Vortex states in nuclear and particle physics, Zhuhai

Nuclear excitation by electron capture with electron vortex beams

Yuanbin Wu

School of Physics, Nankai University

In collaboration with: C. H. Keitel and A. Pálffy

2024.04

NEEC

NEEC: Nuclear Excitation by Electron Capture

- First proposed theoretically in 1976
- First experimental observation claimed in 2018
- Relevant for studies of Nuclear structure and Nuclear astrophysics
- Manipulating nuclear states by manipulating electrons or ions
- Isomer depletion and Nuclear clock

NEEC

• NEEC may serve as a trigger for the releasing of stored energy in isomers

Isomer depletion

Isomer — long-lived excited state of nuclei

Key factors in NEEC

- Vacancies of atomic levels
- Free electrons

Scenarios of studies

- Storage rings
- EBITs
- Nuclear reactions
- Plasmas
 - Astrophysical plasmas
 - Laser-generate plasmas

0

MEEC for isomer depletion

MEEC with electron vortex beams

MEEC for isomer depletion

MEEC with electron vortex beams

NEEC for isomer depletion

Gunst, Litvinov, Keitel, Pálffy, Phys. Rev. Lett. 112, 082501(2014) Gunst, Wu, Kumar, Keitel, Pálffy, Phys. Plasmas 22, 112706 (2015) Wu, Gunst, Keitel, Pálffy, Phys. Rev. Lett. 120, 052504 (2018)Gunst, Wu, Keitel, Pálffy, Phys. Rev. E 97, 063205 (2018)Wu, Keitel, Pálffy, Phys. Rev. A 100, 063420 (2019)

First Claimed NEEC evidence

Theoretical analysis

• NEEC probability $<< P_{exc} = 0.01$ by about 8 orders magnitude

Y. Wu *et al.*, Phys. Rev. Lett. 122, 212501 (2019)
J. Rzadkiewicz *et al.*, Phys. Rev. Lett. 127, 042501 (2021)
J. Rzadkiewicz *et al.*, Phys. Rev. C 108, L031302 (2023)

First experiment evidence of NEEC

- ^{93m}Mo isomer depletion
- $P_{\rm exc} = 0.01$

C. J. Chiara et al., Nature 554, 216 (2018)

Background analysis

• Overestimated due to complex gamma background?

S. Guo et al., Nature 594, E1 (2021)

C. J. Chiara et al., Nature 594, E3 (2021)

New experiments with isomer beam

- O ⁹³^mMo ion energy: 460 MeV
- Separating ^{93m}Mo production and depletion
- $P_{\rm exc} < 2 \times 10^{-5}$
- Theoretical NEEC probability:
 P(460 MeV)/*P*(840 MeV) ~ 8% Guo *et al.*, Phys. Rev. Lett. 128, 242502 (2022)

NEEC

Conclusive observations of NEEC

- Clean environments?
- Control of the NEEC process?

Electron is one of the key factors in NEEC

• Shaping electron wave functions to manipulate the NEEC process?

— Electron vortex beams

MEEC for isomer depletion

MEEC with electron vortex beams

NEEC with electron vortex beams

Electron is one of the key factors in NEEC: Shaping electron wave functions to manipulate nuclei?

Wu, Gargiulo, Carbone, Keitel, Pálffy, Phys. Rev. Lett. 128, 162501 (2022)

NEEC with electron vortex beams

NEEC - Vortex electron

$$\sigma_{neec} = \frac{2\pi^2}{p^2} \frac{2p}{J_z} Y_{neec} L_d(E - E_d)$$

$$Y_{neec} = \frac{b^2}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{d\alpha_p}{2\pi} \frac{d\alpha_k}{2\pi} e^{im(\alpha_p - \alpha_k)} Y_{neec \ 0}^{p,k} F_1(2;u)$$

$$Y_{neec}^{p,k} = 4\pi Y_a \sum_{\kappa,m_l} \frac{Y_b}{2l+1} Y_{lm_l}^*(\theta_k, \varphi_k) Y_{lm_l}(\theta_p, \varphi_p)$$

$$u = -b^2 \zeta^2 [1 - \cos(\alpha_k - \alpha_p)]/2$$

Transitions of electric multipolarity L

$$Y_a = \frac{4\pi^2 (2J_d + 1)}{(2J_i + 1)(2L + 1)^2} \frac{B\rho_i}{R_0^{2(L+2)}}; \quad Y_b = \left[C(j_d \ L \ j; \frac{1}{2} \ 0 \ \frac{1}{2})\right]^2 |R_{L,\kappa_d,\kappa}|^2$$

Transitions of magnetic multipolarity L

$$Y_a = \frac{4\pi^2 (2J_d + 1)}{(2J_i + 1)L^2 (2L + 1)^2} B\rho_i; \quad Y_b = (2j+1)(\kappa_d + \kappa)^2 \begin{pmatrix} j_d & j & L \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}^2 \left| R_{L,\kappa_d,\kappa} \right|^2$$

Wu, Gargiulo, Carbone, Keitel, Pálffy, Phys. Rev. Lett. 128, 162501 (2022)

NEEC with electron vortex beams

 $\zeta = p_z; \ \zeta b = 1$

Wu, Gargiulo, Carbone, Keitel, Pálffy, Phys. Rev. Lett. 128, 162501 (2022)

MEEC for isomer depletion

MEEC with electron vortex beams

Summary

- NEEC can play important roles in isomer depletion
- Conclusive observations of NEEC are highly demanded
- Electron vortex beams can strongly affect the NEEC process
- Control nuclear excitations by shaping electron wave functions

Thank you for your attention!