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What the talk is about
• Microbunching - or short-wavelength - instabilities are well-known for drastic 

reduction of the beam quality, its filamentation and strong amplification of the 
noise in a beam. Space charge and coherent synchrotron radiation (CSR) are the 
leading causes for such instability. 

• In this talk I present rigorous 3D theory of such instabilities driven by the space-
charge forces. 

• I will define the condition when our theory is applicable for an arbitrary accelerator 
system with 3D coupling. Finally, I will show derivation of a linear integral 
equation describing such instability and identify conditions it can be reduced to an 
ordinary second order differential equation

• I will also discuss challenges/limitation of the current theory and will discuss how it 
can be further improved
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Motivation for 3D theory of microscopic instabilities

• Accurate self-consistent – not just kick/drift – theory of microscopic instabilities is neither trivial or 

intuitive. This is especially true if one trying to extend it to 3D (6D phase space)

• Our motivation to get into this challenging endeavor was driven by shocking experience discovering 

experimentally that microscopic plasma-cascade instability is heating our electron, when the most 

sophisticated beam dimness (for example Impact-T) failed to predict it

• Probably the best emotional reaction to this discovery was the title of  Irina Petrushina’s PhD thesis 

“The Chilling Recount of an Unexpected Discovery: First Observations of the Plasma-Cascade 

Instability in the Coherent Electron Cooling Experiment”

• It was only after developing theory of Plasma-Cascade Instability we were able to reproduce it in 

simulations.  Needless to say, such demonstration it required fine tuning of code’s settings and advices 

from the code’s authors on how to avoid suppressing artifacts that dominated the results…

• The moral of this story is the following: does not matter how good and how well-bench-marked are 

numerical codes, there is always a corner (the questions how big or how small? Or if it is ML or AI?) 

of parameters where they will become unreliable or, simply saying, just failing..

• This is why theory, does not matter how inconvenient or imperfect, is necessary to illuminate our 

understanding of physics phenomena which are beyond grasp of current computer codes



Experimental observation of plasma cascade instability in 1.75 MeV e-beam in CeC linac

Uncompressed bunch: simulations and experiment in September 2018

Measured time profiles of 

1.75 MeV electron bunches 

with 0.45 nC to 0.7 nC;  

Seven measured overlapping spectra and PCI 

spectrum simulated by SPACE (slightly elevated 

yellow line). Clip shows a 30-psec fragment of 

seven measured relative density modulations. 

Noise power in the e-beam as  

function of focusing by two solenoids



What is Plasma-Cascade Instability?

• It is an exponentially growing parametric instability driven by 
variation of the plasma frequency and driven by the variation 
of the transverse electron beam size

• We do it by creating dramatic variations of plasma density 
using modulation of the transverse beam size

• Important questions – when exponential growth occurs and 
how fast it is? Hence, we developed a self-consistent 3D 
theory and simulations
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Exponential growth of the IR signal at the bolometer as function 

of current in PCA  solenoids: e-fold increase each 3 A (2.4%)

Currents in three central PCA solenoids 3-4-5, A

100                   110                   120      125 

Peak
Actual measurement

of e-beam THz radiation 

amplified buy 

plasma-cascade instability

Average

Few more words of motivation…
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✓ When I presented experimental results that 

shown that a small (just few percents) changes 

is on the strength of focusing can result in 

exponential growth of the instability, a review 

panel “expert” told me his guts telling him that 

is simply impossible….

✓ I think that this exactly the problem between 

science and “gut feelings” – exponential growth 

is something inherent for instabilities

✓ Theoretical estimation and theory-based 

numerical simulations may open our eyes to 

previously unknown phenomena



Why is the 3D treatment?

Samples of measured electron beam distributions in the CeC accelerator, illustrating various aspects of 3D  coupling in space-charge dominated 

electron beam. (a) Coupling between radial and axial modes in SC-driven instability; (b) Coupled 0.5 THz longitudinal density modulation. (c) 

2.5 THz density modulation and vertical filamentation. (d) Feather-like coupling between vertical and longitudinal SC-driven instabilities; (e) 

Time dependent beam envelope and filamentation; (f) An example of coupling between time, energy and horizontal position 

Because 
experimentally 
we observing 
coupling between 
degrees of 
freedom



Method used
• The classical plasma physics methods, modified for accelerator lingo, for deriving 3D evolution equations of 

microscopic perturbations in space-charge dominated beam

• We considered accelerators without any limitation on its components, acceleration, deceleration, 
compression, focusing, coupling, or its 3D beam trajectory.

• We use the length along the reference trajectory, s, as independent variable. Particle motion is described as 
evolution of full set of 6 canonical variables driven by the Hamiltonian, which includes macroscopic space-
charge forces. We consider that the beam transport map is evaluated as function of s for the unperturbed 
Hamiltonian and is known.

• Effects of microscopic instability can be treated as a perturbation.

• We use Canonical transformation to the initial condition to remove macroscopic components and arrive to 
the linearized  Vlasov equation.

• We identify range when and where our microscopic approach is applicable and derive equation for 
perturbation Hamiltonian.

• We use local linearization of the transport map with symplectic 6x6 matrix in Alex Dragt’s notation. Using 
this notation allows to clearly identify roles of 3x3 matrix blocks in the evolution of the beam and 
perturbation parameters.

• We apply Fourier transform and arrive to explicit form if linear integral equation describing evolution of the 
microscopic perturbations.

• Finally, we identify conditions when the linear integral equation can be reduced to an ordinary second order 
differential equation for the electron beam density perturbation



Arbitrary 3D orbit and EM field (including self-fields)
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Initial conditions 



Variables

• Regular – q, P, ξ , k, f– at arbitrary s 

• Underscored – q, P, ξ , k, f– at s=0 (initial values)



Vlasov equation with ζ={q,p}
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What we can call “microscopic”?

Introducing scales of uniformity
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Otherwise, the Fourie harmonics mix and there is no way to reduce even 
linearized Vlasov equation to a solvable case:



Graphic representation
co-moving frame
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Perturbation Hamiltonian
Simple calculation and transfer to the lab frame gives us

Local linearization of the transfer map in a phase space around a reference trajectory  :   W s( ) = M s( ) :W
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Perturbation Hamiltonian
Simple calculation and transfer to the lab frame gives us

Local linearization of the transfer map in a phase space around a reference trajectory  :   W s( ) = M s( ) :W
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Continued…

Important assumption it that initial momenta spread is limited and that linear expansion on P can be used
in integral for fixed q:   

This allows to go take local Fourier transform of the density

q = A ×q +B × P

for k-”vector” evolving with s k = k s = 0( ); kT = kT s( ) ×A s( ) Þ kT s( ) = kT ×A-1 s( )
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Back to Vlasov equation
We can describe local initial distribution function as function of momenta:  

And taking Fourie transform of the Vlasov equation

we get to r.h.s.
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Continued..
Using easily established ratio 

which can be further “improved” using partial integration 

we get to our final form of linear integral equation with identifiable kernel and Landau damping terms

we arrive to a solvable
linear integral equation

¶ f
o

¶P
i

×f ×dP
iò = f

o
×f

P
i
=-¥

P
i
=¥

- f
o
×

¶f

¶P
i

×dP
iò f

o
P

i
= ±¥( ) = 0

U = A-1 ×B



Examples..
Landau term for Gaussian distribution
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Conventional 
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transport matrix

k s( ) = k / A
33

Longitudinal equation for uncoupled motion (matrix A is diagonal)



Reducibility to 2nr order ODE 

I personally prefer linear integral equation to a 2nd order ordinary differential equation, but in some cases it 
can be useful for theoretical developments.  Hence, here is a short summary (see our paper for details):

When the Landau damping term allows separation of variables s and ξ
 
dt is reducible to an ODE:
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Just to mention few cases that can be treated like this: cold beam (plasma)

and some cases with Lorentzian initial momenta distribution 
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Discussion
• Matrix A  plays a special role in the evolution of the microscopic perturbation in beams 

with strong SC, specifically that beam density                        became infinite when 
detA=0. It is easy to see that this is the result of “infinite plasma” assumption and it not 
the case for finite beams. It is resolved by replacing beam density by that found in 
macroscopic simulations 

• Second   complication related to with k-vector transformation                       :                     
This is not a real problem since for any finite momenta spread, the corresponding portion 
of the integral is diminishing to zero:  

• The most non-trivial complication arise in case when the transfer map can not be 
linearized over all initial spread of the beam, which was very important assumption 
necessary for derivation of our linear integral equation:

n s( ) = n
o
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kT z( ) = kT ×A-1 z( )
k

detA®0

® ¥

q = A ×q +B × P; P =C ×q +D × P;

q = DT ×q -BT × P; P = -CT ×q +AT × P.



Discussion
• It is understandable that accurate linearization of a ”generally speaking” nonlinear map is 

possible if we limit the area of the phase space where our conditions applicability of 
separation for Fourier harmonics is valid

• In this case, evaluation of the Fourier harmonics would require summation over the phase 
space volumes and evaluation of each step of the history. I currently writing a paper with 
detailed description of the method, but it is too involved to add in this presentation..

• The method is numerically tractable, but it requires Ω-matrix of density values traced 
back in s with varying k-vector. It is definitely more complex than evaluation of a single 
linear integral equation, but does not suffer from possible violation of applicablity 



Conclusions
➢ Since we discovered unknown microbunching plasma-cascade instability, which was simply missed by 

so-call self-consistent PIC space charge codes, we are looking for an alternative ways – either 

theoretical or theory-numerical or alternative numerical methods to identify and characterize inutilities

➢ We were also puzzled by observing strong 2D and 3D  coupling for microscopic instabilities and 

understanding that equations of motion in one dimension can cause instability in the other – hence a 

desire to have a description which is not limited to 1D

➢ Using several approximations, we derive linear integral equation that describes evolution of 3D 

microscopic instabilities driven by space charge and identified conditions then it is equivalent to a 

second order ordinary differential equation   

➢ There is one assumption, typical for high brightness sources, that momenta spread at the source is very 

small (so called laminar flow approximation) which I would like to eliminate as the next step towards 

even more rigorous 3D theory of such instabilities.
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Thank you for attention



Conditions for applicability of the short period (microscopic) perturbations: co-moving frame 
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