region covered by 
the two solutions (λ = λmin, λmax) 
can be considered as 
where the resonance affects. 
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(νincoh., x, νincoh., y) = (21.258, 21.375)



Where resonances affect
The region covered by 
the two solutions (λ = λmin, λmax) 
can be considered as 
where the resonance affects. 

Collimator settings: 
2Jx = 2Jy = 60π mm mrad 

“The beam halo” is also 
2Jx = 2Jy = 60π mm mrad. 

The resonances 
8νy = 171 and 2νy + 6νy = 171 
affect 2Jx ~ 2Jy ~ 60π mm mrad.
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Resonance potential
Let us define the resonance potential Umx,my,n as 

                                                                                    . 

It can be derived as 

                                                                                          . 

Assuming a Gaussian distribution, the potential of 8νy = 171 is 

                                                                                                . 

U0,8,171 is changeable maintaining the working point.
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How to change U0,8,171

Even with the restriction of the working point, 
there are a lot of solutions for the beam optics. 

Other restrictions/suggestions 

  ・ Keep achromat lattice (ΔΨarc, x = 6 × 2π) 
  ・ Better to change globally than locally. 

We chose ΔΨarc, y as a scanning knob. 

  ΔΨstraight, y = (2πνy – 3ΔΨarc, y)/3 
  ΔΨarc, x     = 6 × 2π                 (fixed) 
  ΔΨstraight, x = (2πνx – 3ΔΨarc, x)/3  (fixed)
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straight straight

straightarc arc

arc

3ΔΨstraight + 3ΔΨarc = 2πν



ΔΨarc, y scan
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Resonance potential vs RDT
Resonance potential 
  - Fourier transform of a potential → accurate 
  - depends on Jx, Jy 

Resonance Driving Term 
  - Assume potential xmxymy → One aspect of resonance potential 
  - independent of Jx, Jy
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Simulation suggested that the magnetic fields of the split families 
should be matched with an accuracy of about 0.1%. 

Precise adjustment of the split families was the key.
62

6

RCS

Injection
Slow extraction

Fast extraction

Neutrino beamline

Rf cavities

Beam abort line
Hadron 
Experimental Hall

3-50 BT

To Super-Kamiokande

Ring collimators

BT
collimators

Hadron beamline

6

RCS

Injection
Slow extraction

Fast extraction

Neutrino beamline

Rf cavities

Beam abort line
Hadron 
Experimental Hall

3-50 BT

To Super-Kamiokande

Ring collimators

BT
collimators

Hadron beamline

All quads were ramped 
by the same PS.

Split!

ramped by different PSs

Green lines: 
Strong resonances

Red lines: 
Reinforced or 
newly appeared 
resonances

quad family QDX

AfterBefore

Key for beam loss reduction 
- adjustment of split families -

T. Yasui, in Proc. IPAC’23, TUXG1

https://doi.org/10.18429/JACoW-IPAC2023-TUXG1


Bend field ripple reduction
Bend field ripples make quad field fluctuation in combination 
with sext fields, resulting in breaking three-fold symmetry. 

The main source of ripple was identified as EM fields noise 
from the DCCT head, and the ground line was bypassed.
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bend field error sext. fieldfor the other DCCT head is shorted. The calculated RMS 
magnetic field that is generated by the current that flows in 
the prepared wire is also plotted. The magnetic field, B, is 
calculated as 

𝐵 = 𝜇0𝐼
2𝜋𝑅

.    (1) 

where 0, I, and R represent the permeability of the air, 
RMS current in the prepared wire, and the distance be-
tween the centre of the DCCT head and the wire, respec-
tively. 

 
Figure 7: Experimental setup for distance dependency 
(left) and shield dependency (right). 

 
Figure 8: Current that flows in the prepared wire (left). 
RMS I and B as a function of the distance between the 
DCCT head and the wire (right). 

Shield dependency 
Another investigation for the impact of the magnetic 

field on I was conducted by shielding the DCCT head. As 
is shown in Fig. 7 (right), one DCCT head is totally cov-
ered with the aluminium foil of 11 m thickness. The input 
of the ADC board for the other DCCT head is shorted. The 
RMS I before and after the shield are listed in Table 2. 
The distance between the centre of the DCCT head and the 
wire is fixed to 20 mm. The reduction of the noise on I 
was observed after the shielding. 

Table 2: RMS I Before and After the Shield 
 Head P Head N 
Before shield 0.152 A 0.029 A 
After shield 0.044 A 0.019 A 

CORRECTION OF COD ASSYMETRY 
Two test results show the electromagnetic interference 

caused by the ground current is not negligible. To reduce 
the influence on I, the existing ground line is discon-
nected and bypassed for all six BMPSs. As is shown in Fig. 
9, the distance between the bypassed line and the DCCT 
heads are sufficiently increased. The horizontal beam posi-
tions and the current ripples after the bypass are plotted 
with the black curves in Figs. 3 and 4, respectively. The 

fast Fourier transforms (FFTs) of these waveforms for 
BM1 and 2 are plotted in Figs. 10 and 11, respectively. The 
noise in I of BM1 and 2 were successfully decreased in 
the whole frequency region. Consequently, the asymmetry 
of the COD was improved. 

 
Figure 9: Schematic and picture of the bypass. 

 
Figure 10: FFTs of I for BM1 and 2. Dashed blue and 
solid red lines represent the waveforms before and after the 
improvement, respectively. 

 
Figure 11: FFTs of the horizontal beam positions of high 
dispersion positions at the interval of 1 ms. Dashed blue 
and solid red lines represent the waveforms before and af-
ter the improvement, respectively. 

CONCLUSION 
The cause of the asymmetry of BM ripples was identi-

fied as the electromagnetic interference caused by the 
ground current. The ground routes of BMPSs were by-
passed to increase the distance between the DCCT heads 
and the ground line. Consequently, the asymmetric fluctu-
ation of the closed orbit was successfully improved. 

This result suggests the tune region of the stable beam 
operation is expected to be improved since the effect of the 
non-structure resonance should be suppressed. 
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for the other DCCT head is shorted. The calculated RMS 
magnetic field that is generated by the current that flows in 
the prepared wire is also plotted. The magnetic field, B, is 
calculated as 

𝐵 = 𝜇0𝐼
2𝜋𝑅

.    (1) 

where 0, I, and R represent the permeability of the air, 
RMS current in the prepared wire, and the distance be-
tween the centre of the DCCT head and the wire, respec-
tively. 

 
Figure 7: Experimental setup for distance dependency 
(left) and shield dependency (right). 

 
Figure 8: Current that flows in the prepared wire (left). 
RMS I and B as a function of the distance between the 
DCCT head and the wire (right). 

Shield dependency 
Another investigation for the impact of the magnetic 

field on I was conducted by shielding the DCCT head. As 
is shown in Fig. 7 (right), one DCCT head is totally cov-
ered with the aluminium foil of 11 m thickness. The input 
of the ADC board for the other DCCT head is shorted. The 
RMS I before and after the shield are listed in Table 2. 
The distance between the centre of the DCCT head and the 
wire is fixed to 20 mm. The reduction of the noise on I 
was observed after the shielding. 

Table 2: RMS I Before and After the Shield 
 Head P Head N 
Before shield 0.152 A 0.029 A 
After shield 0.044 A 0.019 A 

CORRECTION OF COD ASSYMETRY 
Two test results show the electromagnetic interference 

caused by the ground current is not negligible. To reduce 
the influence on I, the existing ground line is discon-
nected and bypassed for all six BMPSs. As is shown in Fig. 
9, the distance between the bypassed line and the DCCT 
heads are sufficiently increased. The horizontal beam posi-
tions and the current ripples after the bypass are plotted 
with the black curves in Figs. 3 and 4, respectively. The 

fast Fourier transforms (FFTs) of these waveforms for 
BM1 and 2 are plotted in Figs. 10 and 11, respectively. The 
noise in I of BM1 and 2 were successfully decreased in 
the whole frequency region. Consequently, the asymmetry 
of the COD was improved. 

 
Figure 9: Schematic and picture of the bypass. 

 
Figure 10: FFTs of I for BM1 and 2. Dashed blue and 
solid red lines represent the waveforms before and after the 
improvement, respectively. 

 
Figure 11: FFTs of the horizontal beam positions of high 
dispersion positions at the interval of 1 ms. Dashed blue 
and solid red lines represent the waveforms before and af-
ter the improvement, respectively. 

CONCLUSION 
The cause of the asymmetry of BM ripples was identi-

fied as the electromagnetic interference caused by the 
ground current. The ground routes of BMPSs were by-
passed to increase the distance between the DCCT heads 
and the ground line. Consequently, the asymmetric fluctu-
ation of the closed orbit was successfully improved. 

This result suggests the tune region of the stable beam 
operation is expected to be improved since the effect of the 
non-structure resonance should be suppressed. 

Y. Morita et al., 
IPAC2024, TUAD2.

BM1 BM2
before 0.036% 0.035%
after 0.019% 0.013%

RMS of dB/B 
(estimated by dI/I)

before before

after afterBypass

T. Yasui, 
IPAC2023, TUXG1.

DCCT heads


