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Questions Addressed

Primary objective: Analysis of the interaction of optical vortices (or
twisted light) with quantum systems (atoms, ions, atomic nuclei and
quantum dots).

Are there any differences in atomic excitation of higher-angular
momentum states (compared to plane waves)?
Excitation properties:

. Singular cross sections

. Circular vortex dichroism

. Separation of mixed-multipole transitions

. Non-diffractive (non-divergent) polarization features:

. L/T field scaling
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Twisted Photon State

For Bessel beam vector potential and plane-wave expansion we use
formalism from Jaregui PRA 70, 033415 (2004) and
Jentschura&Serbo, PRL 106, 013001 (2011)

Use plane-wave expansion
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Twisted-photon factorization and forbidden transitions

Plane-wave selection rules (from ground state):
|li = 0,m; =0 >- |l = any; mgf = £1 = (photon helicity) >
What is the new effect from twisted wave?
The quantization axis is tilted by an angle 6,

A single eigenstate of J, becomes a sum over all m]'c expressed via
Wigner functions
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Each transition amplitude receives a factor (™~ Pk

¢ -integration gives Bessel factors J m—m, (kb)

. ]m}_my (0) =0if m]'c # m, => on-axis “selection rules”
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Factorization Property and Selection Rules

In the transition matrix element for atomic photoexcitation by OAM Bessel
beam can be presented as a plane-wave matrix element times factors
independent of the atomic structure AA, Carlson, Mukherjee, Phys. Rev. A 88,
033841 (2013), J. Opt. 18 (2016) 074013; Scholz-Margraf, Fritzsche, Serbo,
AA, Surzhykov, Phys. Rev. A 90, 013425 (2014)
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It results in new selection rules near optical vortex center

when off-axis b<A

The ratio of high-multipole amplitudes to E1 transition 1s

M@m., > lf = 1) ((10)(1f_])
: X

My = 1) b

The formalism was applied to photo-disintegration of a deuteron in

A Afanasev, VG Serbo, M Solyanik - 2018 J. Phys. G: Nucl. Part. Phys. 45 055102
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[on-Trap Test for On-Axis Selection Rules
(Experiment in QUANTUM Center, Mainz U.) . X
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Transfer of optical orbital angular momentum to a

bound electron

Christian T. Schmiegelow”, Jonas Schulz, Henning Kaufmann', Thomas Ruster!, Ulrich G. Poschinger1
& Ferdinand Schmidt-Kaler'
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Figure 1 | Energy levels and experimental set-up. (a) Energy levels in
40Cat. The quadrupole transition at 729 nm is used to investigate the
transfer of OAM from a photon to a single ion, the dipole transitions near
397, 866 and 854 nm are used for cooling, initialization and detection.
(b) Experimental set-up. A single ion is trapped in a linear segmented Paul
trap (yellow) inside an UHV chamber (gray). Delivered through fibres
(top-left), light resonant with the dipole transitions is used for Doppler
cooling, detection (397 and 866 nm) and state reset (854 nm). Resonance
fluorescence near 397 nm is imaged on an EMCCD camera (bottom-right)
with lenses L, 3, passing a dichroic mirror and an interference filter. To
excite the quadrupole 425, ,, «»32Ds, transition, coherent light from a Ti:Sa
laser is transmitted through an acousto-optic modulator for frequency and
timing control, filtered by a polarization maintaining fibre and converted to
the desired vortex beam with a holographic phase plate. The laser beam
polarization is set by a series of quarter- and half-wave plates, and focused
onto the ion by lenses L; (f=50mm) and L, (f=67mm). The magnetic
field is controlled by coils G4 plus an additional coil (not shown) in the
vertical direction.
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Selection rules verified both on-axis and off-axis
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40Ca* E2 Transitions (m;=-1/2)
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of atomic multipole transitions;
superkick

More recent measurements of octupole (E3) transitions on 171Yb+ ion:

Lange et al, PRL 129, 253901 (2022)
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Atomic spectroscopy with twisted photons

PHYSICAL REVIEW A 97, 023422 (2018)
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Atomic spectroscopy with twisted photons: Separation of M1-E2 mixed multipoles

Andrei Afanasev,' Carl E. Carlson,? and Maria Solyanik'
' Department of Physics, The George Washington University, Washington, D.C. 20052, USA
2Department of Physics, The College of William and Mary in Virginia, Williamsburg, Virginia 23187, USA

M (Received 9 January 2018; published 26 February 2018)

We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital
angular momentum along their direction of propagation. From the angular momentum and parity considerations,
we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of
the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity
E2-M1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our
theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar
contributions by measuring the photoexcitation rate as a function of the atom’s position (or impact parameter)
with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented
if the target’s atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical
examples are presented for Boron-like highly charged ions.
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Formalism
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Twisted amplitude = plane-wave amplitude x atomic-independent factors
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Spherical-harmonic expansion for the field | Multipole expansion for plane-wave transition amplitude
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Results for amplitudes

. Consider highly-charged ions (HCI) as an example; M1 and E2 are mixed and similar in
magnitude

. E2 and M1 enter the absorption rates weighted by twisted-photon factors
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] FIG. 1. Dependence of photoabsorption amplitudes of (a) M1
00 s = s tmetin Ko it meme e e Zieailin ] (A = 351 nm) for m, =1, and (b) E2 (A =426 nm) for m, =2
e =2 0 2 4 transitions in Pr®* HCI of OAM photons with Bessel profile for
... S Am = 2 (dashed blue curve), Am = 1 (black solid curve), Am =0
] (dotted green curve), Am = —1 (dot-dashed red curve), Am = -2
(long-dashed purple curve). A = 1 (RCP) in both plots.
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Results for absorption rates
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FIG. 3. Log plots of photoabsorption rates in Boron-like HCI for
pitch angles (a) & = 0.1 and (b) 0.2. The transitions are excited

by twisted photons with Bessel profile, m, = 2, and right-handed
helicity (A = 1).
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The absorption cross section (=rate/flux) has
a singular term in ~1/b?

independent of the pitch angle
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Separation of Multipolar Transitions

with Twisted Photons

Andrei Afanasev, Carl E. Carlson, and Maria Solyanik, Phys. Rev. A 97,
023422 (2018) arXiv:1801.03227, Separation of M1-E2 Mixed Multipoles

see also Schulz et al. PRA 102, 012812 (2020) on E3 transitions

Theoretical analysis demonstrates that it is possible to extract the relative
transition rates of different multipolar contributions by measuring the
photo-excitation rate as a function of the atom’s position (or the impact
parameter) with respect to the optical vortex center.

Absorption rates with Boron-like
Highly-charged ions: M1/E2=1.1
for plane-wave photoexcitation

The approach can be extended to
separation of multipoles in molecules,
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1 nanoparticles or nuclei
(see Kirschbaum et al, arXiv:2404.13023
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Circular Dichroism in Atomic Transitions
Afanasev, Carlson, Solyanik J.Opt. 19 (2017) 105401

Photon states with aligned spin and OAM However, opposite spin asymmetry at beam
are more likely to be absorbed-> dichroism  periphery =>net asymmetry is zero!

observation of spin-asymmetric absorption of twisted light by
atomic matter requires localization of the target atoms within

Different cross sections for
opposite spin projections

1.07~ about light's wavelength. It can be achieved, for example, by
(Whlle OAM is unchanged) s \ using nano—s.lzed apertures, well-localized ions in Paul traps,
. . .. ° Or mesoscopicC targets.
e No dichroism for E1-transitions 8 05
. . (]
* Strong dichroism near vortex o — =
center for E2 transitions and higher 2. o0 my=
5 =
= 14
£ — my,=
.. ) . . o L. X Y
Implications: Parity-conserving 8 05 o eln ol
nplic _ ' S D — Zih=t = T
birefringence and dichroism ke O e
. . I
of an optical vortex in the 10l ‘ ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0 25 3.0

isotropic medium

b/A

David Andrews, Kayn Forbes, Optics Letters (2018), on Circular Vortex Dichroism (CVD)
in chiral matter; here we considered (E2)? contribution due to chirality of the beam,
see also Phys. Rev. A 99, 023837 (2019), J. Phys. Photonics 3 022007 (2021)
» NB: No effect if integrated over the wavefront; largest effects for ~wavelength radius
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Spin-density matrix of a
polarized vector vortex beam

9D Poincare

Sphere

AA, Carlson, Wang, J. Opt. 22 054001 (2020)
Spin wave function of spin-1 particle, a pure state

Fa, +1a
x0) = a* ) +@lino) + a7l o = S a0 =0 3 i =
Spin-density matrix for pure or non-pure states

pu Fi a"la_’l Tvo — |a+|~ i3 |a_|_ _ 2|ao|2
where P;, P;; are the operators of spin and quadrupole ) \/_ |a_|_|2 + |a —|2 G N |aO|2
moment, and p;, p;; are corresponding vector and 1

quadrupole polarizations that can be expressed in terms P = 3 {I + (p;,,-’Pz +pyPy + PPz )+
of the above amplitudes a; and a®°,

3

Pi = 'i'fijkai.a}.c; Pik = —5(

a (pa:ypa:y + Dy: pyz + Dzz pzz)+
3

2
— ik )

a;a;. + apa; — 1 1
0 e 1 § Pz — Pyy)(Prz — Puy) + 5p22P2)

The following relations hold between spin density matrices of the twisted photons and the excited 1, = 1 state:

p{Y) — (7) = ple) — p(e) In presence of quadrupole interaction each polarization
i) p(‘-’) (7) p(‘-’) component evolves, resulting in new types of birefringence
zZZ zZZz

and dichroism; formalism applies to mixed quantum states

o = (7) & Octofringence and octochroism?

Pzz = —Pzz s Pyz = —Pyz
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Examples of atomic alignment parameters (E1 transition)
coherent superposition of states with (m, = -2, A = 1)

E 1-transitions: and (my =3, A=—1).
Spin-density matrix of optlcally
polarized atoms Eees

in one-to-one
correspondence with
photon’s

byl

B,(l=1)

THE GEORGE

WASHINGTON FIG. 2. Plots of the alighment parameters B2(1) and Bi(1), top to bottom, for S — P transitions, with contour plots on
UNIVERSITY the left and 3D versions of the same on the right. Each plot shows the By parameter as a function of the impact parameter
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Examples of atomic alignment parameters (E2 transition)

coherent superposition of states with (m, = -2, A = 1)
and (m, =3, A =-1).

By (ly=2)

FIG. 3. Plots of the alignment parameters B4(2), Bz(2), B2(2), and By(2), top to bottom, for S — D transitions, with contour
plots on the left and 3D versions of the same on the right. Again, each plot shows the By parameter as a function of the impact
parameter components b, and b, measured in wavelengths of the incident light beam.
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Transverse vector polarization of atoms by twisted light

Flux

Pperp

Energy density Transverse vector polarization (=zero
for plane waves)

e one-to-one correspondence between photon’s and atom’s polarizations in E1-,M1-transitions
 Different for higher multipoles

» spatial extent of transverse-polarization region is independent of beam waist (see next slide)

Independence of beam waist also shows in transition amplitudes near singularity
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Non-Diffractive Polarization Features - L/T Ratio

. Consider 3D-polarization parameters (longitudinal fields included!)
I |50 il L e
T ELP + EE P+ EGE

. |E%A % + |[EE ) — 2| ER)?
T LR+ B P IR
. No transverse expansion due to propagation, AA, Kingsley-Smith,
Rodriguez-Fortuno, Zayats, Advanced Photonics Nexus 2,026001 (2023)

Flux, I=2, A=-1, z=0 Flux, =2, A=-1, z=5z
A A

Propagation
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WASHINGTON
UNIVERSITY

wastinaTon, oc - Follows from Maxwell’s equations near phase singularity




Application considered for Quantum Networking

APS Division of Atomic and Molecular Physics Meeting 2023, abstract id.N01.065

il Strontium ions for quantum networking and vortex field experiments

Mika A. Chmielewski, Denton Wu, Raphael J. Metz, Eunji Ko, Hao Wang, Andrei V. Afanasev, Norbert M. Linke

s Y
Joint Quantum Institute, University of Maryland Department of Physics, College Park, Maryland, 20742, USA and George Washington University, Washington DC, 20052, USA

The strontium ion is an ideal didate for medi di The 1082 nm transition shown below has low attenuation in silica ‘We simulate the effect of the trap rods on the vortex field as a
quantum networking due to an atomic transition at 1092 nm, a fiber, making it ideal for tr ission over | kil function of time to verify that the central dark spot of the vortex

wavelength compatible with existing fiber optic infrastructure. does not shift in position.

This transition eliminates the need for lossy photon conversion P, :f Hxsr» Phase Shaps Phase Intsnsity
pi llowing for direct 1 on the —— e N\

kilometer scale. ) [l T\ w m [ E
The final qubit states in our photon-generation scheme lie in :'\: W fon % \ g ;

the D3/2 level and differ by Amj=2. We propose a scheme for ’ SO | Rilrmprigdiy |, N % [ n
driving this dipole-forbidden transition using a microwave ‘ YN ™ \I — : m=+1
vortex field. This will also allow us to measure the ratio of E2 a1 ™ @ m n
and M1 multipoles of this vortex field, which has not previously ) | — o

Experimental Apparatus

e 4/~ @ =g |
| = - ; .

o Achi

ion-photon g with this trap
e Second trap, ion-ion entanglement

® Use microwave vortex field to generate superposition
- r i ; T o[ ® Measure M1/E2 ratio of the vortex field

s

e PLS o
We use a linear Paul trap with high optical access, four rods 9o ’(’ 999/ P,
and hollow endcaps for axial laser illumination. —

e T r—
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Summary

Novel features of interaction between twisted photons and atomic matter
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Excitation of states with a range of quantum numbers, different from plane
waves

Modified quantum selection rules validated by Mainz measurements with
trapped 4°Ca+

Can drive selected plane-wave forbidden Am==+2 atomic transitions,
while suppressing Am==+1

Localization of the target atom is essential for modified twisted vs plane-
wave selection rules

Circular dichroism of twisted photons takes place even in non-chiral
matter

L/T field ratio and circular vortex dichroism show (non-diffractive)
scaling against propagation — 1.e., independence of beam waist

Possible applications include quantum computing and quantum networks
Nuclear transitions: Kirschbaum et al, arXiv:2404.13023 (todays talk)
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