

Vortex electron scattering by atomic targets

Sophia Strnat, Vortex states in nuclear and particle physics, Zhuhai

Vortex electrons and their production

Wave function

$$\Psi^{tw}_{p_Z|\mathbf{p}_\perp|m}(\mathbf{r},t) = e^{-i\omega t + ip_Z z} e^{im\varphi_r} \cdot \sqrt{|\mathbf{p}_\perp|} J_m(|\mathbf{p}_\perp|r_\perp)$$

K. Y. Bliokh *et al*. Physics Reports,Volume 690, (2017)

Strnat | Vortex electron scattering | Slide 1

FPM

Vortex electrons and their production

Vortex electrons and their production

Wave function

$$\Psi^{tw}_{p_Z|\mathbf{p}_\perp|m}(\mathbf{r},t) = \int d^3\mathbf{p} \; a_{p_Z|\mathbf{p}_\perp|m}(\mathbf{p}) e^{-i\omega t + i\mathbf{pr}}$$

Production

• spiral phase plates¹

• diffraction grating with an edge dislocation^{1,2}

• magnetic quasi-monopoles²

Strnat | Vortex electron scattering | Slide 3

¹ H. Larocque *et al.* (2018): 'Twisted' electrons, Contemp. Phys., DOI: 10.1080/00107514.2017.1418046

² K. Y. Bliokh et al. Physics Reports, Volume 690, 24 May 2017

Applications of vortex electrons

Applications

- spintronic applications
- manipulation of nanoparticles
- magnetic-dependent EELS
- access chiral-dependent electronic excitations

Knowledge about electron scattering is required

elastic scattering

See for instance: D. V. Karlovets, Phys. Rev. A **95**, 032703; A. V. Maiorova, Phys. Rev. A **98**, 042701; V. P. Kosheleva, Phys. Rev. A **98**, 022706; V. Serbo, Phys. Rev. A **92**, 012705...

Technische Universität Braunschweig

Verbeeck et al. Adv. Mater. 25, 1114–1117 (2012)

inelastic scattering

D. Park @ LENA (TU BS)

Technische Universität _S Braunschweig

Technische Universität Braunschweig

Strnat | Vortex electron scattering | Slide 6

modified from Z. Qing-Hua, Xiao, Chinese Physics B $\mathbf{25}(6)$:

066803 (2016)

D. Park @ LENA (TU BS)

Technische Universität Braunschweig

How to describe the photon emission pattern?

The angular distribution of the emitted photons is

$$W(\theta,\phi) = \frac{W_{tot}}{4\pi} \left(1 + \alpha_2^{\gamma} \sqrt{\frac{4\pi}{5}} \sum_{q=-2}^{2} A_{2q}(J_f) Y_{2q}(\theta,\phi) \right)$$

Excitation probability

$$W_{\text{tot}}(\alpha_f J_f M_f) = \frac{1}{2J_i + 1} \sum_{M_i} \sum_{m_{s'}} \int d\Omega_{p'} |f_{m_{\text{TAM}}}^{(tw)}|^2$$

How to describe the photon emission pattern?

The angular distribution of the emitted photons is

$$W(\theta,\phi) = \frac{W_{tot}}{4\pi} \left(1 + \alpha_2^{\gamma} \sqrt{\frac{4\pi}{5}} \sum_{q=-2}^{2} A_{2q}(J_f) Y_{2q}(\theta,\phi) \right)$$

Excitation probability

Alignment parameters

$$W_{\text{tot}}(\alpha_f J_f M_f) = \frac{1}{2J_i + 1} \sum_{M_i} \sum_{m_{s'}} \int d\Omega_{p'} |f_{m_{\text{TAM}}}^{(tw)}|^2$$

How to describe the photon emission pattern?

The angular distribution of the emitted photons is

$$W(\theta,\phi) = \frac{W_{tot}}{4\pi} \left(1 + \alpha_2^{\gamma} \sqrt{\frac{4\pi}{5}} \sum_{q=-2}^{2} A_{2q}(J_f) Y_{2q}(\theta,\phi) \right)$$

Excitation probability

Alignment parameters

$$W_{\text{tot}}(\alpha_f J_f M_f) = \frac{1}{2J_i + 1} \sum_{M_i} \sum_{m_{s'}} \int d\Omega_{p'} |f_{m_{\text{TAM}}}^{(tw)}|^2$$

The scattering amplitude needs to be evaluated!

State of the art - theory

Non-relativistic Born approximation for vortex electrons scattered off hydrogen:

$$f_{m_{\mathsf{TAM}}}^{(\mathsf{tw})}(p_{\mathsf{Z}},\varkappa,m,\mathbf{p}') \simeq \left\langle \Psi_{\mathbf{p}_{f}}\psi_{f}|\frac{1}{r_{12}}|\psi_{i}\Psi_{p_{\mathsf{Z}}\varkappa,m}^{(\mathsf{tw})}\right\rangle$$

Source: R. Van Boxem, Phys. Rev. A 91 (2015) 032703.

State of the art - theory

Non-relativistic Born approximation for vortex electrons scattered off hydrogen:

$$f_{m_{\mathsf{TAM}}}^{(tw)}(p_{z},\varkappa,m,\mathbf{p}')\simeq\left\langle \Psi_{\mathbf{p}_{f}}\psi_{f}|\frac{1}{r_{12}}|\psi_{i}\Psi_{p_{z}\varkappa,m}^{(tw)}\rangle
ight
angle$$

Above, the theory includes...

- Non-relativistic approach
- Born approximation
- Only Coulomb interaction
- Only hydrogen atoms

We want to extend this to a <u>relativistic</u>, <u>distorted wave</u> and <u>many-electron</u> theory!

Source: R. Van Boxem, Phys. Rev. A 91 (2015) 032703.

Vortex electrons: free vs. distorted basis

free twisted wave

$$\Psi_{\varkappa m_{\mathsf{TAM}} p_z m_s}^{(tw)}(\mathbf{r}) = \int d^3 \mathbf{p} \ a_{\varkappa m_{\mathsf{TAM}}}(\mathbf{p}) u_{\mathbf{p}m_s} e^{i\mathbf{p}\mathbf{r}}$$

momentum vec. of a plane wave

Vortex electrons: free vs. distorted basis

$$\Psi^{(tw)}_{\varkappa m_{\mathsf{TAM}} p_{z} m_{s}}(\mathbf{r}) = \int d^{3}\mathbf{p} \ a_{\varkappa m_{\mathsf{TAM}}}(\mathbf{p}) u_{\mathbf{p} m_{s}} e^{i\mathbf{p}\mathbf{r}}$$

distorted twisted wave

$$\Psi_{\varkappa m_{\mathsf{TAM}} p_{z} m_{s}}^{(tw)}(\mathbf{r}) = \int d^{3}\mathbf{p} \, a_{\varkappa m_{\mathsf{TAM}}}(\mathbf{p}) F_{\mathbf{p} m_{s}}^{+}(\mathbf{r})$$

momentum vec. of a plane wavemomentum vec. of a distorted wave

Relativistic Distorted Wave Approximation

Instead of plane wave solutions, we use the distorted wave function to construct our vortex electron wave function

$$\Psi^{(tw)}_{\varkappa m_{\mathsf{TAM}} p_{z} m_{s}}(\mathbf{r}) = \int d^{3}\mathbf{p} \; a_{\varkappa m_{\mathsf{TAM}}}(\mathbf{p}) \mathcal{F}^{+}_{\mathbf{p} m_{s}}(\mathbf{r})$$

The well-known continuum solution of the Dirac equation is

Technische Universität Braunschweig

Technische Universität

Technische Universität Braunschweig

Scattering amplitude - Relativistic Distorted Wave Approximation

"Building-block" of our theory is the scattering amplitude

$$f_{m_{\mathsf{TAM}}}^{(tw)}(\alpha_{i}, J_{i}, M_{i}, \alpha_{f}, J_{f}, M_{f}; p_{z}, \varkappa, \mathbf{p}') = (2\pi)^{2} \sqrt{\frac{p'}{p}} \left\langle \psi_{\alpha_{f}} J_{f} M_{f} F_{\mathbf{p}' m_{s}'}^{-} \left| \hat{V} \right| \psi_{\alpha_{i}} J_{i} M_{i} \Psi_{p_{z} \varkappa} m_{\mathsf{TAM}} \right\rangle$$

With the potential

$$\hat{V} = \hat{V}_{C} + \hat{V}_{B} - \hat{V}_{d}$$
$$= \sum_{i < j} \left(\frac{1}{r_{ij}} - \alpha_{i} \alpha_{j} \frac{1}{r_{ij}} + \frac{1}{2} (\alpha_{i} \nabla_{i}) (\alpha_{j} \nabla_{j}) r_{ij} \right) - \hat{V}_{d}$$

where $|\alpha_i J_i M_i\rangle$ and $|\alpha_f J_f M_f\rangle$ are the initial and final atomic states and \hat{V}_d is the distortion potential.

L. Sharma, Phys. Rev. A 83, 062701 (2011)

D. Park @ LENA (TU BS)

Technische Universität Braunschweig

Geometry of the process

isolated

Geometry of the process

Effect of the environment on the scattering - total ex. rate

 $^1S_0 \rightarrow {}^3P_1$ transistion in Mg, incident electron energy 20 eV, θ_k = 15°

Oscillations of the probability density (free vortex electron)

Alignment parameters

 $^1S_0 \rightarrow {}^3P_1$ transistion in Mg, incident electron energy 20 eV, θ_k = 15°

Sebsequent decay of the excited state - θ dependence

Sebsequent decay of the excited state - ϕ dependence

Summary and Outlook

- Development of the scattering theory of relativistic twisted electrons beyond the Born approximation
- Scattering off isolated and confined Mg has been analyzed
- Alignment/orientation of the atom with spatial dependence has been calculated
- Investigation of subsequent decay
- Implementation of twisted electron wave packets
- Higher energies

Acknowledgements

L. Sharma¹, A. Peshkov, R. Schmidt, J. Sommerfeldt, D. Park, D. Hüser, C. Bick and A. Surzhykov

¹ Department of Physics, Indian Institute of Technology, Roorkee 247667, India all others: Physikalisch Technische Bundesanstalt, Braunschweig D-38116, Germany and Technische Universität Braunschweig,

Braunschweig D-38106, Germany

... and the FPM group from PTB!

Thank you for your attention!

Relativistic Distorted Wave Approximation

Instead of plane wave solutions, we use the continuum solution of the Dirac equation to receive our vortex electron wave function

$$\Psi^{(tw)}_{\varkappa m_{\mathsf{TAM}} p_{z} m_{s}}(\mathbf{r}) = \int d^{3}\mathbf{p} \; a_{\varkappa m_{\mathsf{TAM}}}(\mathbf{p}) F^{+}_{\mathbf{p} m_{s}}(\mathbf{r})$$

The well-known continuum solution of the Dirac equation is

$$F_{\mathbf{p}m_{s}}^{\pm}(\mathbf{r}) = \frac{1}{\sqrt{4\pi\epsilon\rho}} \sum_{\kappa\mu} i^{\prime} e^{\pm i\Delta_{\kappa}} \sqrt{2l+1} (l \ 0 \ 1/2 \ m_{s}|j \ m_{s}) D_{\mu m_{s}}^{j}(\hat{p}) \varphi_{\epsilon\kappa\mu}(\mathbf{r})$$

with the asymptotics

$$\psi \simeq \psi_{\textit{pw}} + f \psi_{\textit{spher}}$$

Relativistic Distorted Wave Approximation

b = 1.5

continuum

continuum+vortex

continuum+vortex+ displacement

Alignment/orientation

$$\mathcal{A}_{kq}(\alpha J; \mathbf{p}_{0}, \mathbf{p}) = \rho_{kq}^{f}(\alpha J; \mathbf{p}_{0}, \mathbf{p}) / \rho_{00}^{f}(\alpha J; \mathbf{p}_{0}, \mathbf{p})$$

= $\hat{J} \sum_{MM'} (-1)^{J-M'} (JM, J - M' | kq)$
 $\times \frac{\sum_{M0\mu 0\mu} T_{M0\mu 0} \rightarrow M\mu}{\sum_{MM0\mu 0\mu} |T_{M0\mu 0} \rightarrow M\mu} (\mathbf{p}_{0}, \mathbf{p}) T^{*}_{M0\mu 0} + \frac{M'\mu}{\sum_{MM0\mu 0\mu} |T_{M0\mu 0} \rightarrow M\mu} (\mathbf{p}_{0}, \mathbf{p})|^{2}}$

$$\mathcal{A}_{k0}(\alpha J;\mathbf{p}_0) = \frac{1}{\sigma(\alpha J)} \sum_{M=-J}^{J} (-1)^{J-M} (JM, J-M | k0) \sigma(\alpha JM)$$

V. V. Balashov, et al., Polarization and Correlation Phenomena in Atomic Collisions (Kluwer Academic, 2000).

Technische

Magnetic quasi-monopoles

Source: A. Béché, arXiv:1305.0570v2

Manipulation of nanoparticles

Probing chirality with vortex electrons

Source: Tyler R. Harvey et al., arXiv:1507.01810v1 (2015)

Magnetic Electron Energy Loss Spectroscopy

Source: Verbeck et al. Nature volume 467, pages 301-304 (2010)

Spintronic applications

- characterization of spintronic devices
- employing spin-polarized current injection

Strnat | Vortex electron scattering | Slide 38

Source: Yuan et al. PRA **88**, 031801(R) (2013)

Distortion Potential

L. Sharma ,Phys. Rev. A 83, 062701 (2011)

$$V_d(r) = V_{st}(r) + V_{ex}(r)$$

$$V_{st}(r) = -\frac{Z - N}{r} + \sum_{j \in \text{all subshells}} \mathcal{N}_j \int_0^\infty \left[P_{n_j \kappa_j}^2(r_j) + Q_{n_j \kappa_j}^2(r_j)\right] \frac{1}{r_{>}} dr.$$

$$V_{\text{ex}}(r) = \frac{1}{2} \left[\left(\frac{1}{2} k^2 - V_{\text{st}}(r) + \frac{3}{10} [3\pi^2 \rho(r)]^{\frac{2}{3}} \right) - \left\{ \left(\frac{1}{2} k^2 - V_{\text{st}}(r) + \frac{3}{10} [3\pi^2 \rho(r)]^{\frac{2}{3}} \right)^2 + 4\pi \rho(r) \right\}^{\frac{1}{2}} \right]$$
$$\rho(r) = \frac{1}{4\pi r^2} \sum_{j \in \text{all subshells}} \mathcal{N}_j \left[P_{n_j \kappa_j}^2(r_j) + Q_{n_j \kappa_j}^2(r_j) \right]$$

Distortion Potential

Y. Itikawa, PHYSICS REPORTS (Review Section of Physics Letters) 143, No. 2 (1986) 69—108

One of the simplest derivations of DWM is based on the standard first-order perturbation theory. The total Hamiltonian of the system of an electron and an atom (ion) is (atomic units being used throughout the present paper unless otherwise stated)

$$\mathscr{H} = \mathscr{H}_{\mathsf{T}}(1,\ldots,N) + \mathscr{J}(N+1) + V(1,\ldots,N+1), \qquad (3.1)$$

where \mathscr{H}_{T} is the Hamiltonian of the target (N being the number of the bound electrons), $\mathscr{J}(N+1)$ is the kinetic energy operator for the incident ((N + 1)th) electron, and V is the interaction between the electron and the target. We denote by \mathscr{H}_{0} the Hamiltonian for the target and the non-interacting electron:

$$\mathscr{H}_{0} = \mathscr{H}_{T}(1, \dots, N) + \mathscr{J}(N+1).$$
(3.2)

This describes the asymptotic region of the collision system. When the target is an ion, the Coulomb interaction with the ionic charge is usually included in \mathcal{H}_0 (see section 3.4.3).

Now introduce a distortion potential, U, and assume that the eigenfunction of the Hamiltonian

$$\bar{\mathcal{H}} = \mathcal{H}_0 + U \tag{3.3}$$

is already known. Taking the difference, V-U, as a perturbation, we employ the first-order perturbation theory. The transition matrix for the excitation process $a \rightarrow b$ is given by (electron exchange being neglected for the moment)

$$T^{\rm DW}(\mathbf{a} \to \mathbf{b}) = \left\langle \chi_{\mathbf{b}}^{(-)} | V - U | \chi_{\mathbf{a}}^{(+)} \right\rangle.$$
(3.4)

General-purpose Relativistic Atomic Structure (GRASP)

 Multiconfiguration self-consistent-field calculations based on the Dirac-Coulomb Hamiltonian

Source: https://www.gloriabazargan.com/blog/cicalculations

Elastic scattering by crystals

Atoms are described by a sum of Yukawa potentials

$$V(r) = \sum_{i} \frac{A_i}{r} e^{-\alpha_i r}$$

With the well-known scattering amplitude (Born approximation):

$$f(\boldsymbol{q}) = \sum_{i} \frac{2ZA_{i}}{\mu_{i}^{2} + \boldsymbol{q}^{2}}$$

F. SALVAT, J. D. MARTÍNEZ, R. MAYOL, AND J. PARELLADA

TABLE I. Parameters of the analytical screening function $\phi_a(r)$. Elements indicated with an asterisk have DHFS radial expected values inconsistent with conditions (15).

Element	A_1	<i>A</i> ₂	α_1	α_2	α_3
H 1*	- 184.39	185.39	2.0027	1.9973	
He 2*	-0.2259	1.2259	5.5272	2.3992	
Li 3*	0.6045	0.3955	2.8174	0.6625	
Be 4*	0.3278	0.6722	4.5430	0.9852	
B 5*	0.2327	0.7673	5.9900	1.2135	
C 6*	0.1537	0.8463	8.0404	1.4913	
N 7*	0.0996	0.9004	10.812	1.7687	
O 8*	0.0625	0.9375	14.823	2.0403	

 $V(\boldsymbol{r}) = \sum_{i} V(\boldsymbol{r} + \boldsymbol{R}_{j})$

Universität Strnat | V Braunschweig

Technische