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Peculiar Rotation Dynamics of Electron Vortex Beams

Classically, the electron as a charged partcle, undergoes cyclotron motion in a uniform
magnetic field. This can be seen from the balance of the centrifugal force against the
Lorentz force:

mev
2

r
= |e|Bv =⇒ v

r
=

|e|B
me

≡ ωc

where ωc is the cyclotron frequency.
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Peculiar Rotation Dynamics of Electron Vortex Beams

Figure: Cyclotron motion of an electron in a uniform magnetic field
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Peculiar Rotation Dynamics of Electron Vortex Beams

For electron vortex beams, however, things are quite different! They carry intrinsic orbital
angular momentum (OAM) and have finite size in the transverse direction, which can be
characterized as a distribution of charge and current. The current, coiling as solenoid,
generates magnetic dipole moment, which interacts with the magnetic field and gives the
Zeeman energy for OAM:

EZeeman = −µLB,µL = −gLµB

ℏ
Lz =⇒ EZeeman =

|e|B
2me

Lz ≡ ωLLz

where µB = ℏ|e|
2me

is the Bohr magneton, gL = 1 is the Landé g-factor for electron OAM and
ωL = |e|B

2me
= 1

2ωc is the Larmor frequency.
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Peculiar Rotation Dynamics of Electron Vortex Beams

Figure: Larmor procession of electron magnetic moment in a uniform magnetic field
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Peculiar Rotation Dynamics of Electron Vortex Beams
The wavefunction used to descibe the peculiar rotational dynamics of electron vortex beams in a uniform magnetic field so far has been limited to be
the Landau state:

Ψ
Lan
nℓ = A exp(iℓϕ) =

Cnℓ

wm

(√
2r

wm

)|ℓ|
L

|ℓ|
n

(
2r2

w2
m

)
exp

(
−

r2

w2
m

)
exp(iℓϕ)

where wm = 2
√

ℏ
|e|B , Cnℓ =

√
2n!

π(n+|ℓ|)! , n is the radial quantum number and ℓ is the azimuthal quantum number (also called topological

charge), L|ℓ|
n (.) is the generalized Laguerre polynomials.

The Landau states serve as eigenfunctions of the Hamiltonian:

Ĥ =
(π̂⊥)2

2me
=

(p̂⊥)2

2me
+

1

2
meω

2
Lr

2
+ ωLL̂z

Here, π̂ = p̂ − eA represents the kinetic momentum, with e = −|e| for an electron and the symmetric gauge, expressed as
AS = − yB

2
x̄ + xB

2
ȳ = Br

2
φ̄ has been employed.

The corresponding eigen-energies are:
E = [(2n + |ℓ| + 1) + ℓ] ℏωL
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Peculiar Rotation Dynamics of Electron Vortex Beams
Instead of rotation with a single cyclotron frequency, the Landau electrons, while propagating along the direction of the magnetic fields, have
characteristic rotation with three different expectation value of angular velocities, depending on the eigen-value ℓ of the canonical OAM operator
L̂z = −i ∂

∂φ
:

⟨ω⟩ =


0 (ℓ < 0)

ωL (ℓ = 0)

ωc (ℓ > 0)

Figure: The topological-charge-dependent rotations of the vortex electron beams with the
propagation distance. Figure adopted from (Schattschneider et al. 2014)
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Motivation From a Review on Earlier Works

2012 · · · · · ·•
Electron Vortex Beams in a Magnetic Field: A
New Twist on Landau Levels and
Aharonov-Bohm States (Bliokh et al. 2012).

2013 · · · · · ·•
Observation of the Larmor and Gouy Rotations
with Electron Vortex Beams (Guzzinati et al.
2013).

2014 · · · · · ·• Imaging the dynamics of free-electron Landau
states (Schattschneider et al. 2014).

2015 · · · · · ·• Peculiar rotation of electron vortex beams
(Schachinger et al. 2015).

2021 · · · · · ·•
General quantum-mechanical solution for
twisted electrons in a uniform magnetic field
(Zou, Zhang, and Silenko 2021).

Our preliminary work develops
naturally from some earlier works.
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So far, the study on rotational behaviour of the vortex electron beam in uniform
magnetic field uses the Landau states, which has a constant beam width.

But the experiment done in (Schachinger et al. 2015) suggest that at a larger length
scale, where the beam width changes as propagting in the magnetic field, some new
candidates for electron vortex beam is anticipated.

Luckily, we are armed with such a new vortex beam wavefunction, as proposed in (Zou,
Zhang, and Silenko 2021). Now it is worth trying to reexamine the rotational dynamics
of the electron vortex beam.

This is one of the main efforts done in our ready-to-come work.
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Before going any further, we take a closer look at the paraxial Landau modes, which is
the main

Both the free Laguerre-Gaussian (LG) beams and paraxial Landau modes are described
by the following familiar form:

Ψnℓ(r, φ, z) = A exp(iℓφ) exp

[
i
kr2

2R(z)

]
exp [−iΦG(z)] ,

A =
Cnℓ

w(z)

(√
2r

w(z)

)|ℓ|

L|ℓ|
n

(
2r2

w(z)2

)
exp

(
− r2

w(z)2

)
,

Cnℓ =

√
2n!

π(n+ |ℓ|)!
,

(1)

Note that the Landau states do not have the terms exp
[
i kr2

2R(z)

]
exp [−iΦG(z)].
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Function Free beams Paraxial Landau modes

w(z) w0

√
1 + z2

z2R
w0

√
cos2 z

zm
+ z2m

z2R
sin2 z

zm

R(z) z +
z2R
z kw2

m

cos2 z
zm

+
z2m
z2
R

sin2 z
zm(

z2m
z2
R

−1

)
sin 2z

zm

ΦG(z) (2n+ |ℓ|+ 1) arctan( z
zR

) (2n+ |ℓ|+ 1) arctan
(
zm
zR

tan z
zm

)
+ ℓ z

zm

where the beam waist w0 and the magnetic length parameter wm = 2
√

ℏ
|e|B are the

characteristic transverse length scales and zR = 1
2kw

2
0 and zm = 1

2kw
2
m are the

characteristic longitudinal length scales for the free beams and paraxial Landau modes
separately.

Note that the paraxial Landau modes coincides with the Landau state except for an
additional Gouy phase if w0 = wm, and can degenerate to the free beam for B → 0.
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Figure: The beam width w(z) of the free beams, the Landau states and the paraxial Landau
modes
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Figure: From left to right, the free beams, the Landau states and the paraxial Landau modes
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Figure: Gouy phase of paraxial Landau modes and its continuous version

For the Gouy phase ΦG(z) of paraxial Landau modes, it could be understood as the
continuous version:

ΦG(z) = (2n+ |ℓ|+ 1)

(
arctan

(
zm
zR

tan
z

zm

)
+ π

⌊
z

πzm
+

1

2

⌋)
+ ℓ

z

zm
, (2)

where ⌊.⌋ is the floor function.
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Figure: Experiment Setup in (Schattschneider
et al. 2014; Schachinger et al. 2015) for
observing the internal rotational dynamics
inside the cylindrically symmetric beams.
Figure adopted from (Schattschneider et al.
2014)

After introducing the paraxial Landau
modes, we now pass to the experiment that
our model aims to explain.
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Figure: Experiment Setup in (Schattschneider
et al. 2014; Schachinger et al. 2015) for
observing the internal rotational dynamics
inside the cylindrically symmetric beams.
Figure adopted from (Schattschneider et al.
2014)

▶ The convergent electron vortex beams
enter the longitudinal magnetic field
Bz of the objective lens and are
incident on a knife-edge (KE). The
electron vortex beams cutted by the
KE will propagate down the column
and reach the observation plane

▶ Adjusting the position of the KE
allows for measuring the rotational
dynamics of EVBs, observed as
variations in the azimuthal angle of
the intensity patterns
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▶ The rotation of electron vortex beams in a magnetic field is closely linked to the
Bohmian trajectories.

▶ Specifically, these trajectories illustrate the spiraling motion of electrons around
the magnetic-field direction.

▶ In this context, the angular velocity of the electron as a quantum fluid along the
streamlines of the probability current is defined to be ω(r) = vφ(r)

r (where
v = j/ρ is the local Bohmian velocity, i.e. the velocity on a streamline and j is
the gauge-invariant probability current, ρ is the probability density).

▶ The expectation value of this angular velocity turns out to be
⟨ω⟩ (z) = ωL

(
sgn(ℓ) w2

m
w(z)2

+ 1
)

, where sgn(.) is the sign function, ωL is the
Larmor frequency.

Qi Meng Generalized Gouy Rotation in a Uniform Magnetic Field 11 / 31



Peculiar Rotation Dynamics in a uniform magnetic field
Generalized Gouy Rotation

Simulation of the Propagation
Conclusion
References

▶ The rotation of electron vortex beams in a magnetic field is closely linked to the
Bohmian trajectories.

▶ Specifically, these trajectories illustrate the spiraling motion of electrons around
the magnetic-field direction.

▶ In this context, the angular velocity of the electron as a quantum fluid along the
streamlines of the probability current is defined to be ω(r) = vφ(r)

r (where
v = j/ρ is the local Bohmian velocity, i.e. the velocity on a streamline and j is
the gauge-invariant probability current, ρ is the probability density).

▶ The expectation value of this angular velocity turns out to be
⟨ω⟩ (z) = ωL

(
sgn(ℓ) w2

m
w(z)2

+ 1
)

, where sgn(.) is the sign function, ωL is the
Larmor frequency.

Qi Meng Generalized Gouy Rotation in a Uniform Magnetic Field 11 / 31



Peculiar Rotation Dynamics in a uniform magnetic field
Generalized Gouy Rotation

Simulation of the Propagation
Conclusion
References

▶ The rotation of electron vortex beams in a magnetic field is closely linked to the
Bohmian trajectories.

▶ Specifically, these trajectories illustrate the spiraling motion of electrons around
the magnetic-field direction.

▶ In this context, the angular velocity of the electron as a quantum fluid along the
streamlines of the probability current is defined to be ω(r) = vφ(r)

r (where
v = j/ρ is the local Bohmian velocity, i.e. the velocity on a streamline and j is
the gauge-invariant probability current, ρ is the probability density).

▶ The expectation value of this angular velocity turns out to be
⟨ω⟩ (z) = ωL

(
sgn(ℓ) w2

m
w(z)2

+ 1
)

, where sgn(.) is the sign function, ωL is the
Larmor frequency.
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▶ The expectation value of this angular velocity turns out to be
⟨ω⟩ (z) = ωL

(
sgn(ℓ) w2

m
w(z)2

+ 1
)

, where sgn(.) is the sign function, ωL is the
Larmor frequency.

▶ For Landau states, w(z) = wm, we then have the famous splitting of three
frequencies:

⟨ω⟩ (z) = ωL (sgn(ℓ) + 1)

Qi Meng Generalized Gouy Rotation in a Uniform Magnetic Field 12 / 31



Peculiar Rotation Dynamics in a uniform magnetic field
Generalized Gouy Rotation

Simulation of the Propagation
Conclusion
References

▶ Assuming uniform motion in z-direction z ≃ vt, ⟨ω⟩ = d⟨φ⟩
dt ≃ v d⟨φ⟩

dz .

▶ We can then calculated the Bohmian rotation angle using the w(z) of paraxial
Landau modes:

⟨φ⟩ = 1

v

∫
⟨ω⟩ dz

=
z

zm
+ sgn (ℓ) arctan

(
zm
zR

tan

(
z

zm

)) (3)

▶ Recall that for paraxial Landau modes the Gouy phase reads:

ΦG = (2n+ |ℓ|+ 1)arctan

(
zm
zR

tan
z

zm

)
+ ℓ

z

zm
(4)

▶ Thus, the Bohmian rotation angle in a uniform field can be characterized by the
Gouy phase of the paraxial Landau modes.
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Figure: Experiment Setup.
Figure adopted from
(Schattschneider et al.
2014)

▶ The measured angle in the experiment is the angle
difference between the knife-edge cutting position zk
and the observation plane position zdf .

▶ Based on paraxial Landau modes, we can analytically
calculate this observable:

∆⟨ϕ⟩ =
z − zdf

zm

+ sgn (ℓ)

[
arctan

(
zm

zR
tan

(
z

zm

))
− arctan

(
zm

zR
tan

(
zdf

zm

))] (5)

▶ This formula is the model that we will use to explain
the experimental data.
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Figure: Prediction of experimental
data in (Schachinger et al. 2015)

▶ In the work (Schachinger et al. 2015), they
used w(z) = w0

√
1 + z2

z2R
of free beams in

⟨ω⟩ (z) = ωL

(
sgn(ℓ) w2

m

w(z)2
+ 1

)
as an approximation for the beam width in

their experimental setup and gets a good result,
as can be seen in the figure on the left, where
the dashed lines are the predicting curves and
n, ℓ are quantum numbers label the LG modes.

▶ Based on the different rotational behaviours,
they divided the z axis in three regions: Gouy,
Landau state (LS), and Larmor.

▶ For the Landau state region, it refers to the
beam width w(z) ≈ wm.
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data in (Schachinger et al. 2015)

In our work, we explain the experimental data with
the paraxial Landau modes, using the experimental
parameters.
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As can be seen, the two fitting curves almost
coincide under the experimental parameters, of
difference only ∼ 0.001◦.
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Figure: The differences between the predicting curves
based on paraxial Landau modes and based on free
beams
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This is due to the fact that in the range of interest
of z and under the parameters in this experiment,
the free beam width and the paraxial Landau modes
beam width are very close to each other.
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Since all the contribution comes from the Gouy
phase term of the paraxial Landau modes, We can
unify the whole propagtion region as the
Generalized Gouy.
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If we choose some parameters other than that of
the experimental for the model:

∆⟨ϕ⟩ =
z − zdf

zm

+ sgn (ℓ)

[
arctan

(
zm

zR
tan

(
z

zm

))
− arctan

(
zm

zR
tan

(
zdf

zm

))]

with zm, zR as parameters, we can get a very good
approximation of the experimental data.
Table: Parameters used in the experiment and in best
approximation

modes Experimental (zR, zm) Best approximation (zR, zm)
n = 0, ℓ = −3 (2.84, 1760) (3.46, 1200)
n = 0, ℓ = −1 (1.46, 1760) (1.65, 1381)
n = 0, ℓ = 1 (1.46, 1760) (1.68, 2129)
n = 0, ℓ = 3 (2.84, 1760) (3.38, 2274)
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The paraxial equation for twisted electron beam in uniform magnetic field:[
2iℏ2k

∂

∂z
+ ℏ2∇2

⊥ − iℏeB
∂

∂φ
− 1

4
e2B2r2

]
Ψ = 0 (6)

Note that for uniform motion in z-directioon, z ≈ vt, Eq.(6) is equivalent to the
time-dependent Schrödinger equation (TDSE):

iℏ
∂

∂z
= − ℏ

2k
∇2

⊥ + i
eB

2k

∂

∂φ
+
e2B2r2

8ℏk
z≈vt
=⇒ iℏ

∂

∂t
= − ℏ2

2me
∇2

⊥ + i
ℏeB
2me

∂

∂φ
+
e2B2r2

8me

=
p̂2
⊥

2me
+ ωLL̂z +

1

2
meω

2
Lr

2

(7)

where we have used k = p
ℏ = mev

ℏ .

This fact allows us to use the numerical method for TDSE in Quantum Mechanics to
deal with the paraxial equation.
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Our starting point for the simulation is the dimensionless version of the paraxial
equation (using wm as transverse characteristic scale and zm as longitudinal scale) in
Cartesian coordinates:

i∂zΨ =

[
−1

4
(∂2x + ∂2y)− i (x∂y − y∂x) + (x2 + y2)

]
Ψ (8)

With an initial condition at the knife-edge cut position zk: Ψ(x, y, zk)Θ(y), where
Θ(.) is the Heaviside function. And we take the grid length three times larger than the
maximum beam width at the knife-edge cut position to have a zero Dirichlet boundry
condition.
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Figure: Cross section of the probability density
of the electron beam at y = 0.

▶ The significant variation in transverse
scales within the simulation domain
requires a fine spatial grid to meet the
stability and precision of the
simulation.
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Figure: Cross section of the probability density
of the electron beam at y = 0, with the part
near the observation plane zoomed.

▶ As an estimate, if we want to have a
100× 100 resolution for the intensity
profile near the observation plane,
then the initial grid should be of size
(100× 10

0.25)× (100× 10
0.25) =

4000× 4000.
▶ Thus any local discretization for the
z-direction is inefficient and will
propose a big challenge for the RAM
and CPU.

▶ We use a global approximation for the
propagation using the Chebyshev
method, employed in solving
time-dependent Schrödinger equation.
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In Quantum Mechanics, for the TDSE iℏ ∂
∂tψ(x, t) = Ĥψ(x, t), by interpreting it as a

first order differential equation in time (that is, ignoring any potential differential
operators in Ĥ), there is a formal solution available:

ψ(x,∆t) = e−iĤ∆tψ(x, 0) =

∞∑
n=0

(−1)n

n!

(
iĤ∆t

ℏ

)n

ψ(x, 0) ≡ Û(∆t)ψ(x, 0), (9)

where ψ(x, 0) is the initial condition, and Û = e−iĤt/ℏ is the unitary propagation
operator.
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The Chebysev expansion is a global approximation (i.e., it is valid for any value of ∆t),
allowing us to calculate the final state of the system directly, given the Hamiltonian
and initial state.

It does so by expanding the unitary propagation operator as a series expansion of
Chebyshev polynomials, unlike the more common power series approach used by the
Taylor expansion.
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The Chebyshev series expansion of the unitary time propagation operator is given by

ψ(x, t+∆t) = e−i
(Emax+Emin)∆t

2ℏ

[
J0(α)T0(−iH̃) + 2

∞∑
n=1

Jn(α)Tn(−iH̃)

]
ψ(x, t), (10)

where:

▶ Emin, Emax ∈ R are the values we used to normalize the Hamiltonian so that its
energy eigenvalues lie in the domain E ∈ [−1, 1] (this allows maximal convergence
of the Chebyshev expansion)

▶ α = (Emax−Emin)∆t
2ℏ , Jn(α) are the Bessel function of the first kind,

▶ Tn are the Chebyshev polynomials of the first kind,

▶ the normalized Hamiltonian is defined as

H̃ =
2Ĥ − Emax − Emin

Emax − Emin
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The power of the Chebyshev expansion as a global method comes from the Bessel
function series coefficients, as it turns out that Jn(α) ≈ 0 when n > |α|, allowing for
fast convergence and significantly higher accuracy after only ⌊|α|⌋ terms.

200 400 600 800 1000 1200
n

10-41

10-31

10-21

10-11

|Jn(1000)|

Figure: For fixed α, |Jn(α)| decreases quickly for n > |α|
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Note that although the Chebyshev polynomials Tn(.) is implemented in most
programming languages, we cannot simply make use of it directly, since it only accepts
a floating point value x, whereas our argument is H̃, an operator or a matrix!

Thankfully, the Chebyshev polynomials satisfy a very convenient set of recurrence
relations,

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)Tn−1(x),

which generalise in the case of operator arguments:

T0(−iH̃)ψ(x, t) = ψ(x, t)

T1(−iH̃)ψ(x, t) = −iH̃ψ(x, t)

Tn+1(−iH̃)ψ(x, t) = −2iH̃Tn(−iH̃)ψ(x, t)Tn−1(−iH̃)ψ(x, t).
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For the dimensionless version of the paraxial equation:

i∂zΨ =

[
−1

4
(∂2x + ∂2y)− i (x∂y − y∂x) + (x2 + y2)

]
Ψ (11)

We can simply replace the ∆t to ∆z, setting ℏ = 1 and take the effective Hamiltonian
as

Heff = −1

4
(∂2x + ∂2y)− i (x∂y − y∂x) + (x2 + y2)

And in the following, we show our simulation results, together with a line based on the
theoretical prediction.
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −20 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −50 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −80 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −100 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −150 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −200 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −250 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −300 µm
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Figure: Simulation result of the propagation, n = 0, ℓ = 3, zk = −350 µm
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Figure: Comparison with the intensity profile observed in the experiment in (Schachinger et al.
2015)
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▶ Our work can be summarised in a figure, with both the
conceptually imposed Generalized Gouy Rotation based on the
paraxial Landau modes, the fitting of experimental data and the
simulation under the experimental settings with the Chebyshev
method.

▶ To check further the validity of the model based on paraxial
Landau modes, experiments can be done for some different
parameters so that we can distinguish the beam width from the
free beams and Landau states.

▶ The model based on the paraxial Landau modes is still not
perfect, there exists some discrepancies, especially for the case of
|ℓ| = 3. This may need models considering higher order
corrections or experiment with better precision (e.g., more uniform
magnetic field, reduction of knife edge roughness and position
measure errors, etc.).
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Thanks for your attention!
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