

Sept. 11-13, 2024, Dongguan, China

The CiADS Project: Status and Challenges

Yuan He, Zhijun Wang

On behalf of CiADS team Institute of Modern Physics, CAS Lanzhou, China

- Backgroud & Brief introduction of CiADS facility
- Challenges and Progress of CiADS linac
- First beam of normal conducting front-end
- Summary and Perspective

"Holding the increase in the global average temperature to well below 2°**C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5**°**C above pre-industrial levels."**

Shares of nuclear and renewable energy in the electricity generation mix **Exerce** *and Exercement* and corresponding climate warming across IPCC AR6 scenarios. Greenhouse gas emissions from electricity generation technologies.

https://www.iaea.org/topics/nuclear-power-and-climate-change/climate-change-and-nuclear-power-2022

- To achieve carbon neutrality in the coming decades, a key to avoiding global warming of more than 1.5℃, investment in the energy sector must be scaled up and directed towards cleaner and more sustainable technologies that support global climate change mitigation and adaptation.
- With one of the lowest carbon footprints, 24/7 availability and the operate flexibly, nuclear power can make an irreplaceable contribution to a stable decarbonized power system and act as a regulator to renewable energy such as solar and wind.

p **Nuclear power isgaining support again after years of decline**

- 52 more reactors under construction, 2/3 in Asia.
- ~30 new countries are looking at nuclear energy to meet their power and climate needs.

■ Nuclear Energy Makes History as Final COP28 Agreement Calls for Faster Deployment \Box At COP28 by more than 22 countries to advance the aspirational goal of tripling nuclear power **capacity by 2050, as well as statem ents by the IAEA and the nuclear industry.**

- \geq 8 tons of natural uranium --> 1 ton of nuclear fuel -> only 50 kg is burnup into fission products
	- Ø **Reusable fuel (950kg) + depleted uranium (7 tons) has huge untapped potential for energy**
- \triangleright By 2035, UxC estimates that spent fuel emissions will be close to 618,000 tons, according to tripling nuclear **power by 2050, that means atleast 30,000 tons/y**

Trend of nuclear fission energy future

the Next generation nuclear power should be Sustainable

IMI

- to increase the amount of nuclear fuel by hundreds times
- to reduce the amount of nuclear waste by tens times
- to shorten the radioactive-lifetime by thousands times

n Principle of ADS

ADS consists of an accelerator, a spallation target, a subcritical reactor, and energy systems.The

subcritical reactor is driven by a high energy proton, works like an energy amplifier.

"Full" use of depleted uranium and spent fuel, and "flexible" integration of the existing nuclear power industrial system

Accelerator Driven Advanced Nuclear Energy System

- Spent fuel reprocessing: Partially remove fission Superconducting linear accelerator fragments from spent fuel, Mix fuel PUMA = Pu+U+MA : (**NO fine separation of uranium, plutonium, and minor actinides, even a few FP**)
- Advanced burner ADS: —— External neutron driven subcritical reactor (LFR), transmutation, breeding, and energy production
- Utilization rate of uranium resources : $~1\%~ \rightarrow ~95\%$
- Radioactive waste lifetime : Hundreds of thousands of years \rightarrow Several hundred years
- Radioactive effluent : \sim 25t \rightarrow ~1t (1GWe/pile year)
- Reactivity control : Critical operation \rightarrow Subcritical operation

- Complete reprocess of ADANES fuel cycle
- Each time the fission products are removed, and add some spent fuel or depleted uranium

Accelerator Driven transmutation System is an efficient way. ADS Roadmap in China

The CiADS Project: Status and Challenges, Yuan He **10**

mA operation mA operation

The phase II- CiADS Project

Progress of CiADS Campus

- Backgroud & Brief introduction of CiADS facility
- Challenges and Progress of CiADS linac
- First beam of normal conducting front-end
- Summary and Perspective

Power and Current Ramping of SC Linacs

A. Aleksandrov, Warm and cold SNS LINAC commissioning, Spallation Neutron Source Ramping power to 1.7 MW from 2008 to 2023 I_{ave} =1.3~1.4 mA

HB 2023

10 m A CW proton beam was realized at CAFe (IMP) in 2021

Zhijun Wang, IPAC 2023, WEOGB2

10 mA CW proton beam has been achieved in sc-linac firstly in the world

For an industrial scale ADS, beam trip requirements are strict and timerelated.

H. Aït Abderrahim et al, Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production. 2010. https://doi.org/10.2172/1847382

the superconducting lianc for CiADS

- Beam loss control for high beam power
- Fault recovery scheme for high aviability
- Beam uniformity on the target
- Intelligent beam operation
- High stable Cavities
- High efficiency HP rf system
- High accuracy CM system
- ········

Beam collimation for power loss control

- Ø **2.5 MW proton beam power (500 MeV@5 mA)**
- Ø **Beam with halo lead todownstream beam loss**
	- \triangleright Halo outside of 5 σ is 0.4%, i.e. 10 kW
	- Ø too high radiation maintenance and equipment

IE-09

5500

The CiADS Project: Status and Challenges, Yuan He **22**

 $[cm]$

Beam uniformity on the target

5 mA beam within D=230 mm vacuum tube \triangleright Beam uniformity by Multi order Sine wave scanning

 \triangleright For extended Gaussian distribution with σ =23 mm, PCD=150 μ A/cm^{2>>35} μ A/cm² limitation **Example 12.10 A beam within D=230 mm vacuum tube** \rightarrow **Beam uniformity by Multi order Sine wave scanning**
For extended Gaussian distribution with σ =23 \rightarrow Fourier harmonic superposition based on scan magnets
mm, PCD

- - \triangleright Fourier harmonic superposition based on scan magnets
- limitation Ø Fourier harmonic superposition based on RF cavities

Fault recovery scheme

hybrid compensation scheme: large longitudinal acceletance, applied at low energy

Beam tuning with ML

 B_{12} B_{13} B_{14}

 B_{12} B_{12}

Structure of the SC in CAFe II

The CiADS Project: Status and Challenges, Yuan He **25**

More tuning task is under developed based on ML for CiADS linac tuning

beamline.

High stability of SRF cavities

- p **Total 151 superconducting cavities with five cavity types for the CiADS linac**
- HWR010(9)/HWR019(24)/HWR040(60) & Elliptical062(30)/Elliptical082(28)
- Similar power coupler and tuner used to decrease the development of prototype time
- p **The baseline Bulk niobium cavities show promising result**
- Prototype meets the requirement of operation at 2K
- p **Cu/Nb Composite Cavity (**Thin bulk niobium **cavity backed up by** copper/Aluminum shell**) as an alternative choice for 4.2K operation**
- Thermal stability: Thermal breakdown due to defects, field emission and multipacting electrons etc
- Mechanical stability: Helium pressure fluctuation detuning(df/dp), Lorentz force detuning(LFD), environmental vibration etc

- **Bulk niobium cavities have entered batch m anufacturing stage**
- All the HWR010 cavities has been fabricated, ready for hotizontal testing in CM
- 2) The HWR019 cavity is in mass production
- 3) The prototype of 325MHz HWR shows the vertical testing result achieving the nominal specification
- 4) The elliptical prototype has been manufactured, prepared for VT

HWR010 test result at 4.2K Prototype of medium beta HWR 040 and test result Prototype of elliptical cavity

Nb/Cu Composite SC Cavities

- **Preliminary cryogenic results indicate mechanical stability**
- 1) Cu/Nb structure: 1mm Nb+5 mm Cu ;
- 2) Surface treatment: 30 μm BCP, 380℃/2.5 hours heat treatment for stress relief of copper, 30 μ m BCP, HPR, 120 °C /48 hours in clean room;
- Slow cooling at T_c crossing of niobium adopted, ambient magnetic field \leq 10 mG;
- Q_0 vs. E_{pk} at 4.2K meets the operation requirement;
- Df/dp improved by 70.9%;
- LFD coeff. improved by 76.8%. HWR010 Cu/Nb cavity

on vertical test stand

The assembled HWR040 CuNb cavity in clean room

LFD coeff. Comparison between Nb cavity w/o stiffening ribs and Cu/Nb cavity

The CiADS Project: Status and Challenges, Yuan He **28**

w/o stiffening ribs and Cu/Nb cavity

Power Coupler

- \triangleright Various types of resonator, Wide frequency range
- \triangleright High reliability requirement

Double Tube Wall, 4.5K Helium Gas

- p **The same dual-warm-window and double Tube wall**
- p **Coupling part and outer conductor partare adjusted for different cavity**

- p **Dual warm window coupler**
- meets the requirement, > 40 kW CW ω standing wave mode
- Two families of coupler manufactured, good reproducibility

High power RF system

High power RF system

Measurements of P-band GaN module.

Comparison with LDMOS PA pallet.

All P-band SSPA based on GaN(Gallium Nitride) have been developed in IMP successfully. GaN HEMT (High Electron Mobility Transistor) have excellent performance at 650MHz.

动物的 \mathbb{C} r \mathbb{C}

Measurements of 60 kW GaN rack with dummy load.

* <Research on the Newest GaN-Based Solid-State Power Amplifier for CiADS Project>, Nucl. Instrum. Methods Phys. Res. A1055, 168403(2023)

- **There are 5 families of cryomodule, rectangle for HWR010 and HWR019 and elliptical for others**
- **bottom-supported scheme**
- **Cold mass alignment less than±0.5mm**

- **HWR Cryomodule used the baseplate support scheme,**
- **The uncertainty of cold mass alignment is from manufacture , the vacuum deformation and mainly cold contraction**
- **The cavity and solenoid contraction in LN² temperature was monitored by WPM**, **the cold contraction agrees well with simulation and isconsistent after cooling cycle**

The CiADS Project: Status and Challenges, Yuan He **33**

- Backgroud & Brief introduction of CiADS facility
- Challenges and Progress of CiADS linac
- First beam of normal conducting front-end
- Summary and Perspective

NT front end section layout

- **Construction during 2022.10-2024.5**
- **Goal: to demonstrate 5 mA beam of front end Linac for CiADS.**
- **First beam at 2023, test-MEBT update and systematic commissioning at 2024**

Conditioning scheme

- 20μ s-short pulse conditioning MP in power coupler ~8 hours
- Frequency sweep conditioning vacuum burst at pulse and CW power \sim 127 hours
- RF power ramping to \sim 100 kW at CW ~182 hours

Stable operation 7 days at 101 kW without downtime. The number of arc trips per day less than 20 and recovery automatically.

Beam transmission of RFQ

The calibration results of the X ray method and beam transmission are relatively consistent $(5%)$. The RFQ design cavity voltage of 65 kV with transmission \sim 98%.

Beam energy measurement

The beam energy out of RFQ cavity is consistent with simulated

the operation stability is monitored by BPM position and phase.

- The CiADS linac is challenging for the high power, CW operation, high reliability
- The key technology has all been demonstrated and project is progressing well
- First beam exacted from normal conducting front-end and CW beam will be accelerated soon.

- The CiADS linac is challenging for the high power, CW operation, high reliability
- The key technology has all been demonstrated and project is progressing well
- First beam exacted from normal conducting front-end and CW beam will be accelerated soon.

Thanks for your attention!