Structured Neutron Waves

Dmitry Pushin

Department of Physics and Astronomy \& Institute for Quantum Computing, University of Waterloo/National Institute of Standards and Technology

Waterloo, Ontario, Canada

Latitude:
London N51.5072 ${ }^{\circ}$
Munich N48.1351 ${ }^{\circ}$
Monaco N43.7389
Waterloo N43.7102 ${ }^{\circ}$
Cannes N43.5528 ${ }^{\circ}$
-David Cory -Ivar Taminau -Melissa Henderson -Austin Woolverton -Joachim Nsofini
-Dusan Sarenac
-Huseyin Ekinci
-Connor Kapahi
-Olivier Nahman-Lévesque

University of Waterloo Campus

Mike Lazaridis

Perimeter Institute

Neutron spectrum

Rule of twos:

- Energy of 20 meV
- Wavelength of $2 \AA$
- Speed of $2000 \mathrm{~m} / \mathrm{s}$

- Gravity
- Magnetic
- Coriolis
- Aharonov-Casher
- Nuclear
- Scalar Aharonov-Bohm

Neutron Interferometer

The Neutron Interferometer and Optics Facility

Isolated 40,000 Kg room is supported by six airsprings
Active Vibration Control eliminates vibrations less than 10 Hz
Temperature Controlled to +/-5 mK

Experimental Realization of Decoherence-Free Subspace in Neutron Interferometry

D. A. Pushin, ${ }^{1, *}$ M. G. Huber, ${ }^{2}$ M. Arif, ${ }^{2}$ and D. G. Cory ${ }^{1,3,4}$

$3+4=5 ?!$

3 blade setup

4 blade setup

Two phase-grating moiré NI

$$
I=A+B \cos (2 \pi f y+\varphi)
$$

Pushin DA, Sarenac D, Hussey DS, Miao H, Arif M, Cory DG, Huber MG, Jacobson DL, LaManna JM, Parker JD, Shinohara T. Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging. Physical Review A. 2017 Apr 26;95(4):043637.

What we have so far

eld interference of a neutron white beam and the applications to noninvasive phase-contrast imaging
D. A. Pushin, ${ }^{1,2,{ }^{*}}$ D. Sarenac, ${ }^{1,2}$ D. S. Hussey, ${ }^{3}$ H. Miao, ${ }^{4}$ M. Arif, ${ }^{3}$ D. G. Cory, ${ }^{2,5,6,7}$ M. G. Huber, ${ }^{3}$ D. L. Jacobson, ${ }^{3}$ J. M. LaManna, ${ }^{3}$ J. D. Parker, ${ }^{8}$ T. Shinohara, ${ }^{9}$ W. Ueno, ${ }^{9}$ and H. Wen ${ }^{4}$

Three Phase-Grating Moiré Neutron Interferometer for Large Interferometer Area Applications
D. Sarenac, ${ }^{1,2,{ }^{*}}$ D. A. Pushin, ${ }^{1,2, \dagger}$ M. G. Huber, ${ }^{3}$ D. S. Hussey, ${ }^{3}$ H. Miao, ${ }^{4}$ M. Arif, ${ }^{3}$ D. G. Cory, ${ }^{2,5,6,7}$ A. D. Cronin, ${ }^{8}$ B. Heacock, ${ }^{9,10}$ D. L. Jacobson, ${ }^{3}$ J. M. LaManna, ${ }^{3}$ and H. Wen ${ }^{4}$

Measuring Small Forces with Neutron Interferometric Microscopy: A wholly unique and novel paradigm for Big-G

2d- grating interferometry

D. Sarenac, et. al. "Phase and contrast moiré signatures in two-dimensional cone beam interferometry", arXiv:2311.02261

2d-grating interferometry

Structured Light and OAM

https://en.wikipedia.org/wiki/Orbital_angular_momentum_of_light

Plane Wave
$\left|\psi_{i n}\right\rangle=e^{i k z}$

Helical Wave
$\left|\psi_{S P P}\right\rangle=e^{i \ell \varphi} e^{i k_{z} Z}$

Yao, A. M. \& Padgett, M. J.
Adv. Opt. Photon. 3, 161-204 (2011).

Imaging with Neutrons

The fine details of the water concentration in these lilies are clear to neutrons even in a lead cask

Ordinary photography

Neutron radiography

Aluminum spiral phase plates for neutrons

$$
h=h_{0}+\frac{h_{s} \varphi}{2 \pi}
$$

Phase of wavefunction increases linearly with azimuthal angle φ.
b

SPPs as seen from above, 25 mm diameter respectively. Milled from Al 6061 dowel by diamond turning.

$$
h_{s}=112 \mu \text { per } 2 \pi \text { phase step. }
$$

Index of refraction $n=1-2.43 \times 10^{-6}$

Control phase of $\lambda=0.271 \mathrm{~nm}$ wave motion with 0.1 mm dimensional figure!

Controlling neutron orbital angular momentum

Charles W. Clark, Roman Barankov, Michael G. Huber, Muhammad Arif, David G. Cory \& Dmitry A. Pushin

Nature 525, 504-506 (24 September 2015) Download Citation \downarrow

Neutron Holography

Sarenac, Dusan, Michael G. Huber, Benjamin Heacock, Muhammad Arif, Charles W. Clark, David G. Cory, Chandra B. Shahi, and Dmitry A. Pushin. "Holography with a neutron interferometer." Optics express 24, no. 20 (2016): 22528-22535.

Neutron Holography

In 2016, researchers reported using neutrons to make holograms based on the same principles used in optical holography. A neutron enters an interferometer and is separated into two paths by a beam splitter, generating reference and object beams. The object beam was given a spatially varying phase after passing through a test object called a spiral-phase plate (a device that imparts helicity), while the reference beam, as in optical holography, is unaltered. The two beams were combined at another beam splitter, and the resulting beams sent to an imaging detector. The unique setup may offer a new way to study neutrons and use neutron imaging for characterizing properties of materials.

APS News Top Ten

 Physics Newsmakers of2016

1. Ripples in Spacetime
2. Nobel Prizes
3. Rise and Fall of the $\mathbf{7 5 0} \mathbf{~ G e V}$ Bump
4. Celebrity Elements
5. Neutron Holography
6. The Solar System's 9th Resident?
7. Kokabee Freed
8. CERN's First Female Director
9. Rosetta's Last Signal
10. In Memoriam

APS NEWS

Top Ten Physics Newsmakers of 2016

Each year, APS News selects the top ten physics stories that made it into newspapers and onto televisions in the U.S. and across the world. While the selections may be scientifically important, the main criterion is how much coverage they generated.

Ripples in Spacetime
It was the black hole merger heard around the world. In February 2016 researchers announced the first direct observation of gravitational waves. The Laser Interferometer Gravitational Observatory Scientific Collaboration (LIGO) and the Virgo Collaboration attributed the signal to a merger of two black holes, whose
death spiral could be heard as a "chirp" when converted to an audio waveform. death spiral could be heard as a "chirp" when converred to an audio waveform.
Then in June 2016, the research teams presented results from a second merge this time of two black holes with smaller masses. The LIGO detectors were shut down for upgrades and restarted in November for a second observing run. Also in June, the European Space Agency had a successsul test run of the Laser operating gravitational wave detectors in orbit.

Nsofini, J., Sarenac, D., Wood, C.J., Cory, D.G., Arif, M., Clark, C.W., Huber, M.G. and Pushin, D.A., 2016.

Neutron Spin-Orbit States

a) CYLINDRICALLY POLARIZED STATES

$$
|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle+\mathrm{e}^{i \beta} \mathrm{e}^{i \phi}\left|\downarrow_{\mathrm{z}}\right\rangle}{\sqrt{ } 2}
$$

b) AZIMUTHALLY POLARIZED STATES
c) RADIALLY POLARIZED STATES

$$
|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle-i \mathrm{e}^{i \phi}\left|\downarrow_{\mathrm{z}}\right\rangle}{\sqrt{ } 2} \quad|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle+i \mathrm{e}^{i \phi}\left|\downarrow_{\mathrm{z}}\right\rangle}{\sqrt{ } 2}
$$

$$
|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle+\mathrm{e}^{i \phi}\left|\downarrow_{\mathrm{z}}\right\rangle}{\sqrt{ } 2}
$$

$$
|\Psi\rangle=\frac{\left|\uparrow_{\mathrm{z}}\right\rangle-\mathrm{e}^{i \phi}\left|\downarrow_{\mathrm{z}}\right\rangle}{\sqrt{ } 2}
$$

d) HYBRID POLARIZED STATES
$|\Psi\rangle=\frac{\left|\uparrow_{z}\right\rangle+e^{i \beta} e^{-i \phi}\left|\downarrow_{z}\right\rangle}{\sqrt{ } 2}$

f) HEDGEHOG

$|\Psi\rangle=\cos \left(\frac{\pi \rho}{2 \rho_{c}}\right)\left|\uparrow_{\mathrm{z}}\right\rangle+\mathrm{e}^{i \phi_{\sin }\left(\frac{\pi \rho}{2 \rho_{c}}\right)\left|\downarrow_{\mathrm{z}}\right\rangle}$

g) SPIRAL SKYRMION STATES

Sarenac, D., Nsofini, J., Hincks, I., Arif, M., Clark, C.W., Cory, D.G., Huber, M.G. and Pushin, D.A., 2018. Methods of preparing and detecting neutron spin-orbit states. New Journal of Physics 20 (10), 103012

Neutron Spin-Orbit States

Quadrupole operator: $U_{Q}=e^{-i \frac{\pi r}{2 r_{c}}\left(-\cos [\varphi] \sigma_{x}+\sin [\varphi] \sigma_{y}\right)}=\cos \left(\frac{\pi r}{2 r_{c}}\right) \mathbb{1}+i \sin \left(\frac{\pi r}{2 r_{c}}\right)\left(l_{+} \hat{\sigma}_{+}+l_{-} \hat{\sigma}_{-}\right)$

\square

Suzuki-Trotter expansion: $\quad U_{Q}=\lim _{N \rightarrow \infty}\left(e^{i \frac{\pi}{2 N r_{c}} x \sigma_{x}} e^{-i \frac{\pi}{2 N r_{c}} y \sigma_{y}}\right)^{N}$

Phase Profile

$$
\begin{aligned}
& l_{ \pm}=e^{ \pm i \phi} \\
& \hat{\sigma}_{ \pm}=\left(\hat{\sigma}_{x} \pm i \hat{\sigma}_{y}\right) / 2
\end{aligned}
$$

Intensity Profile

Generation and detection of spin-orbit coupled neutron beams

Dusan Sarenac ${ }^{\text {a, }, 1}$, Connor Kapahia ${ }^{\text {a,b }}$, Wangchun Chen ${ }^{c, d}$, Charles W. Clark ${ }^{\mathrm{e}}$, David G. Cory ${ }^{\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}}$, Michael G. Huber ${ }^{\mathrm{i} \text {, }, ~}$ Ivar Taminiau ${ }^{\text {a }}$, Kirill Zhernenkov ${ }^{\text {a,j,k,k }}$, and Dmitry A. Pushin ${ }^{\text {a,b }}$
${ }^{a}$ Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada; bepartment of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada; 'NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899; dDepartment of Materials Science and Engineering, University of Maryland, College Park, MD 20742; e Joint Quantum Institute, National Institute of Standards and Technology and
 for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada, Canadian instute for Advanced Research, Jölo, Ontario M5G Z8, Canada, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899; Jülich Centre for Neutron Science at Heinz
Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85748 Garching, Germany; and ${ }^{\text {k Frank Laboratory of Neutron Physics, Joint Institute for Nuclear }}$ Mesearch, 141980 Dubna, Moscow Region, Russia

A

B

Electron OAM obtained using gratings McMorran et al Science 2011

Back to neutrons

｜｜｜｜积｜｜	｜｜｜｜｜｜120｜｜｜｜	｜｜｜｜｜｜\％｜	｜｜｜｜｜｜ \mid｜n｜｜ \mid			｜｜｜｜｜｜rand｜｜	｜｜｜｜｜｜星｜｜｜｜	｜｜｜｜｜｜1an｜｜｜	｜｜｜｜｜｜｜n｜｜｜｜		｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜年｜｜｜｜｜	｜｜｜｜｜｜ \mid｜n｜｜｜｜
			｜｜｜｜｜｜ \mid｜r｜l｜｜	｜｜｜｜｜｜1／｜｜｜ \mid	｜｜｜｜｜r｜a｜｜		｜｜｜｜｜（1mil｜｜	｜｜｜｜｜r｜in｜｜｜	｜｜｜｜｜｜1／｜｜｜｜	｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜｜rn｜｜｜｜｜	｜｜｜｜｜（1）｜｜｜｜｜
	｜｜｜｜｜｜｜｜｜		｜｜｜｜｜｜1an｜｜	｜｜｜｜｜｜r｜in｜｜	｜｜｜｜｜｜｜｜1｜｜｜｜			｜｜｜｜｜｜｜｜｜｜｜｜｜	｜｜｜｜｜｜｜｜｜｜｜｜｜｜	｜｜｜｜｜｜｜｜｜｜｜｜｜	｜｜｜｜｜｜1近｜｜	｜｜｜｜｜｜rna｜｜｜	｜｜1｜｜f1al｜｜
	｜｜｜｜｜｜1．｜｜｜｜｜	｜｜｜｜｜ \mid ma｜ \mid	｜｜｜｜｜㐌｜｜｜｜｜	｜｜｜｜｜｜｜｜｜｜｜		｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜｜ral｜｜	｜｜｜｜｜｜｜1a｜｜｜	｜｜｜｜｜（1）｜｜｜｜		｜｜｜｜｜级｜｜｜｜｜		
	｜｜｜｜｜｜际｜｜	｜｜｜｜｜｜r｜in｜｜	｜｜｜｜｜䧁｜｜	｜｜｜｜｜｜｜10｜｜	｜｜｜｜｜盛｜｜｜	｜｜｜｜｜｜r｜in｜｜		｜｜｜｜｜｜rnil｜｜	｜｜｜｜｜｜（1）｜｜｜		｜｜｜｜｜（1an｜｜｜｜	｜｜｜｜｜｜120｜｜｜	｜｜｜｜｜｜1．1）｜｜
		｜｜｜｜｜f（1）｜｜		｜｜｜｜｜㐌｜｜｜｜	｜｜｜｜｜ \mid｜n｜｜｜	｜｜｜｜｜rn｜｜l｜				｜｜｜｜f（n）｜	｜｜｜｜｜㐌｜	｜｜｜｜｜敉｜｜	｜｜｜｜｜1／2］｜｜｜
	｜｜｜｜｜｜ \mid m｜｜	｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜暞｜｜｜｜｜				｜｜｜｜｜｜ran｜｜｜｜	｜｜｜｜｜｜n｜｜｜｜｜	｜｜｜｜｜｜｜10｜｜｜	｜｜｜｜｜（1）｜		｜｜｜1｜	
	｜｜｜｜｜ 6 （1）｜ \mid	｜｜｜｜｜｜19｜｜｜	｜｜｜｜年敉｜｜	｜｜｜｜｜秝｜｜	｜｜｜｜｜暏｜ \mid｜		｜｜｜｜｜年｜｜｜	｜｜｜｜｜年｜｜｜ \mid	｜｜｜｜｜｜rnal｜｜	｜｜｜｜｜年｜｜｜ \mid｜	｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜｜r｜｜｜｜｜	｜｜｜｜｜｜｜｜｜｜｜｜｜
	｜｜｜｜｜｜敉｜｜｜｜	｜｜｜｜｜｜r｜a｜｜｜	｜｜｜｜｜｜12｜｜｜｜	｜｜｜｜｜极｜ \mid｜｜	｜｜｜｜｜｜｜1．｜｜｜｜	｜｜｜｜｜陮｜｜｜	｜｜｜｜｜	｜｜｜｜｜｜n｜｜l｜｜	｜｜｜｜｜（1an｜｜｜		｜｜｜｜｜｜10｜｜｜｜｜	｜｜｜｜｜笈｜｜｜｜｜	｜｜｜1｜｜（1）｜｜｜
	｜｜｜｜｜｜r｜｜｜｜｜	｜｜｜｜｜｜ran｜｜｜	｜｜｜｜｜｜r｜｜｜｜｜｜	｜｜｜｜｜係｜		｜｜｜｜盛｜｜	｜｜｜｜｜ran｜｜	｜｜｜｜｜ \mid｜ra｜｜｜	｜｜｜｜｜｜12｜｜｜｜	｜｜｜｜｜ \mid｜n｜ \mid｜｜	｜｜｜｜｜年｜｜｜｜｜	｜｜｜｜｜｜｜｜｜｜｜｜｜	｜｜｜｜｜｜｜｜a｜｜｜｜｜
แш	шшш	шшш	щщщ	แшш	щщщ	щщ॥	щщ！	щ॥	ІІІІІІ	ІІІІІ	ІІІ！ 1 ｜｜	IIIIII	｜IIIIIII

Side view of neutron diffraction gratings

$$
\begin{gathered}
2500 \times 2500= \\
6,250,000 \\
\text { gratings in square array }
\end{gathered}
$$

Each nanograting sees an $l=0$ input, diffracts coherently.

ScienceAdvances

Experimental realization of neutron helical waves

Intensities from individual gratings combine in far field.

a)
b)
c)

D. Sarenac, et. al., arXiv:2404.00705v1

b)
c)

d)

e)

Neutron OAM Timeline

2015

C. W. Clark, et al. Nature 525, 504-506 (2015).

2019

Andrei V Afanasev, et al. Physical Review C 100, 051601 (2019).
D. Sarenac, et al. PNAS

116, 20328-20332 (2019).

2016

Joachim Nsofini, et al. PRA 94, 013605 (2016)
D. Sarenac, et al.

Optics express 24, 22528-22535 (2016).

2021

N. Geerits et al. PRA 103, 6022205 (2021)

AV Afanasev, et al Physical Review C 103, 054612 (2021).

Jach, Terrence, et al. arXiv:2109.07454 (2021)

2018

R. L. Cappelletti, et al. PRL 120, 090402 (2018).
H. Larocque, et al Nature Physics 14, 1-2 (2018)
D. Sarenac, et al. New Journal of Physics

20, 103012 (2018)

2022

Joseph A Sherwin, Physics Letters A, 128102 (2022).

Geerits, Niels, et al. arXiv:2205.00536 (2022).
D. Sarenac, et al arXiv:2205.06263 (2022)

Something else

Topological Protection and Skyrmions

- Skyrmions represent topologically protected magnetic objects in which the spins wrap the entire unit sphere.
- The uniform stacking of these spin structures in 3D produces skyrmion strings which may be interrupted along their propagation length by defects at non-zero temperature.

Three-dimensional neutron far-field tomography of abulkskyrmion lattice

Received: 30 August 2022
Accepted: 13 July 2023
 C. Heikes \oplus^{3}, M. G. Huber ${ }^{3}$, J. Krzywon \oplus^{3}, O. Nahman-Levesqué ${ }^{1,2}$, G. M. Luke $\oplus^{5}{ }^{5.6}$, M. Pula ${ }^{5}$, D. Sarenac © ${ }^{1,7}$, K. Zhernenkou ${ }^{1,8} \&$ D. A. Pushin $\oplus^{1,2}$

b
C

Quantum random walk for neutrons and other particles.

```
PHYSICAL REVIEW A
Highlights Recent Accepted Collections Authors Referees Search Press About
Quantum-information approach to dynamical diffraction theory J. Nsofini, K. Ghofrani, D. Sarenac, D. G. Cory, and D. A. Pushin Phys. Rev. A 94, 062311 - Published 8 December 2016
PHYSICAL REVIEW A
Highlights Recent Accepted Collections Authors Referees Search Pres
```

Generalizing the quantum information model for dynamic diffraction
O. Nahman-Lévesque, D. Sarenac, D. G. Cory, B. Heacock, M. G. Huber, and D. A. Pushin Phys. Rev. A 105, 022403 - Published 7 February 2022

Laue Geometry

Bragg Geometry

Quantum random walk for neutrons and other particles.

New J. Phys. 25 (2023) 073016

New Journal of Physics

 IOP Institute of Physics $\begin{aligned} & \text { with: Deutsche Physikalische } \\ & \text { Gesestlschaft and the institute } \\ & \text { of }\end{aligned}$ Geselischan
of hysics

PAPER
Quantum information approach to the implementation of a neutron cavity

*)
CANADA FIRST

APOGEEE OOEXCELLENCE
ENRECHERCHE

Canada Excellence
Research Chairs
Chaires d'excellence
en recherche du Canada

NEUTRN NTICS

(4) MARIVRSITY OF

S) Jülich

* OAK RIDGE

National Laboratory

Thank you

UNIVERSITY OF
WATERLOO IQC

Computing

NGT

Transformativ
Transformative
Quantum
Technologies
Technologies

