# Studying time－like proton form factors using vortex $p \bar{p}$ annihilation 

Nikolai Korchagin
April 26， 2024
Vortex states in nuclear and particle physics
Zhuhai，China，
based on arXiv：2403．08949［hep－ph］

## Motivation

Until now: produced vortex states have small energy (photons, electrons, neutrons and atoms) Why consider p and even $\bar{p}$ ?

- high $p$ mass $\rightarrow$ access to many hadronic reactions
- a milestone on the road to use vortex states in DIS to probe of nucleon structure (spin crisis, OAM of quarks and gluons)


## Proton electromagnetic form factors

Form factors describe non-point-like interaction: $\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{p l}|F(q)|^{2}$

$$
\text { Space-like }\left(q^{2}<0\right)
$$



$$
\text { Time-like }\left(q^{2}>0\right)
$$



- Real valued function
- Has intuitive interpretation: Fourier transform of electric and magnetization distributions

$$
\rho(\vec{x})=\frac{Z e}{(2 \pi)^{2}} \int d^{3} q F(q) e^{-i \vec{q} \cdot \vec{x}}
$$

- No intuitive meaning
- Complex valued: sources of imaginary part — intermediate particles and excitations
- Relative phase is unknown. Can be measured in experiments with polarized beams (not done).


## Simple scalar Bessel state

## Coordinate space

In cylindrical coordinates ( $\rho, \phi, z$ ) for a scalar particle propagating along $z$ direction:

$$
\Psi(r, t) \propto \psi(\rho) e^{i l \phi} e^{i k_{z} z} e^{-i E t}
$$

Momentum space

$$
\Psi_{\varkappa m k_{z} \lambda}(r)=\frac{N_{\text {Bes }}}{\sqrt{2 E}} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\varkappa m}(\mathbf{k}) u_{k \lambda} e^{-i \vec{k} \cdot \vec{r}}
$$

where the Fourier amplitude is

$$
a_{\varkappa m}(\mathbf{k})=(-i)^{m} e^{i m \phi_{k}} \sqrt{\frac{2 \pi}{\varkappa}} \delta(|\mathbf{k}|-\varkappa)
$$



## Vortex fermion

- Vortex Bessel fermion can be constructed using plane wave basis.

PW basis: A plane wave fermion with $k^{\mu}=\left(E, \mathbf{k}, k_{z}\right)$, where $\mathbf{k}=|\mathbf{k}|\left(\cos \phi_{k}, \sin \phi_{k}\right)$, $k_{z}=|\vec{k}| \cos \theta$, and helicity $\lambda= \pm 1 / 2$ :

$$
\begin{gathered}
\Psi_{k \lambda}(r)=\frac{N_{\mathrm{PW}}}{\sqrt{2 E}} u_{k \lambda} e^{-i \vec{k} \vec{r}} . \\
u_{k \lambda}=\binom{\sqrt{E+m} w^{(\lambda)}}{2 \lambda \sqrt{E-m} w^{(\lambda)}}, v_{k \lambda}=\binom{-\sqrt{E-m} w^{(-\lambda)}}{2 \lambda \sqrt{E+m} w^{(-\lambda)}}, \\
w^{(+1 / 2)}=\binom{c_{i} e^{-i \phi_{i} / 2}}{s_{i} e^{i \phi_{i} / 2}}, w^{(-1 / 2)}=\binom{-s_{i} e^{-i \phi_{i} / 2}}{c_{i} e^{i \phi_{i} / 2}},
\end{gathered}
$$

where $c_{i} \equiv \cos \left(\theta_{i} / 2\right), s_{i} \equiv \sin \left(\theta_{i} / 2\right)$.

- Construction of Bessel vortex state using PW basis:

$$
\Psi_{\varkappa m k_{z} \lambda}(r)=\frac{N_{\mathrm{Bes}}}{\sqrt{2 E}} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\varkappa m}(\mathbf{k}) u_{k \lambda} e^{-i \vec{k} \cdot \vec{r}}, \quad a_{\varkappa m}(\mathbf{k})=(-i)^{m} e^{i m \phi_{k}} \sqrt{\frac{2 \pi}{\varkappa}} \delta(|\mathbf{k}|-\varkappa) .
$$

## Kinematics of final 2 particle state

Plane wave scattering
Double vortex scattering


Transverse momenta plane


## Scattering of two scalar Bessel states

1st particle: $k_{1}=\left(E_{1}, \mathbf{k}_{1}, k_{1 z}\right)$ with OAM $m_{1} ; 2$ nd particle: $k_{2}=\left(E_{2}, \mathbf{k}_{2}, k_{2 z}\right)$ with OAM $m_{2}$
Vortex scattering amplitude:

$$
\mathcal{J}=\int d^{2} \mathbf{k}_{1} d^{2} \mathbf{k}_{2} e^{i\left(m_{1} \phi_{1}-m_{2} \phi_{2}\right)} \delta\left(\left|\mathbf{k}_{1}\right|-\varkappa_{1}\right) \delta\left(\left|\mathbf{k}_{2}\right|-\varkappa_{2}\right) \delta^{(2)}\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{K}\right) \mathcal{M}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)
$$



The integral in $\mathcal{J}$ is nonzero when:
$\left|\kappa_{1}-\kappa_{2}\right| \leq|\mathbf{K}|<\kappa_{1}+\kappa_{2}$
configuration a: $\quad \phi_{1} \rightarrow \phi_{K}+\delta_{1} \quad \phi_{2} \rightarrow \phi_{K}-\delta_{2}$ configuration b: $\quad \phi_{1} \rightarrow \phi_{K}-\delta_{1} \quad \phi_{2} \rightarrow \phi_{K}+\delta_{2}$
$\mathcal{J}=\frac{e^{i\left(m_{1}-m_{2}\right) \phi_{K}}}{\sin \left(\delta_{1}+\delta_{2}\right)}\left(\mathcal{M}_{a} e^{i\left(m_{1} \delta_{1}+m_{2} \delta_{2}\right)}+\mathcal{M}_{b} e^{-i\left(m_{1} \delta_{1}+m_{2} \delta_{2}\right)}\right)$.
Cross section: $d \sigma \propto|\mathcal{J}|^{2} d^{2} \mathbf{k}_{3} d^{2} \mathbf{k}_{4}$

## Proton electromagnetic form factors

The plane wave amplitude is product of hadron $J^{\mu}$ and lepton $L_{\mu}$ currents.

$$
\mathcal{M}=\frac{e^{2}}{s} J^{\mu} L_{\mu}
$$



Nucleon current $J^{\mu}$ is

$$
\begin{gathered}
\bar{v}_{\lambda_{2}}\left(k_{2}\right)\left[\gamma^{\mu} F_{1}(s)+\frac{F_{2}(s)}{2 M} \sigma^{\mu \nu} K_{\nu}\right] u_{\lambda_{1}}\left(k_{1}\right)=\bar{v}_{\lambda_{2}}\left(k_{2}\right)\left[\gamma^{\mu} G_{M}(s)+\frac{P^{\mu}}{2 M} \frac{G_{M}(s)-G_{E}(s)}{1-\tau}\right] u_{\lambda_{1}}\left(k_{1}\right), \\
G_{E}=F_{1}+\tau F_{2}, \quad G_{M}=F_{1}+F_{2} .
\end{gathered}
$$

where $\sigma_{\mu \nu}=\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2, K=k_{1}+k_{2}, s=K^{2}, P=k_{2}-k_{1}$, and $\tau=K^{2} / 4 M^{2}$.

## Proton electromagnetic form factors

$$
\begin{gathered}
J^{\mu}=\bar{v}_{\lambda_{2}}\left(k_{2}\right)\left[\gamma^{\mu} G_{M}(s)+\frac{P^{\mu}}{2 M} \frac{G_{M}(s)-G_{E}(s)}{1-\tau}\right] u_{\lambda_{1}}\left(k_{1}\right) \\
P=k_{2}-k_{1}
\end{gathered}
$$



## Results



## Parameters:

$$
\begin{aligned}
& m_{1}=7 / 2 ; \quad m_{2}=3 / 2 ; \\
& E_{1}=1.2 \mathrm{GeV} \text {, } \\
& E_{2}=\sqrt{\kappa_{2}^{2}+M^{2}+p_{1 z}^{2}} \\
& \kappa_{1}=0.2 \mathrm{GeV} \text {, } \\
& \kappa_{2}=0.1 \mathrm{GeV} \text {; } \\
& K_{z}=0 \text {, } \\
& \left|\mathbf{k}_{3}\right|=0.8 \mathrm{GeV}
\end{aligned}
$$

$$
A=\frac{\int d \phi_{K}|\mathcal{J}|^{2} \sin \left(\phi_{K}-\phi_{3}\right)}{\int d \phi_{K}|\mathcal{J}|^{2}} .
$$

Few observations:

- number of fringes is defined by angular momenta of initial states ( $m_{1}, m_{2}$ )
- Different Mandelstam $s$ in one setup

$$
s=\left(E_{1}+E_{2}\right)^{2}-\mathbf{K}^{2}
$$

## Helicity structure

$$
\begin{gathered}
\mathcal{M}=\mathcal{M}_{\|}+\mathcal{M}_{\perp} \\
|\mathcal{J}|^{2}=\left|\mathcal{J}_{\|}+\mathcal{J}_{\perp}\right|^{2}=\left|\mathcal{J}_{\|}\right|^{2}+\left|\mathcal{J}_{\perp}\right|^{2}+2 \operatorname{Re}\left[\mathcal{J}_{\|} \mathcal{J}_{\perp}^{\dagger}\right] . \\
\mathfrak{C}_{m_{2}}^{m_{1}}=\cos \left(m_{1} \delta_{1}+m_{2} \delta_{2}\right), \quad V_{ \pm}=\sqrt{E_{1}^{+} E_{2}^{-}} \pm \sqrt{E_{1}^{-} E_{2}^{+}}, \quad W_{ \pm}=\sqrt{E_{1}^{+} E_{2}^{+}} \pm \sqrt{E_{1}^{-} E_{2}^{-}} .
\end{gathered}
$$

## RR/LL

$$
\sum_{\xi}\left|\mathcal{J}_{\|}\right|^{2} \propto 32 E_{3} E_{4} \sin ^{2} \theta_{3}\left(\mathfrak{C}_{m_{2}-\lambda}^{m_{1}-\lambda}\right)^{2}\left|G_{M}\right|^{2} \times\left|W_{-}-\frac{1-G_{E} / G_{M}}{2 M(1-\tau)} V_{+} P_{z}\right|^{2}
$$

## RL/LR

$$
\sum_{\xi}\left|\mathcal{J}_{\gamma, \perp}\right|^{2}=32\left|G_{M}\right|^{2} W_{+}^{2} E_{3} E_{4}\left(C_{m_{2}+\lambda}^{m_{1}-\lambda}\right)^{2}\left(1+\cos ^{2} \theta_{3}\right)
$$

## Helicity structure

Numerator, RR/LL keeping only terms
$\propto \sin \left(\phi_{K}-\phi_{3}\right)$

## Non-relativistic regime



## Parameters:

$$
\begin{array}{ll}
m_{1}=7 / 2, & m_{2}=3 / 2, \\
E_{1}=939 \mathrm{MeV}, & E_{2}=\sqrt{\varkappa_{2}^{2}+M^{2}+k_{1 z}^{2}}, \\
\varkappa_{1}=40 \mathrm{MeV}, & \varkappa_{2}=20 \mathrm{MeV}, \\
K_{z} & =0,
\end{array}
$$

The asymmetry is not suppressed by the hadron mass in non-relativistic regime, but defined by how non-paraxial are initial vortex states. Therefore, this method is feasible in low energy experiments.

## Conclusions

- It was shown that it is possible to extract the relative phase shift of proton electromagnetic form factors in $p \bar{p}$ annihilation. Analytical calculation in paraxial limit are in agreement with numerical calculation
- The asymmetry of differential cross section is proportional to relative form factor phase
- allows measurement at different Mandelstam $s$ in one setup, useful if phase changes rapidly
- The asymmetry is not suppressed in non-relativistic limit, therefore can be measured in experiments with low energy vortex hadrons.


## referring to yesterday discussion

is it feasible?
Penning trap

although extremely low energies can be used, but $s \approx 4 M_{p}^{2}, G_{E, M}\left(4 M_{p}^{2}\right) \rightarrow 1$

